2016届高三数学(文)专题复习检测:专题一 函数、不等式及导数的应用
- 格式:doc
- 大小:409.00 KB
- 文档页数:31
2016届新课标高考数学二轮专题复习(一)第1讲 函数图象与性质及函数与方程一、选择题1.(2015·石家庄模拟)函数f (x )=1-3xx -1的定义域为( )A.(-∞,0]B.[0,1)∪[1,+∞)C.[1,+∞)D.(1,+∞)解析 由题意知⎩⎪⎨⎪⎧1-3x ≥0,x ≠1,解得x ≤0且x ≠1.答案 A2.函数f (x )=log 2x -1x的零点所在的区间为( )A.⎝⎛⎭⎫0,12B.⎝⎛⎭⎫12,1 C.(1,2) D.(2,3) 解析 函数f (x )的定义域为(0,+∞),且函数f (x )在(0,+∞)上为增函数. f ⎝⎛⎭⎫12=log 212-112=-1-2=-3<0, f (1)=log 21-11=0-1<0,f (2)=log 22-12=1-12=12>0,f (3)=log 23-13>1-13=23>0,即f (1)·f (2)<0,∴函数f (x )=log 2x -1x的零点在区间(1,2)内.答案 C 3.(2015·安徽卷)下列函数中,既是偶函数又存在零点的是( )A.y =ln xB.y =x 2+1C.y =sin xD.y =cos x 解析 对数函数y =ln x 是非奇非偶函数;y =x 2+1为偶函数但没有零点;y =sin x 是奇函数;y =cos x 是偶函数且有零点,故选D. 答案 D4.(2015·山东卷)若函数f (x )=2x +12x -a是奇函数,则使f (x )>3成立的x 的取值范围为( )A.(-∞,-1)B.(-1,0)C.(0,1)D.(1,+∞) 解析 ∵f (x )为奇函数,∴f (-x )=-f (x ), 即2-x +12-x -a =-2x +12x -a,整理得(1-a )(2x +1)=0, ∴a =1,∴f (x )>3即为2x +12x -1>3,化简得(2x -2)(2x -1)<0,∴1<2x <2,∴0<x <1.答案 C5.(2015·天津卷)已知函数f (x )=⎩⎪⎨⎪⎧2-|x |,x ≤2,(x -2)2,x >2,函数g (x )=3-f (2-x ),则函数y =f (x )-g (x )的零点个数为( )A.2B.3C.4D.5解析 函数y =f (x )-g (x )的零点个数即为函数f (x )与g (x )图象的交点个数,记h (x )=-f (2-x ),在同一坐标系中作出函数f (x )与h (x )的图象,如图,g (x )的图象为h (x )的图象向上平移3个单位,可知f (x )与g (x )的图象有两个交点,故选A. 答案 A 二、填空题6.(2015·浙江卷)计算:log 222=________,2log23+log43=________.解析 log 222=log 22-12=-12,2log23+log43=2log23+12log23=2log2332=3 3.答案 -123 37.(2015·长沙模拟)已知奇函数f (x )满足f (x +2)=-f (x ),且当x ∈(0,1)时,f (x )=2x ,则f ⎝⎛⎭⎫72的值为________.解析 由f (x +2)=-f (x )知f (x )的周期为4, 又f (-x )=-f (x ),∴f ⎝⎛⎭⎫72=f ⎝⎛⎭⎫72-4=f ⎝⎛⎭⎫-12=-f ⎝⎛⎭⎫12=- 2. 答案 - 28.(2015·武汉模拟)若函数f (x )=⎩⎪⎨⎪⎧2x -a ,x ≤0,ln x ,x >0有两个不同的零点,则实数a 的取值范围是________.解析 当x >0时,由f (x )=ln x =0,得x =1. 因为函数f (x )有两个不同的零点,则当x ≤0时, 函数f (x )=2x -a 有一个零点,令f (x )=0得a =2x , 因为0<2x ≤20=1,所以0<a ≤1, 所以实数a 的取值范围是0<a ≤1. 答案 (0,1] 三、解答题9.定义在[-1,1]上的奇函数f (x ),已知当x ∈[-1,0]时,f (x )=14x -a2x (a ∈R ).(1)写出f (x )在[0,1]上的解析式; (2)求f (x )在[0,1]上的最大值.解 (1)∵f (x )是定义在[-1,1]上的奇函数,∴f (0)=0,∴a =1,∴当x ∈[-1,0]时,f (x )=14x -12x .设x ∈[0,1],则-x ∈[-1,0],∴f (-x )=14-x -12-x =4x -2x ,∵f (x )是奇函数,∴f (-x )=-f (x ),∴f (x )=2x -4x . ∴f (x )在[0,1]上的解析式为f (x )=2x -4x .(2)f (x )=2x -4x ,x ∈[0,1],令t =2x ,t ∈[1,2],g (t )=t -t 2=-⎝⎛⎭⎫t -122+14. ∴g (t )在[1,2]上是减函数,∴g (t )max =g (1)=0,即x =0,f (x )max =0. 10.(2015·太原模拟)已知函数f (x )=ax 2-2ax +2+b (a ≠0)在区间[2,3]上有最大值5,最小值2.(1)求a ,b 的值;(2)若b <1,g (x )=f (x )-2m x 在[2,4]上单调,求m 的取值范围. 解 (1)f (x )=a (x -1)2+2+b -a .①当a >0时,f (x )在[2,3]上为增函数, 故⎩⎪⎨⎪⎧f (3)=5,f (2)=2⇒⎩⎪⎨⎪⎧9a -6a +2+b =5,4a -4a +2+b =2⇒⎩⎪⎨⎪⎧a =1,b =0. ②当a <0时,f (x )在[2,3]上为减函数, 故⎩⎪⎨⎪⎧f (3)=2,f (2)=5⇒⎩⎪⎨⎪⎧9a -6a +2+b =2,4a -4a +2+b =5⇒⎩⎪⎨⎪⎧a =-1,b =3. 故⎩⎪⎨⎪⎧a =1,b =0或⎩⎪⎨⎪⎧a =-1,b =3. (2)∵b <1,∴a =1,b =0,即f (x )=x 2-2x +2, g (x )=x 2-2x +2-2m x =x 2-(2+2m )x +2. 若g (x )在[2,4]上单调, 则2+2m 2≤2或2m +22≥4,∴2m ≤2或2m ≥6,即m ≤1或m ≥log 26.故m 的取值范围是(-∞,1]∪[log 26,+∞).11.已知函数f (x )=-x 2+2e x +m -1,g (x )=x +e 2x(x >0).(1)若g (x )=m 有实根,求m 的取值范围;(2)确定m 的取值范围,使得g (x )-f (x )=0有两个相异实根.解 (1)∵x >0,∴g (x )=x +e 2x≥2e 2=2e ,等号成立的条件是x =e.故g (x )的值域是[2e ,+∞),因而只需m ≥2e ,则g (x )=m 就有实根. 故m ∈[2e ,+∞).(2)若g (x )-f (x )=0有两个相异的实根,即g (x )=f (x )中函数g (x )与f (x )的图象有两个不同的交点,作出g (x )=x +e 2x(x >0)的大致图象.∵f (x )=-x 2+2e x +m -1=-(x -e)2+m -1+e 2. 其对称轴为x =e ,开口向下,最大值为m -1+e 2. 故当m -1+e 2>2e , 即m >-e 2+2e +1时, g (x )与f (x )有两个交点,即g (x )-f (x )=0有两个相异实根.∴m 的取值范围是(-e 2+2e +1,+∞).第2讲 不等式及线性规划一、选择题1.已知x >-1,则函数y =x +1x +1的最小值为( ) A.-1 B.0 C.1 D.2解析 ∵x >-1,∴x +1>0.∴y =x +1x +1=(x +1)+1x +1-1,≥2(x +1)·1x +1-1=1,当且仅当x +1=1x +1,即x =0时取等号.答案 C2.(2015·成都模拟)若点A (m ,n )在第一象限,且在直线x 3+y4=1上,则mn 的最大值是( )A.3B.4C.7D.12解析 因为点A (m ,n )在第一象限,且在直线x 3+y 4=1上,所以m ,n ∈R +,且m 3+n4=1,所以m 3·n4≤(m 3+n 42 )2⎝⎛⎭⎫当且仅当m 3=n 4=12,即m =32,n =2时,取“=”,所以m 3·n 4≤⎝⎛⎭⎫122=14, 即mn ≤3,所以mn 的最大值为3. 答案 A3.(2015·天津卷)设变量x ,y 满足约束条件⎩⎪⎨⎪⎧x -2≤0,x -2y ≤0,x +2y -8≤0,则目标函数z =3x +y 的最大值为( )A.7B.8C.9D.14解析 作出约束条件对应的可行域,如图中阴影部分,作直线l :3x +y =0,平移直线l 可知,经过点A 时,z =3x +y 取得最大值,由⎩⎪⎨⎪⎧x -2=0,x +2y -8=0,得A (2,3),故z max =3×2+3=9.选C. 答案 C4.已知正数x ,y 满足x +22xy ≤λ(x +y )恒成立,则实数λ的最小值为( ) A.1 B.2 C.3 D.4 解析 ∵x >0,y >0,∴x +2y ≥22xy (当且仅当x =2y 时取等号).又由x +22xy ≤λ(x +y )可得λ≥x +22xyx +y,而x +22xy x +y ≤x +(x +2y )x +y=2,∴当且仅当x =2y 时,⎝ ⎛⎭⎪⎫x +22xy x +y max=2.∴λ的最小值为2.答案 B5.(2015·四川卷)设实数x ,y 满足⎩⎪⎨⎪⎧2x +y ≤10,x +2y ≤14,x +y ≥6,则xy 的最大值为( )A.252B.492C.12D.16解析 xy =12×2xy ≤12⎝⎛⎭⎫2x +y 22≤12⎝⎛⎭⎫1022=252,当且仅当x =52,y =5时,等号成立,把x =52,y =5代入约束条件,满足.故xy 的最大值为252. 答案 A 二、填空题6.(2015·江苏卷)不等式22x x-<4的解集为________.解析 不等式22x x-<4⇔x 2-x <2⇔-1<x <2,故原不等式的解集为(-1,2). 答案 (-1,2) 7.(2015·北京卷)如图,△ABC 及其内部的点组成的集合记为D ,P (x ,y )为D 中任意一点,则z =2x +3y 的最大值为________.解析 z =2x +3y ,化为y =-23x +13z ,当直线y =-23x +z3在点A (2,1)处时,z 取最大值,z =2×2+3=7.答案 7 8.(2015·重庆卷)设a ,b >0,a +b =5,则a +1+b +3的最大值为________.解析 ∵a ,b >0,a +b =5,∴(a +1+b +3)2=a +b +4+2a +1b +3≤a +b +4+(a +1)2+(b +3)2=a +b +4+a +b +4=18,当且仅当a =72,b =32时,等号成立,则a +1+b +3≤32,即a +1+b +3最大值为3 2. 答案 3 2 三、解答题9.已知函数f (x )=2xx 2+6.(1)若f (x )>k 的解集为{x |x <-3,或x >-2},求k 的值; (2)对任意x >0,f (x )≤t 恒成立,求t 的取值范围. 解 (1)f (x )>k ⇔kx 2-2x +6k <0.由已知{x |x <-3,或x >-2}是其解集, 得kx 2-2x +6k =0的两根是-3,-2.由根与系数的关系可知(-2)+(-3)=2k ,即k =-25.(2)因为x >0,f (x )=2x x 2+6=2x +6x ≤226=66,当且仅当x =6时取等号.由已知f (x )≤t 对任意x >0恒成立,故t ≥66,即t 的取值范围是⎣⎡⎭⎫66,+∞.10.如图,建立平面直角坐标系xOy ,x 轴在地平面上,y 轴垂直于地平面,单位长度为1千米.某炮位于坐标原点.已知炮弹发射后的轨迹在方程y =kx -120(1+k 2)x 2(k >0)表示的曲线上,其中k 与发射方向有关.炮的射程是指炮弹落地点的横坐标.(1)求炮的最大射程;(2)设在第一象限有一飞行物(忽略其大小),其飞行高度为3.2千米,试问它的横坐标a 不超过多少时,炮弹可以击中它?请说明理由.解 (1)令y =0,得kx -120(1+k 2)x 2=0,由实际意义和题设条件知x >0,k >0,故x =20k 1+k2=20k +1k≤202=10, 当且仅当k =1时取等号.所以炮的最大射程为10千米. (2)因为a >0,所以炮弹可击中目标⇔存在k >0,使3.2=ka -120(1+k 2)a 2成立⇔关于k 的方程a 2k 2-20ak +a 2+64=0有正根⇔判别式Δ=(-20a )2-4a 2(a 2+64)≥0⇔a ≤6.所以当a 不超过6千米时,可击中目标.11.已知函数f (x )=13ax 3-bx 2+(2-b )x +1在x =x 1处取得极大值,在x =x 2处取得极小值,且0<x 1<1<x 2<2. (1)证明:a >0;(2)若z =a +2b ,求z 的取值范围.(1)证明 求函数f (x )的导数f ′(x )=ax 2-2bx +2-b . 由函数f (x )在x =x 1处取得极大值, 在x =x 2处取得极小值,知x 1,x 2是f ′(x )=0的两个根, 所以f ′(x )=a (x -x 1)(x -x 2).当x <x 1时,f (x )为增函数,f ′(x )>0, 由x -x 1<0,x -x 2<0得a >0.(2)解 在题设下,0<x 1<1<x 2<2等价于⎩⎪⎨⎪⎧f ′(0)>0,f ′(1)<0,f ′(2)>0,即⎩⎪⎨⎪⎧2-b >0,a -2b +2-b <0,4a -4b +2-b >0,化简得⎩⎪⎨⎪⎧2-b >0,a -3b +2<0,4a -5b +2>0.此不等式组表示的区域为平面aOb 上的三条直线:2-b =0,a -3b +2=0,4a -5b +2=0所围成的△ABC 的内部,其三个顶点分别为A ⎝⎛⎭⎫47,67,B (2,2),C (4,2).z 在这三点的值依次为167,6,8.所以z 的取值范围为⎝⎛⎭⎫167,8.第3讲 导数与函数的单调性、极值、最值问题一、选择题1.函数f (x )=12x 2-ln x 的单调递减区间为( )A.(-1,1]B.(0,1]C.[1,+∞)D.(0,+∞)解析 由题意知,函数的定义域为(0,+∞),又由f ′(x )=x -1x≤0,解得0<x ≤1,所以函数f (x )的单调递减区间为(0,1]. 答案 B2.(2015·昆明模拟)已知函数f (x )=12mx 2+ln x -2x 在定义域内是增函数,则实数m 的取值范围是( )A.[-1,1]B.[-1,+∞)C.[1,+∞)D.(-∞,1]解析 f ′(x )=mx +1x -2≥0对一切x >0恒成立,∴m ≥-⎝⎛⎭⎫1x 2+2x .令g (x )=-⎝⎛⎭⎫1x 2+2x ,则当1x=1,即x =1时,函数g (x )取最大值1.故m ≥1.答案 C 3.(2014·新课标全国Ⅱ卷)若函数f (x )=kx -ln x 在区间(1,+∞)上单调递增,则k 的取值范围是( )A.(-∞,-2]B.(-∞,-1]C.[2,+∞)D.[1,+∞)解析 f ′(x )=k -1x ,由题意知f ′(x )≥0在(1,+∞)上恒成立,即k -1x ≥0在(1,+∞)上恒成立,由于k ≥1x ,而0<1x<1,所以k ≥1.故选D.答案 D 4.(2015·临沂模拟)函数f (x )=x 3-3ax -a 在(0,1)内有最小值,则a 的取值范围是( )A.[0,1)B.(-1,1)C.⎝⎛⎭⎫0,12 D.(0,1) 解析 f ′(x )=3x 2-3a =3(x 2-a ). 当a ≤0时,f ′(x )>0,∴f (x )在(0,1)内单调递增,无最小值. 当a >0时,f ′(x )=3(x -a )(x +a ).当x ∈(-∞,-a )和(a ,+∞)时,f (x )单调递增; 当x ∈(-a ,a )时,f (x )单调递减, 所以当a <1,即0<a <1时,f (x )在(0,1)内有最小值. 答案 D5.已知函数f (x )=13x 3+ax 2+3x +1有两个极值点,则实数a 的取值范围是( )A.(3,+∞)B.(-∞,-3)C.(-3,3)D.(-∞,-3)∪(3,+∞)解析 f ′(x )=x 2+2ax +3.由题意知方程f ′(x )=0有两个不相等的实数根, 所以Δ=4a 2-12>0, 解得a >3或a <- 3. 答案 D 二、填空题 6.(2015·天津卷)已知函数f (x )=ax ln x ,x ∈(0,+∞),其中a 为实数,f ′(x )为f (x )的导函数.若f ′(1)=3,则a 的值为________.解析 f ′(x )=a ln x +ax ·1x=a (ln x +1),由f ′(1)=3得,a (ln 1+1)=3,解得a =3. 答案 37.若f (x )=x 3+3ax 2+3(a +2)x +1在R 上单调递增,则a 的取值范围是________. 解析 f ′(x )=3x 2+6ax +3(a +2). 由题意知f ′(x )≥0在R 上恒成立,所以Δ=36a 2-4×3×3(a +2)≤0,解得-1≤a ≤2. 答案 [-1,2]8.(2015·衡水中学期末)若函数f (x )=-12x 2+4x -3ln x 在[t ,t +1]上不单调,则t 的取值范围是________.解析 对f (x )求导,得f ′(x )=-x +4-3x =-x 2+4x -3x =-(x -1)(x -3)x.由f ′(x )=0得函数f (x )的两个极值点为1,3,则只要这两个极值点有一个在区间(t ,t +1)内,函数f (x )在区间[t ,t +1]上就不单调,所以t <1<t +1或t <3<t +1,解得0<t <1或2<t <3. 答案 (0,1)∪(2,3) 三、解答题9.(2015·安徽卷)已知函数f (x )=ax(x +r )2(a >0,r >0).(1)求f (x )的定义域,并讨论f (x )的单调性;(2)若ar=400,求f (x )在(0,+∞)内的极值.解 (1)由题意知x ≠-r ,所求的定义域为(-∞,-r )∪(-r ,+∞).f (x )=ax (x +r )2=axx 2+2rx +r 2, f ′(x )=a (x 2+2rx +r 2)-ax (2x +2r )(x 2+2rx +r 2)2=a (r -x )(x +r )(x +r )4.所以当x <-r 或x >r 时,f ′(x )<0,当-r <x <r 时,f ′(x )>0.因此,f (x )的单调递减区间为(-∞,-r ),(r ,+∞);f (x )的单调递增区间为(-r ,r ). (2)由(1)的解答可知f ′(r )=0,f (x )在(0,r )上单调递增,在(r ,+∞)上单调递减. 因此,x =r 是f (x )的极大值点,所以f (x )在(0,+∞)内的极大值为f (r )=ar (2r )2=a 4r =4004=100. 10.已知函数f (x )=x 2+2a ln x .(1)若函数f (x )的图象在(2,f (2))处的切线斜率为1,求实数a 的值;(2)若函数g (x )=2x+f (x )在[1,2]上是减函数,求实数a 的取值范围.解 (1)f ′(x )=2x +2a x =2x 2+2ax.由已知f ′(2)=1,解得a =-3.(2)由g (x )=2x +x 2+2a ln x ,得g ′(x )=-2x 2+2x +2ax.由函数g (x )为[1,2]上的单调减函数, 则g ′(x )≤0在[1,2]上恒成立,即-2x 2+2x +2ax ≤0在[1,2]上恒成立,即a ≤1x -x 2在[1,2]上恒成立.令h (x )=1x-x 2,在[1,2]上h ′(x )=-1x2-2x =-⎝⎛⎭⎫1x 2+2x <0, 所以h (x )在[1,2]上为减函数,h (x )min =h (2)=-72.所以a ≤-72.11.(2015·合肥模拟)已知函数f (x )=x 3-ax 2-3x .(1)若f (x )在[1,+∞)上是增函数,求实数a 的取值范围;(2)已知函数g (x )=ln(1+x )-x +k2x 2(k ≥0),讨论函数g (x )的单调性.解 (1)对f (x )求导,得f ′(x )=3x 2-2ax -3.由f ′(x )≥0在[1,+∞)上恒成立,得a ≤32⎝⎛⎫x -1x . 记t (x )=32⎝⎛⎭⎫x -1x ,当x ≥1时,t (x )是增函数, 所以t (x )min =32(1-1)=0.所以a ≤0.(2)g ′(x )=x (kx +k -1)1+x,x ∈(-1,+∞).当k =0时,g ′(x )=-x1+x,所以在区间(-1,0)上,g ′(x )>0;在区间(0,+∞)上,g ′(x )<0.故g (x )的单调递增区间是(-1,0],单调递减区间是[0,+∞).当0<k <1时,由g ′(x )=x (kx +k -1)1+x=0,得x 1=0,x 2=1-kk >0,所以在区间(-1,0)和⎝⎛⎭⎫1-k k ,+∞上,g ′(x )>0;在区间⎝⎛⎭⎫0,1-k k 上,g ′(x )<0.故g (x )的单调递增区间是(-1,0]和⎣⎡⎭⎫1-k k ,+∞,单调递减区间是⎣⎡⎦⎤0,1-k k . 当k =1时,g ′(x )=x 21+x>0,故g (x )的单调递增区间是(-1,+∞).当k >1时,g ′(x )=x (kx +k -1)1+x=0,得x 1=1-kk ∈(-1,0),x 2=0,所以在区间⎝⎛⎭⎫-1,1-k k 和(0,+∞)上,g ′(x )>0,在区间⎝⎛⎭⎫1-k k ,0上,g ′(x )<0.故g (x )的单调递增区间是⎝⎛⎦⎤-1,1-k k 和[0,+∞),单调递减区间是⎣⎡⎦⎤1-k k ,0.第4讲 函数图象的切线及交点个数问题一、选择题1.曲线y =xx +2在点(-1,-1)处的切线方程为( )A.y =2x +1B.y =2x -1C.y =-2x -3D.y =-2x -2 解析 易知点(-1,-1)在曲线上,且y ′=x +2-x (x +2)2=2(x +2)2,所以切线斜率k =y ′|x =-1=21=2. 由点斜式得切线方程为y +1=2(x +1),即y =2x +1. 答案 A 2.(2015·武汉模拟)若曲线f (x )=a cos x 与曲线g (x )=x 2+bx +1在交点(0,m )处有公切线,则a +b 的值为( ) A.-1 B.0 C.1 D.2 解析 ∵f ′(x )=-a sin x ,∴f ′(0)=0. 又g ′(x )=2x +b ,∴g ′(0)=b ,∴b =0.又g (0)=1=m ,∴f (0)=a =m =1,∴a +b =1. 答案 C 3.(2015·邯郸模拟)直线y =kx +1与曲线y =x 3+ax +b 相切于点A (1,3),则2a +b 的值为( ) A.2 B.-1 C.1 D.-2解析 ∵y ′=3x 2+a .∴y ′|x =1=3+a =k , 又3=k +1,∴k =2,∴a =-1.又3=1+a +b ,∴b =3,∴2a +b =-2+3=1. 答案 C 4.(2015·武汉模拟)曲线y =x ln x 在点(e ,e)处的切线与直线x +ay =1垂直,则实数a 的值为( )A.2B.-2C.12D.-12解析 依题意得y ′=1+ln x ,y ′|x =e =1+ln e =2,所以-1a×2=-1,a =2,故选A. 答案 A5.已知e 是自然对数的底数,函数f (x )=e x +x -2的零点为a ,函数g (x )=ln x +x -2的零点为b ,则下列不等式中成立的是( )A.f (a )<f (1)<f (b )B.f (a )<f (b )<f (1)C.f (1)<f (a )<f (b )D.f (b )<f (1)<f (a )解析 由题意,知f ′(x )=e x +1>0恒成立,所以函数f (x )在R 上是单调递增的,而f (0)=e 0+0-2=-1<0,f (1)=e 1+1-2=e -1>0,所以函数f (x )的零点a ∈(0,1);由题意,知g ′(x )=1x+1>0,所以g (x )在(0,+∞)上是单调递增的,又g (1)=ln 1+1-2=-1<0,g (2)=ln 2+2-2=ln 2>0,所以函数g (x )的零点b ∈(1,2).综上,可得0<a <1<b <2.因为f (x )在R 上是增函数,所以f (a )<f (1)<f (b ).答案 A二、填空题6.(2015·全国Ⅱ卷)已知曲线y =x +ln x 在点(1,1)处的切线与曲线y =ax 2+(a +2)x +1相切,则a =________.解析 由y =x +ln x ,得y ′=1+1x,得曲线在点(1,1)的切线的斜率为k =y ′|x =1=2,所以切线方程为y -1=2(x -1),即y =2x -1,此切线与曲线y =ax 2+(a +2)x +1相切,消去y 得ax 2+ax +2=0,得a ≠0且Δ=a 2-8a =0,解得a =8.答案 87.函数f (x )=13x 3-x 2-3x -1的图象与x 轴的交点个数是________. 解析 f ′(x )=x 2-2x -3=(x +1)(x -3),函数f (x )在(-∞,-1)和(3,+∞)上是增函数,在(-1,3)上是减函数,由f (x )极小值=f (3)=-10<0,f (x )极大值=f (-1)=23>0知函数f (x )的图象与x 轴的交点个数为3.答案 38.(2015·长沙模拟)关于x 的方程x 3-3x 2-a =0有三个不同的实数解,则实数a 的取值范围是________.解析 由题意知使函数f (x )=x 3-3x 2-a 的极大值大于0且极小值小于0即可,又f ′(x )=3x 2-6x =3x (x -2),令f ′(x )=0,得x 1=0,x 2=2.当x <0时,f ′(x )>0;当0<x <2时,f ′(x )<0;当x >2时,f ′(x )>0,所以当x =0时,f (x )取得极大值,即f (x )极大值=f (0)=-a ;当x=2时,f (x )取得极小值,即f (x )极小值=f (2)=-4-a ,所以⎩⎪⎨⎪⎧-a >0,-4-a <0,解得-4<a <0. 答案 (-4,0)三、解答题9.已知函数f (x )=13x 3+1-a 2x 2-ax -a ,x ∈R ,其中a >0. (1)求函数f (x )的单调区间;(2)若函数f (x )在区间(-2,0)内恰有两个零点,求a 的取值范围.解 (1)f ′(x )=x 2+(1-a )x -a =(x +1)(x -a ).由f ′(x )=0,得x 1=-1,x 2=a >0.(2)由(1)知f (x )在区间(-2,-1)内单调递增,在区间(-1,0)内单调递减,从而函数f (x )在区间(-2,0)内恰有两个零点当且仅当⎩⎨⎧f (-2)<0,f (-1)>0,f (0)<0.解得0<a <13. 所以a 的取值范围是⎝⎛⎭⎫0,13. 10.(2015·郑州模拟)已知函数f (x )=x ln x ,g (x )=-x 2+ax -2(e 为自然对数的底数,a ∈R ).(1)判断曲线y =f (x )在点(1,f (1))处的切线与曲线y =g (x )的公共点个数;(2)当x ∈⎣⎡⎦⎤1e ,e 时,若函数y =f (x )-g (x )有两个零点,求a 的取值范围.解 (1)f ′(x )=ln x +1,所以切线斜率k =f ′(1)=1.又f (1)=0,∴曲线在点(1,0)处的切线方程为y =x -1.由⎩⎪⎨⎪⎧y =-x 2+ax -2,y =x -1⇒x 2+(1-a )x +1=0. 由Δ=(1-a )2-4=a 2-2a -3=(a +1)(a -3)可知:当Δ>0时,即a <-1或a >3时,有两个公共点;当Δ=0时,即a =-1或a =3时,有一个公共点;当Δ<0时,即-1<a <3时,没有公共点.(2)y =f (x )-g (x )=x 2-ax +2+x ln x ,由y =0,得a =x +2x+ln x . 令h (x )=x +2x +ln x ,则h ′(x )=(x -1)(x +2)x 2. 当x ∈⎣⎡⎦⎤1e ,e 时,由h ′(x )=0,得x =1.所以h (x )在⎣⎡⎦⎤1e ,1上单调递减,在[1,e]上单调递增,因此h (x )min =h (1)=3.由h ⎝⎛⎭⎫1e =1e +2e -1,h (e)=e +2e+1,比较可知h ⎝⎛⎭⎫1e >h (e),所以,结合函数图象可得,当3<a ≤e +2e+1时,函数y =f (x )-g (x )有两个零点. 11.(2015·济南模拟)已知函数f (x )=2ln x -x 2+ax (a ∈R ).(1)当a =2时,求f (x )的图象在x =1处的切线方程;(2)若函数g (x )=f (x )-ax +m 在⎣⎡⎦⎤1e ,e 上有两个零点,求实数m 的取值范围.解 (1)当a =2时,f (x )=2ln x -x 2+2x ,f ′(x )=2x-2x +2,切点坐标为(1,1), 切线的斜率k =f ′(1)=2,则切线方程为y -1=2(x -1),即y =2x -1.(2)g (x )=2ln x -x 2+m ,则g ′(x )=2x -2x =-2(x +1)(x -1)x. 因为x ∈⎣⎡⎦⎤1e ,e ,所以当g ′(x )=0时,x =1.当1e<x <1时,g ′(x )>0;当1<x <e 时,g ′(x )<0. 故g (x )在x =1处取得极大值g (1)=m -1.又g ⎝⎛⎭⎫1e =m -2-1e 2,g (e)=m +2-e 2, g (e)-g ⎝⎛⎭⎫1e =4-e 2+1e 2<0,则g (e)<g ⎝⎛⎭⎫1e ,所以g (x )在⎣⎡⎦⎤1e ,e 上的最小值是g (e).g (x )在⎣⎡⎦⎤1e ,e 上有两个零点的条件是⎩⎪⎨⎪⎧g (1)=m -1>0,g ⎝⎛⎭⎫1e =m -2-1e 2≤0,解得1<m ≤2+1e 2, 所以实数m 的取值范围是⎝⎛⎦⎤1,2+1e 2.第5讲 导数与不等式的证明、存在性及恒成立问题一、选择题1.(2015·安徽卷)函数f (x )=ax 3+bx 2+cx +d 的图象如图所示,则下列结论成立的是( )A.a >0,b <0,c >0,d >0B.a >0,b <0,c <0,d >0C.a <0,b <0,c >0,d >0D.a >0,b >0,c >0,d <0解析 由已知f (0)=d >0,可排除D ;其导函数f ′(x )=3ax 2+2bx +c 且f ′(0)=c >0,可排除B ;又f ′(x )=0有两不等实根,且x 1x 2=c 3a>0,所以a >0,故选A. 答案 A2.已知函数f (x )=13x 3-2x 2+3m ,x ∈[0,+∞),若f (x )+5≥0恒成立,则实数m 的取值范围是( )A.⎣⎡⎭⎫179,+∞B.⎝⎛⎭⎫179,+∞ C.(-∞,2] D.(-∞,2)解析 f ′(x )=x 2-4x ,由f ′(x )>0,得x >4或x <0.∴f (x )在(0,4)上单调递减,在(4,+∞)上单调递增,∴当x ∈[0,+∞)时,f (x )min =f (4).∴要使f (x )+5≥0恒成立,只需f (4)+5≥0恒成立即可,代入解之得m ≥179. 答案 A3.若存在正数x 使2x (x -a )<1成立,则a 的取值范围是( )A.(-∞,+∞)B.(-2,+∞)C.(0,+∞)D.(-1,+∞)解析 ∵2x (x -a )<1,∴a >x -12x . 令f (x )=x -12x , ∴f ′(x )=1+2-x ln 2>0.∴f (x )在(0,+∞)上单调递增,∴f (x )>f (0)=0-1=-1,∴a 的取值范围为(-1,+∞),故选D.答案 D4.当x ∈[-2,1]时,不等式ax 3-x 2+4x +3≥0恒成立,则实数a 的取值范围是( )A.[-5,-3]B.⎣⎡⎦⎤-6,-98 C.[-6,-2] D.[-4,-3]解析 当x ∈(0,1]时,得a ≥-3⎝⎛⎭⎫1x 3-4⎝⎛⎭⎫1x 2+1x, 令t =1x,则t ∈[1,+∞),a ≥-3t 3-4t 2+t , 令g (t )=-3t 3-4t 2+t ,t ∈[1,+∞),则g ′(t )=-9t 2-8t +1=-(t +1)·(9t -1),显然在[1,+∞)上,g ′(t )<0,g (t )单调递减,所以g (t )max =g (1)=-6,因此a ≥-6;同理,当x ∈[-2,0)时,得a ≤-2.由以上两种情况得-6≤a ≤-2,显然当x =0时也成立.故实数a 的取值范围为[-6,-2].答案 C5.(2015·长沙模拟)已知f (x )是定义在(0,+∞) 上的非负可导函数,且满足xf ′(x )+f (x )≤0,对任意的0<a <b ,则必有( )A.af (b )≤bf (a )B.bf (a )≤af (b )C.af (a )≤f (b )D.bf (b )≤f (a )解析 因为xf ′(x )≤-f (x ),f (x )≥0,所以⎣⎡⎦⎤f (x )x ′=xf ′(x )-f (x )x 2≤-2f (x )x 2≤0, 则函数f (x )x在(0,+∞)上单调递减. 由于0<a <b ,则f (a )a ≥f (b )b, 即af (b )≤bf (a ).答案 A二、填空题6.(2015·合肥模拟)设函数f (x )=ax 3-3x +1(x ∈R ),若对于任意x ∈[-1,1],都有f (x )≥0成立,则实数a 的值为________.解析 若x =0,则不论a 取何值,f (x )≥0显然成立;当x >0时,即x ∈(0,1]时,f (x )=ax 3-3x +1≥0可化为a ≥3x 2-1x 3. 令g (x )=3x 2-1x 3,则g ′(x )=3(1-2x )x 4, 所以g (x )在区间⎝⎛⎦⎤0,12上单调递增,在区间⎣⎡⎦⎤12,1上单调递减. 因此g (x )max =g ⎝⎛⎭⎫12=4,从而a ≥4.当x <0时,即x ∈[-1,0)时,同理a ≤3x 2-1x 3. g (x )在区间[-1,0)上单调递增,所以g (x )min =g (-1)=4,从而a ≤4,综上可知a =4.答案 47.已知函数f (x )=x 2+mx -1,若对于任意x ∈[m ,m +1],都有f (x )<0成立,则实数m 的取值范围是________.解析 作出二次函数f (x )的图象,对于任意x ∈[m ,m +1],都有f (x )<0,则有⎩⎪⎨⎪⎧f (m )<0,f (m +1)<0, 即⎩⎪⎨⎪⎧m 2+m 2-1<0,(m +1)2+m (m +1)-1<0, 解得-22<m <0. 答案 ⎝⎛⎭⎫-22,0 8.(2015·青岛模拟)已知函数f (x )=x -1x +1,g (x )=x 2-2ax +4,若对于任意x 1∈[0,1],存在x 2∈[1,2],使f (x 1)≥g (x 2),则实数a 的取值范围是________.解析 由于f ′(x )=1+1(x +1)2>0,因此函数f (x )在[0,1]上单调递增,所以x ∈[0,1]时,f (x )min =f (0)=-1.根据题意可知存在x ∈[1,2],使得g (x )=x 2-2ax +4≤-1,即x 2-2ax +5≤0,即a ≥x 2+52x 能成立,令h (x )=x 2+52x,则要使a ≥h (x )在x ∈[1,2]能成立,只需使a ≥h (x )min ,又函数h (x )=x 2+52x 在x ∈[1,2]上单调递减,所以h (x )min =h (2)=94,故只需a ≥94. 答案 ⎣⎡⎭⎫94,+∞ 三、解答题9.已知函数f (x )=a ln x -ax -3(a ∈R ).(1)求函数f (x )的单调区间;(2)当a =-1时,证明:当x ∈(1,+∞)时,f (x )+2>0;(1)解 根据题意知,f ′(x )=a (1-x )x(x >0), 当a >0时,则当x ∈(0,1)时,f ′(x )>0,当x ∈(1,+∞)时,f ′(x )<0,f (x )的单调递增区间为(0,1),单调递减区间为(1,+∞);当a <0时,f (x )的单调递增区间为(1,+∞),单调递减区间为(0,1);当a =0时,f (x )=-3,不是单调函数,无单调区间.(2)证明 当a =-1时,f (x )=-ln x +x -3,所以f (1)=-2,由(1)知f (x )=-ln x +x -3在(1,+∞)上单调递增,所以当x ∈(1,+∞)时,f (x )>f (1).即f (x )>-2,所以f (x )+2>0.10.(2015·唐山期末)已知函数f (x )=a e x +x 2,g (x )=sin πx 2+bx ,直线l 与曲线y =f (x )切于点(0,f (0)),且与曲线y =g (x )切于点(1,g (1)).(1)求a ,b 的值和直线l 的方程;(2)证明:f (x )>g (x ).(1)解 f ′(x )=a e x +2x ,g ′(x )=π2cos π2x +b , f (0)=a ,f ′(0)=a ,g (1)=1+b ,g ′(1)=b .曲线y =f (x )在点(0,f (0))处的切线为y =ax +a ,曲线y =g (x )在点(1,g (1))处的切线为:y =b (x -1)+1+b ,即y =bx +1,依题意有a =b =1,直线l 的方程为y =x +1,(2)证明 由(1)知f (x )=e x +x 2,g (x )=sin π2x +x , 设F (x )=f (x )-(x +1)=e x +x 2-x -1,则F ′(x )=e x +2x -1,当x ∈(-∞,0)时,F ′(x )<F ′(0)=0,当x ∈(0,+∞)时,F ′(x )>F ′(0)=0.F (x )在(-∞,0)上单调递减,在(0,+∞)上单调递增,故F (x )≥F (0)=0,设G (x )=x +1-g (x )=1-sin π2x , 则G (x )≥0,当且仅当x =4k +1(k ∈Z )时等号成立,由上可知,f (x )≥x +1≥g (x ),且两个等号不同时成立,因此f (x )>g (x ).11.(2014·新课标全国Ⅰ卷)设函数f (x )=a e x ln x +b e x -1x,曲线y =f (x )在点(1,f (1))处的切线方程为y =e(x -1)+2.(1)求a ,b ;(2)证明:f (x )>1.(1)解 函数f (x )的定义域为(0,+∞),f ′(x )=a e x ln x +a x e x -b x 2e x -1+b xe x -1. 由题意可得f (1)=2,f ′(1)=e.故a =1,b =2.(2)证明 由(1)知,f (x )=e x ln x +2xe x -1, 从而f (x )>1等价于x ln x >x e -x -2e. 设函数g (x )=x ln x ,则g ′(x )=1+ln x .所以当x ∈⎝⎛⎭⎫0,1e 时,g ′(x )<0; 当x ∈⎝⎛⎭⎫1e ,+∞时,g ′(x )>0.故g (x )在⎝⎛⎭⎫0,1e 上单调递减,在⎝⎛⎭⎫1e ,+∞上单调递增, 从而g (x )在(0,+∞)上的最小值为g ⎝⎛⎭⎫1e =-1e. 设函数h (x )=x e -x -2e,则h ′(x )=e -x (1-x ). 所以当x ∈(0,1)时,h ′(x )>0;当x ∈(1,+∞)时,h ′(x )<0.故h (x )在(0,1)上单调递增,在(1,+∞)上单调递减,从而h (x )在(0,+∞)上的最大值为h (1)=-1e. 综上,当x >0时,g (x )>h (x ),即f (x )>1.。
专题一 函数、不等式及导数的应用真题体验·引领卷一、选择题1.(2015·全国卷Ⅱ)已知集合A ={-2,-1,0,1,2},B ={x |(x -1)(x +2)<0},则A ∩B =( ) A .{-1,0}B .{0,1}C .{-1,0,1}D .{0,1,2}2.(2015·全国卷Ⅰ)设命题p :∃n ∈N ,n 2>2n ,则綈p 为( ) A .∀n ∈N ,n 2>2n B .∃n ∈N ,n 2≤2n C .∀n ∈N ,n 2≤2nD .∃n ∈N ,n 2=2n3.(2015·全国卷Ⅱ)设函数f (x )=⎩⎪⎨⎪⎧1+log 2(2-x ),x <1,2x -1,x ≥1,则f (-2)+f (log 212)=( ) A .3B .6C .9D .124.(2015·福建高考)变量x ,y 满足约束条件⎩⎪⎨⎪⎧x +y ≥0,x -2y +2≥0,mx -y ≤0.若z =2x -y 的最大值为2,则实数m 等于( ) A .-2B .-1C .1D .25.(2015·广东高考)下列函数中,既不是奇函数,也不是偶函数的是( )A .y =x +sin 2xB .y =x 2-cos xC .y =2x +12xD .y =x 2+sin x6.(2015·福建高考)若直线x a +yb =1(a >0,b >0)过点(1,1),则a +b 的最小值等于( ) A .2 B .3 C .4 D .5二、填空题7.(2015·全国卷Ⅰ)若函数f (x )=x ln(x +a +x 2)为偶函数,则实数a =________.8.(2015·全国卷Ⅰ)若x ,y 满足约束条件⎩⎪⎨⎪⎧x -1≥0,x -y ≤0,x +y -4≤0,则yx 的最大值为________.9.(2015·湖南高考)若函数f (x )=|2x -2|-b 有两个零点,则实数b 的取值范围是________. 三、解答题10.(2015·重庆高考)已知函数f (x )=ax 3+x 2(a ∈R )在x =-43处取得极值.(1)确定a 的值;(2)若g (x )=f (x )e x ,讨论g (x )的单调性.11.(2015·全国卷Ⅱ)已知f (x )=ln x +a (1-x ). (1)讨论f (x )的单调性;(2)当f (x )有最大值,且最大值大于2a -2时,求a 的取值范围.12.(2015·山东高考)设函数f (x )=(x +a )ln x ,g (x )=x 2e x . 已知曲线y =f (x ) 在点(1,f (1))处的切线与直线2x -y =0平行. (1)求a 的值;(2)是否存在自然数k ,使得方程f (x )=g (x )在(k ,k +1)内存在唯一的根?如果存在,求出k ;如果不存在,请说明理由;(3)设函数m (x )=min{f (x ),g (x )}(min{p ,q }表示p ,q 中的较小值),求m (x )的最大值.专题一 函数、不等式及导数的应用经典模拟·演练卷一、选择题1.(2015·济南模拟)已知集合P ={1,m },Q ={1,3,5},则“m =5”是“P ⊆Q ”的( ) A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件2.(2015·佛山模拟)已知f (x )是定义在R 上的奇函数,当x ≥0时,f (x )=3x +m (m 为常数),则f (-log 35)的值为( ) A .-4B .4C .-6D .63.(2015·安徽“江南十校”联考)已知向量a =(3,-2),b =(x , y -1),且a ∥b ,若x ,y 均为正数,则3x +2y 的最小值是( ) A.53B.83C .8D .244.(2015·潍坊三模)当a >0时,函数f (x )=(x 2+2ax )e x 的图象大致是( )5.(2015·四川省统考)已知x ,y 满足不等式组⎩⎪⎨⎪⎧y ≤x ,x +y ≥2,x ≤2,则z =2x +y的最大值与最小值的比值为( ) A.12B .2C.32D.436.(2015·郑州模拟)具有性质:f ⎝ ⎛⎭⎪⎫1x =-f (x )的函数,我们称为满足“倒负”变换的函数,下列函数:①y =x -1x ;②y =x +1x ;③y =⎩⎨⎧x (0<x <1),0 (x =1),-1x (x >1)中满足“倒负”变换的函数是( )A .①②B .②③C .①③D .只有①二、填空题7.(2015·保定联考)设关于x ,y 的不等式组⎩⎪⎨⎪⎧2x -y +1>0,x -m <0,y +m >0表示的平面区域内存在点P (x 0,y 0)满足x 0-2y 0=2,则m 的取值范围是________.8.(2015·西安八校联考)已知函数f (x )=213+1,log 1,x x x x x ⎧-≤⎪⎨>⎪⎩,,若关于x 的不等式f (x )≥m 2-34m 有解,则实数m 的取值范围是________.9.(2015·黄冈中学高三期中)定义运算 =a 1b 2-a 2b 1,则函数f (x )=⎪⎪⎪⎪⎪⎪x 2+3x 1x 13x 的图象在点⎝ ⎛⎭⎪⎫1,13处的切线方程是________. 三、解答题10.(2015·长沙调研)设函数f (x )=x +ax 2+b ln x ,曲线y =f (x )过P (1,0),且在P 点处的切线斜率为2. (1)求a ,b 的值; (2)证明:f (x )≤2x -2.11.(2015·德州模拟)已知函数f (x )=ln x -12ax 2-2x . (1)若函数f (x )在x =2处取得极值,求实数a 的值; (2)若函数f (x )在定义域内单调递增,求实数a 的取值范围; (3)当a =-12时,关于x 的方程f (x )=-12x +b 在[1,4]上恰有两个不相等的实数根,求实数b 的取值范围.12.(2015·西安模拟)设函数f (x )=ln x +mx ,m ∈R . (1)当m =e(e 为自然对数的底数)时,求f (x )的极小值; (2)讨论函数g (x )=f ′(x )-x3零点的个数;(3)若对任意b >a >0,f (b )-f (a )b -a <1恒成立,求m 的取值范围.专题一 函数、不等式及导数的应用专题过关·提升卷(时间:120分钟 满分:150分) 第Ⅰ卷 (选择题 共60分)一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.(2015·济南质检)设集合U =R ,A ={x |y =ln(1-x )},B ={x |x 2-3x ≥0},则A ∩∁U B =( ) A .{x |0<x <1} B .{x |1<x <3} C .{x |0<x <3}D .{x |x <1}2.下列函数中,既是偶函数,又在区间(0,+∞)上是减函数的是( ) A .y =-x 3 B .y =2|x | C .y =-lg|x |D .y =e x -e -x3.设p :|2a -1|<1,q :f (x )=log a (1-x )在(-∞,1)上是增函数,则p 是q 的( )A .充分不必要条件B .充要条件C .必要不充分条件D .既不充分又不必要条件4.(2015·佛山调研)已知a =20.2,b =0.40.2,c =0.40.6,则( ) A .a >b >c B .a >c >b C .c >a >bD .b >c >a5.(2015·湖南高考)若变量x ,y 满足约束条件⎩⎪⎨⎪⎧x +y ≥-1,2x -y ≤1,y ≤1,则z =3x-y 的最小值为( ) A .-7B .-1C .1D .26.已知函数y =log a (x +b )(a ,b 为常数,其中a >1)的图象如图所示,则函数g (x )=bx 2-2x ,x ∈[0,3]的最大值是 ( ) A .1B .bC .b 3D.1b7.(2015·重庆高考)若不等式组⎩⎪⎨⎪⎧x +y -2≤0,x +2y -2≥0,x -y +2m ≥0表示的平面区域为三角形,且其面积等于43,则m 的值为( ) A .-3B .1C.43D .38.设函数f (x )=x 22+m x ,若函数f (x )的极值点x 0满足x 0f (x 0)-x 30>m 2,则实数m 的取值范围是( ) A .(-∞,0)∪⎝ ⎛⎭⎪⎫0,12 B .(-∞,0)∪(2,+∞) C.⎝ ⎛⎭⎪⎫0,12D .(0,2)9.(2015·浙江高考)函数f (x )=⎝ ⎛⎭⎪⎫x -1x cos x (-π≤x ≤π且x ≠0)的图象可能为( )10.设函数g (x )=|x +2|+1,φ(x )=kx ,若函数f (x )=g (x )-φ(x )仅有两个零点,则实数k 的取值范围是( ) A.⎝ ⎛⎭⎪⎫0,12B.⎝ ⎛⎭⎪⎫-12,1 C.()-∞,-1D.⎝ ⎛⎭⎪⎫-1,-12 11.(2015·陕西高考)对二次函数f (x )=ax 2+bx +c (a 为非零整数),四位同学分别给出下列结论,其中有且只有一个结论是错误的,则错误的结论是( ) A .-1是f (x )的零点 B .1是f (x )的极值点 C .3是f (x )的极值D .点(2,8)在曲线y =f (x )上12.已知定义在R 上的函数g (x )的导函数为g ′(x ),满足g ′(x )-g (x )<0,若函数g (x )的图象关于直线x =2对称,且g (4)=1,则不等式g (x )e x >1的解集为( ) A .(-2,+∞) B .(0,+∞) C .(-∞,0)D .(-∞,2)第Ⅱ卷 (非选择题 共90分)二、填空题(本大题共4小题,每小题5分,共20分,把正确答案填写在题中的横线上)13.(2015·陕西高考)设曲线y =e x 在点(0,1)处的切线与曲线y =1x (x >0)上点P 处的切线垂直,则P 的坐标为________.14.已知关于x 的不等式ax -1x -b >0的解集为(-1,1),且函数φ(x )=a+12log (bx ),则不等式φ(x )>1的解集为________.15. 在如图所示的锐角三角形空地中,欲建一个面积最大的内接矩形花园(阴影部分),则其边长x 为________(m). 16.(2015·山东高考)定义运算“⊗”:x ⊗y =x 2-y 2xy (x ,y ∈R ,xy ≠0),当x >0,y >0时,x ⊗y +(2y )⊗x 的最小值为________. 三、解答题(本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤)17.(本小题满分10分)已知函数f (x )=ln x +k e x (k 为常数,e =2.718 28…是自然对数的底数),曲线y =f (x )在点(1,f (1))处的切线与x 轴平行. (1)求k 的值; (2)求f (x )的单调区间.18.(本小题满分12分)(2015·北京高考)设函数f (x )=x 22-k ln x ,k >0.(1)求f(x)的单调区间和极值;(2)证明:若f(x)存在零点,则f(x)在区间(1,e]上仅有一个零点.19.(本小题满分12分)某世界园艺博览会的主题是“让生活走进自然”,为了宣传“会议主题”和“城市时尚”,博览会指挥中心拟在如图所示的空地“扇形ABCD”上竖立一块长方形液晶广告屏幕MNEF.已知扇形ABCD所在圆的半径R=30米,圆心角θ=π2,电源在点K处,点K到半径AD,AB的距离分别为9米、3米.若MN∶NE=16∶9,线段MN必过点K,端点M,N分别在半径AD,AB上.设AN=x米,液晶广告屏幕MNEF的面积为S平方米.(1)求S关于x的函数关系式及其定义域;(2)若液晶屏每平米造价为1 500元,当x为何值时,液晶广告屏幕MNEF的造价最低?20.(本小题满分12分)(2015·福建高考)已知函数f(x)=ln x-(x-1)22.(1)求函数f(x)的单调递增区间;(2)证明:当x>1时,f(x)<x-1;(3)确定实数k的所有可能取值,使得存在x0>1,当x∈(1,x0)时,恒有f(x)>k(x-1).21.(本小题满分12分)(2015·潍坊三模)已知函数f(x)=x(ln x-ax)(a∈R),g(x)=f′(x).(1)若曲线y=f(x)在点(1,f(1))处的切线与直线3x-y-1=0平行,求实数a的值;(2)若函数F(x)=g(x)+12x2有两个极值点x1,x2,且x1<x2,求证:f(x2)<-1<f(x1).22.(本小题满分12分)已知函数f(x)=x2-(a+2)x+a ln x,常数a>0.(1)当x=1时,函数f(x)取得极小值-2,求函数f(x)的极大值;(2)设定义在D 上的函数y =h (x )在点P (x 0,h (x 0))处的切线方程为l :y =g (x ),当x ≠x 0时,若h (x )-g (x )x -x 0>0在D 内恒成立,则称点P为h (x )的“类优点”.若点(1,f (1))是函数f (x )的“类优点”,求实数a 的取值范围.参考答案专题一 函数、不等式及导数的应用真题体验·引领卷1.A [由A ={-2,-1,0,1,2},B ={x |(x -1)(x +2)<0}={x |-2<x <1},得A ∩B ={-1,0}.]2.C [量词“∃”改为“∀”;“n 2>2n ”改为“n 2≤2n ”, ∴綈p 为“∀n ∈N ,n 2≤2n ”.]3.C [∵f (-2)=1+log 24=1+2=3,f (log 212)=2log 212-1=6. ∴f (-2)+f (log 212)=3+6=9.]4.C [如图所示,目标函数z =2x -y 取最大值2即y ==2x -2时,画出⎩⎪⎨⎪⎧x +y ≥0,x -2y +2≥0表示的区域,由于mx -y ≤0过定点(0,0),要使z=2x -y 取最大值2,则目标函数必过两直线x -2y +2=0与y =2x -2的交点A (2,2),因此直线mx -y =0过点A (2,2),故有2m -2=0,解得m =1.]5.D [对于A ,f (-x )=-x +sin 2(-x )=-(x +sin 2x )=-f (x ),为奇函数;对于B ,f (-x )=(-x )2-cos(-x )=x 2-cos x =f (x ),为偶函数; 对于C ,f (-x )=2-x+12-x =2x+12x =f (x ),为偶函数;y =x 2+sin x 既不是偶函数也不是奇函数,故选D.] 6.C [由题意1a +1b =1,∴a +b =(a +b )⎝⎛⎭⎪⎫1a +1b =2+b a +ab ≥4,当且仅当a =b =2时,取等号.故选C.]7.1 [f (x )为偶函数,则ln(x +a +x 2)为奇函数, 所以ln(x +a +x 2)+ln(-x +a +x 2)=0, 即ln(a +x 2-x 2)=0,则ln a =0,a =1.]8.3[作出不等式组⎩⎪⎨⎪⎧x -1≥0,x -y ≤0,x +y -4≤0表示的平面区域(如图),易知yx 的最大值为k OA =3.]9.(0,2) [令y =|2x -2|,作出其图象如图: 由图形知,当0<b <2时, f (x )=|2x -2|-b 有两个零点.]10.解 (1)对f (x )求导得f ′(x )=3ax 2+2x ,因为f (x )在x =-43处取得极值,所以f ′⎝ ⎛⎭⎪⎫-43=0,即3a ·169+2·⎝ ⎛⎭⎪⎫-43=16a 3-83=0,解得a =12. (2)由(1)得g (x )=⎝ ⎛⎭⎪⎫12x 3+x 2e x ,故g ′(x )=⎝⎛⎭⎪⎫32x 2+2x e x +⎝⎛⎭⎪⎫12x 3+x 2e x=⎝ ⎛⎭⎪⎫12x 3+52x 2+2x e x =12x (x +1)(x +4)e x .令g ′(x )=0,解得x =0,x =-1或x =-4. 当x <-4时,g ′(x )<0,故g (x )为减函数; 当-4<x <-1时,g ′(x )>0,故g (x )为增函数; 当-1<x <0时,g ′(x )<0,故g (x )为减函数; 当x >0时,g ′(x )>0,故g (x )为增函数.综上知g (x )在(-∞,-4)和(-1,0)内为减函数,在(-4,-1)和(0,+∞)内为增函数.11.解 (1)f (x )的定义域为(0,+∞),f ′(x )=1x -a . 若a ≤0,则f ′(x )>0,所以f (x )在(0,+∞)上单调递增.若a >0,则当x ∈⎝ ⎛⎭⎪⎫0,1a 时,f ′(x )>0;当x ∈⎝ ⎛⎭⎪⎫1a ,+∞时,f ′(x )<0.所以f (x )在⎝⎛⎭⎪⎫0,1a 上单调递增,在⎝⎛⎭⎪⎫1a ,+∞上单调递减.(2)由(1)知,当a ≤0时,f (x )在(0,+∞)无最大值;当a >0时,f (x )在x =1a 取得最大值,最大值为f ⎝ ⎛⎭⎪⎫1a =ln ⎝ ⎛⎭⎪⎫1a +a ⎝⎛⎭⎪⎫1-1a =-ln a +a -1. 因此f ⎝ ⎛⎭⎪⎫1a >2a -2等价于ln a +a -1<0.令g (a )=ln a +a -1,则g (a )在(0,+∞)上单调递增,g (1)=0. 于是,当0<a <1时,g (a )<0;当a >1时,g (a )>0. 因此,a 的取值范围是(0,1).12.解 (1)由题意知,曲线y =f (x )在点(1,f (1))处的切线斜率为2,所以f ′(1)=2,又f ′(x )=ln x +ax +1,所以a =1. (2)k =1时,方程f (x )=g (x )在(1,2)内存在唯一的根. 设h (x )=f (x )-g (x )=(x +1)ln x -x 2e x , 当x ∈(0,1]时,h (x )<0.又h (2)=3ln 2-4e 2=ln 8-4e 2>1-1=0, 所以存在x 0∈(1,2),使得h (x 0)=0. 因为h ′(x )=ln x +1x +1+x (x -2)e x,所以当x ∈(1,2)时,h ′(x )>1-1e >0, 当x ∈(2,+∞)时,h ′(x )>0, 所以当x ∈(1,+∞)时,h (x )单调递增,所以k =1时,方程f (x )=g (x )在(k ,k +1)内存在唯一的根. (3)由(2)知方程f (x )=g (x )在(1,2)内存在唯一的根x 0. 且x ∈(0,x 0)时,f (x )<g (x ), x ∈(x 0,+∞)时,f (x )>g (x ),所以m (x )=⎩⎨⎧(x +1)ln x ,x ∈(0,x 0],x 2e x ,x ∈(x 0,+∞).当x ∈(0,x 0)时,若x ∈(0,1],m (x )≤0; 若x ∈(1,x 0),由m ′(x )=ln x +1x +1>0, 可知0<m (x )≤m (x 0);故m (x )≤m (x 0).当x ∈(x 0,+∞)时,由m ′(x )=x (2-x )e x ,可得x ∈(x 0,2)时,m ′(x )>0,m (x )单调递增;x ∈(2,+∞)时,m ′(x )<0,m (x )单调递减; 可知m (x )≤m (2)=4e 2,且m (x 0)<m (2). 综上可得,函数m (x )的最大值为4e 2.经典模拟·演练卷1.A [当m =5时,P ⊆Q ;若“P ⊆Q ”,则“m =3或m =5”,∴“m =5”是“P ⊆Q ”的充分不必要条件.]2.A [由题意f (0)=0,即1+m =0,所以m =-1,f (-log 35)=-f (log 35)=-(3log 35-1)=-4.]3.C [∵a ∥b ,∴3(y -1)+2x =0, 即2x +3y =3.∵x >0,y >0, ∴3x +2y =⎝ ⎛⎭⎪⎫3x +2y ·13(2x +3y )=13⎝ ⎛⎭⎪⎫6+6+9y x +4x y ≥13(12+2×6)=8, 当且仅当3y =2x 时取等号.∴当x =34且y =12时,3x +2y 取得最小值8.]4.B [f ′(x )=e x (x 2+2ax )+(2x +2a )e x =e x [x 2+2x (a +1)+2a ] 令f ′(x )=0,得x =±a 2+1-(a +1)<0. 因此f (x )的两个极值点均小于0.结合函数的图象,选项B 为f (x )的大致图象.]5.B [约束条件对应的区域如图所示,当直线z =2x +y 过点A (2,2)时,z 取得最大值6,当直线z =2x +y 经过B (1,1)时,z 取得最小值3,故最大值与最小值的比值为2.]6.C [易知①满足条件,②不满足;对于③,易知f ⎝ ⎛⎭⎪⎫1x=⎩⎨⎧1x(x >1),0 (x =1),-x (0<x <1),满足f ⎝ ⎛⎭⎪⎫1x =-f (x ),故③满足“倒负”变换,故选C.]7.⎝⎛⎭⎪⎫23,+∞ [作不等式组表示的平面区域(如图),依题意,直线x -2y =2与平面区域有公共点.如图,直线x =m 与y =-m 交于(m ,-m ),把(m ,-m )代入x -2y =2得m =23,结合图形得m >23.]8.⎣⎢⎡⎦⎥⎤-14,1 [当x ≤1时,f (x )=-x 2+x =-⎝ ⎛⎭⎪⎫x -122+14≤14, 当x >1时,f (x )=log 13x <0,∴f (x )的最大值为14,因此原不等式为14≥m 2-34m ,解之得-14≤m ≤1.]9.6x -3y -5=0 [由定义可知f (x )=⎪⎪⎪⎪⎪⎪x 2+3x 1x 13x =13x 3+x 2-x ,故f ′(x )=x 2+2x -1,则f ′(1)=2,所以函数f (x )在点⎝⎛⎭⎪⎫1,13处的切线方程为y -13=2(x -1),化为一般式为6x -3y -5=0.] 10.(1)解 f ′(x )=1+2ax +bx .由已知条件得⎩⎪⎨⎪⎧f (1)=0,f ′(1)=2,即⎩⎪⎨⎪⎧1+a =0,1+2a +b =2.解得a =-1,b =3.(2)证明 f (x )的定义域为(0,+∞), 由(1)知f (x )=x -x 2+3ln x .设g (x )=f (x )-(2x -2)=2-x -x 2+3ln x , 则g ′(x )=-1-2x +3x =-(x -1)(2x +3)x . 当0<x <1时,g ′(x )>0;当x >1时,g ′(x )<0.所以g (x )在(0,1)上单调递增,在(1,+∞)上单调递减. 而g (1)=0,故当x >0时, g (x )≤0,即f (x )≤2x -2.11.解 (1)f ′(x )=-ax 2+2x -1x (x >0), ∵x =2时,f (x )取得极值,∴f ′(2)=0,解得a =-34,经检验知符合题意. (2)函数f (x )的定义域为(0,+∞), 依题意f ′(x )≥0在x >0时恒成立, 即ax 2+2x -1≤0在x >0时恒成立,即a ≤1-2x x 2=⎝⎛⎭⎪⎫1x -12-1在x >0时恒成立,即a ≤⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1x -12-1min (x >0),当x =1时,⎝ ⎛⎭⎪⎫1x -12-1取最小值-1,∴a 的取值范围是(-∞,-1]. (3)a =-12,f (x )=-12x +b , 即14x 2-32x +ln x -b =0.设g (x )=14x 2-32x +ln x -b (x >0), 则g ′(x )=(x -2)(x -1)2x . 列表∴g (x )极小值=g (2)=ln 2-b -2, g (x )极大值=g (1)=-b -54, 又g (4)=2ln 2-b -2.∵方程g (x )=0在[1,4]上恰有两个不相等的实数根,则⎩⎪⎨⎪⎧g (1)≥0,g (2)<0,g (4)≥0,解得ln 2-2<b ≤-54. 12.解(1)由题设,当m =e 时,f (x )=ln x +e x , 则f ′(x )=x -ex 2,∴当x ∈(0,e),f ′(x )<0,f (x )在(0,e)上单调递减, 当x ∈(e ,+∞),f ′(x )>0,f (x )在(e ,+∞)上单调递增, ∴当x =e 时,f (x )取得极小值f (e)=ln e +ee =2, ∴f (x )的极小值为2.(2)由题设g (x )=f ′(x )-x 3=1x -m x 2-x3(x >0), 令g (x )=0,得m =-13x 3+x (x >0). 设φ(x )=-13x 3+x (x ≥0),则φ′(x )=-x 2+1=-(x -1)(x +1),当x ∈(0,1)时,φ′(x )>0,φ(x )在(0,1)上单调递增; 当x ∈(1,+∞)时,φ′(x )<0,φ(x )在(1,+∞)上单调递减.∴x =1是φ(x )的唯一极值点,且是极大值点,因此x =1也是φ(x )的最大值点,∴φ(x )的最大值为φ(1)=23.又φ(0)=0,结合y =φ(x )的图象(如图),可知 ①当m >23时,函数g (x )无零点;②当m =23时,函数g (x )有且只有一个零点; ③当0<m <23时,函数g (x )有两个零点; ④当m ≤0时,函数g (x )有且只有一个零点. 综上所述,当m >23时,函数g (x )无零点; 当m =23或m ≤0时,函数g (x )有且只有一个零点; 当0<m <23时,函数g (x )有两个零点.(3)对任意的b >a >0,f (b )-g (a )b -a <1恒成立,等价于f (b )-b <f (a )-a 恒成立.(*) 设h (x )=f (x )-x =ln x +mx -x (x >0), ∴(*)等价于h (x )在(0,+∞)上单调递减. 由h ′(x )=1x -mx 2-1≤0在(0,+∞)上恒成立, 得m ≥-x 2+x =-⎝ ⎛⎭⎪⎫x -122+14(x >0)恒成立,∴m ≥14⎝⎛⎭⎪⎫对m =14,h ′(x )=0仅在x =12时成立,∴m 的取值范围是⎣⎢⎡⎭⎪⎫14,+∞. 专题过关·提升卷1.A [A ={x |1-x >0}={x |x <1},B ={x |x ≥3或x ≤0}, ∴∁U B ={x |0<x <3},故A ∩∁U B ={x |0<x <1}.]2.C [选项A ,D 中,y =-x 3为奇函数,y =e x -e -x 也为奇函数.又y =2|x |=2x (x >0)是增函数,B 不满足.易知y =-lg|x |是偶函数,且当x >0时,y =-lg x 为减函数.] 3.B [p :|2a -1|<1⇔0<a <1.q :f (x )在(-∞,1)内是增函数⇔0<a <1. ∴p 是q 的充要条件.]4.A [由0.2<0.6,0.4<1,并结合指数函数的图象可知0.40.2>0.40.6,即b >c .因为a =20.2>1,b =0.40.2<1,所以a >b .综上a >b >c ,选A.]5.A[不等式组⎩⎪⎨⎪⎧x +y ≥-1,2x -y ≤1,y ≤1表示的平面区域如图所示,平移直线y =3x -z ,过点M (-2,1)时,直线的纵截距最大,此时z 有最小值.∴z min =3×(-2)-1=-7.]6.D [∵将y =log a x 的图象向左平移b 个单位,得到函数y =log a (x +b )的图象,∴0<b <1,则y =b t 在R 上是减函数. 又t =x 2-2x =(x -1)2-1,x ∈[0,3], ∴-1≤t ≤3,因此y =b t的最大值为1b .]7.B [不等式组表示的区域如图,则图中A 点纵坐标y A =1+m ,B 点纵坐标y B =2m +23, C 点横坐标x C =-2m ,∴S =S △ACD -S △BCD =12×(2+2m )×(1+m )-12×(2+2m )×2m +23=(m +1)23=43, ∴m +1=2或-2(舍),∴m =1.]8.C [由f (x )=x 22+m x ,得f ′(x )=x -mx 2, 又x 0是f (x )的极值点,∴f ′(x 0)=0,解之得x 0=3m ,因此x 0f (x 0)-x 30=x 302+m -x 30=m 2,所以m 2>m 2,解之得0<m <12.]9.D [∵f (x )=⎝⎛⎭⎪⎫x -1x cos x ,∴f (-x )=-f (x ), ∴f (x )为奇函数,排除A ,B ;当x →π时,f (x )<0,排除C.故选D.]10.D [在同一坐标系内作函数y =g (x )与y =φ(x )的图象,依题意知,两个函数的图象有两个交点.则直线φ(x )=kx 应介于两直线y =-x 与y =-x2之间,应有-1<k <-12.]11.A [A 正确等价于a -b +c =0,① B 正确等价于b =-2a ,② C 正确等价于4ac -b 24a =3,③ D 正确等价于4a +2b +c =8,④ 下面分情况验证,若A错,由②、③、④组成的方程组的解为⎩⎪⎨⎪⎧a =5,b =-10,c =8,符合题意,故A 结论错误.若B 、或C 、或D 错误,检验不满足题设要求.] 12.C [令F (x )=g (x )e x -1,则F ′(x )=g ′(x )e x -e x g (x )(e x )2=[g ′(x )-g (x )]·1e x .∵g ′(x )-g (x )<0,∴F ′(x )<0,则函数F (x )在(-∞,+∞)上是减函数. 又函数y =g (x )的图象关于直线x =2对称, ∴g (0)=g (4)=1,从而F (0)=g (0)e 0-1=0.故F (x )>0⎝ ⎛⎭⎪⎫即g (x )e x>1的解集为(-∞,0).] 13.(1,1) [∵y ′|x =0=e x |x =0=1.设P (x 0,y 0),则y ′|x =x 0=⎪⎪⎪⎝ ⎛⎭⎪⎫1x ′x =x 0=-1x 20. 依题意,得1·⎝ ⎛⎭⎪⎫-1x 20=-1,且x 0>0,则x 0=1.因此切点P 为(1,1).] 14.⎩⎨⎧⎭⎬⎫x ⎪⎪⎪0<x <14 [易知(ax -1)(x -b )>0的解集为(-1,1), ∴a <0,且1a =-1,b =1, 则φ(x )=-1+log 12x ,由φ(x )>1,得log 12x >2,解之得0<x <14.]15.20 [设内接矩形另一边长为y ,则由相似三角形性质可得x40=40-y 40,解得y =40-x ,所以面积S =x (40-x )=-x 2+40x =-(x -20)2+400(0<x <40),当x =20时,S max =400.]16.2 [由题意,得x ⊗y +(2y )⊗x =x 2-y 2xy +(2y )2-x 22yx=x 2+2y 22xy ≥2x 2·2y 22xy =2,当且仅当x =2y 时取等号.] 17.解 (1)由f (x )=ln x +ke x ,得f ′(x )=(ln x +k )′e x -(ln x +k )(e x )′e 2x =1-kx -x ln xx e x ,x ∈(0, +∞),由曲线y =f (x )在点(1,f (1))处的切线与x 轴平行可知f ′(1)=0,解得k =1.(2)由(1)知,f ′(x )=1x -ln x -1e x ,x ∈(0,+∞). 设h (x )=1x -ln x -1,则h ′(x )=-1x 2-1x <0, 即h (x )在(0,+∞)上是减函数,由h (1)=0知,当0<x <1时,h (x )>0,从而f ′(x )>0,当x >1时,h (x )<0,从而f ′(x )<0.综上可知,f (x )的单调递增区间是(0,1),单调递减区间是(1,+∞).18.(1)解 ∵f (x )=x 22-k ln x ,定义域为(0,+∞),且k >0. ∴f ′(x )=x -k x =x 2-kx .令f ′(x )=0,得x =k (负值舍去).f (x )与f ′(x )在区间(0,+∞)上的变化情况如下表:所以,f (x )的单调递减区间是(0,k ),单调递增区间是(k ,+∞), f (x )在x =k 处取得极小值f (k )=k (1-ln k )2. (2)证明 由(1)知,f (x )在区间(0,+∞)上的最小值为f (k )=k (1-ln k )2. 因为f (x )存在零点,所以k (1-ln k )2≤0,从而k ≥e , 当k =e 时,f (x )在区间(1,e)上单调递减,且f (e)=0, 所以x =e 是f (x )在区间(1,e]上的唯一零点.当k >e 时,f (x )在区间(0,e)上单调递减,且f (1)=12>0,f (e)=e -k 2<0,所以f (x )在区间(1,e]上仅有一个零点.综上可知,若f (x )存在零点,则f (x )在区间(1,e]上仅有一个零点. 19.解 (1)在Rt △AMN 中,依题意,得 9x =MK MN ,3AM =NK MN ,所以9x +3AM =1,则AM =3x x -9.所以MN =AM 2+AN 2=x 2+9x2(x -9)2.当点N 与点B 重合时,AM 取最小值307;当点M 与点D 重合时,AN 取最小值10.∴307≤AM ≤30,且10≤AN ≤30,因此307≤3x x -9≤30且10≤x ≤30,解之得10≤x ≤30.所以S =916⎣⎢⎡⎦⎥⎤x 2+9x 2(x -9)2,其定义域为[10,30].(2)根据题设条件,要使液晶广告屏的造价最低,只需广告屏的面积S 最小.设S =f (x )=916⎣⎢⎡⎦⎥⎤x 2+9x 2(x -9)2(10≤x ≤30),则f ′(x )=916⎣⎢⎡⎦⎥⎤2x +18x (x -9)2-2(x -9)·9x 2(x -9)4=9x [(x -9)3-81]8(x -9)3.令f ′(x )=0,得x =9+333,当10≤x <9+333时,f ′(x )<0;当9+333<x ≤30时,f ′(x )>0, ∴当x =9+333时,S 取得最小值,即液晶广告屏幕面积最小. 故当x =9+333时,液晶广告屏幕的造价最低. 20.(1)解 f ′(x )=1x -x +1=-x 2+x +1x,x ∈(0,+∞). 由f ′(x )>0得⎩⎪⎨⎪⎧x >0,-x 2+x +1>0.解得0<x <1+52.故f (x )的单调递增区间是⎝ ⎛⎭⎪⎫0,1+52. (2)证明 令F (x )=f (x )-(x -1),x ∈(1,+∞). 则有F ′(x )=1-x 2x .当x ∈(1,+∞)时,F ′(x )<0,所以F (x )在(1,+∞)上单调递减,故当x >1时,F (x )<F (1)=0,即当x >1时,f (x )<x -1.(3)解 由(2)知,当k =1时,不存在x 0>1满足题意.当k >1时,对于x >1,有f (x )<x -1<k (x -1),则f (x )<k (x -1),从而不存在x 0>1满足题意.当k <1时,令G (x )=f (x )-k (x -1),x ∈(0,+∞),则有G ′(x )=1x -x +1-k =-x 2+(1-k )x +1x. 由G ′(x )=0得,-x 2+(1-k )x +1=0.解得x 1=1-k -(1-k )2+42<0, x 2=1-k +(1-k )2+42>1. 当x ∈(1,x 2)时,G ′(x )>0,故G (x )在[1,x 2)内单调递增.从而当x ∈(1,x 2)时,G (x )>G (1)=0,即f (x )>k (x -1).综上,k 的取值范围是(-∞,1).21.(1)解 ∵f ′(x )=ln x -ax +x ⎝ ⎛⎭⎪⎫1x -a =ln x -2ax +1, ∴f ′(1)=1-2a因为3x -y -1=0的斜率为3.依题意,得1-2a =3;则a =-1.(2)证明 因为F (x )=g (x )+12x 2=ln x -2ax +1+12x 2,所以F ′(x )=1x -2a +x =x 2-2ax +1x(x >0), 函数F (x )=g (x )+12x 2有两个极值点x 1,x 2且x 1<x 2,即h (x )=x 2-2ax +1在(0,+∞)上有两个相异零点x 1,x 2.∵x 1x 2=1>0,∴⎩⎪⎨⎪⎧Δ=4a 2-4>0,x 1+x 2=2a >0,∴a >1. 当0<x <x 1或x >x 2时,h (x )>0,F ′(x )>0.当x 1<x <x 2时,h (x )<0,F ′(x )<0.所以F (x )在(0,x 1)与(x 2,+∞)上是增函数,在区间(x 1,x 2)上是减函数.因为h (1)=2-2a <0,所以0<x 1<1<a <x 2,令x 2-2ax +1=0,得a =x 2+12x ,∴f (x )=x (ln x -ax )=x ln x -12x 3-12x ,则f ′(x )=ln x -32x 2+12,设s (x )=ln x -32x 2+12,s ′(x )=1x -3x =1-3x 2x ,①当x >1时,s ′(x )<0,s (x )在(1,+∞)上单调递减,从而函数s (x )在(a ,+∞)上单调递减,∴s (x )<s (a )<s (1)=-1<0,即f ′(x )<0,所以f (x )在区间(1,+∞)上单调递减.故f (x )<f (1)=-1<0.又1<a <x 2,因此f (x 2)<-1.②当0<x <1时,由s ′(x )=1-3x 2x >0,得0<x <33.由s ′(x )=1-3x 2x <0,得33<x <1,所以s (x )在⎝⎛⎭⎪⎫0,33上单调递增,s (x )在⎝ ⎛⎭⎪⎫33,1上单调递减, ∴s (x )≤s ⎝ ⎛⎭⎪⎫33=ln 33<0,∴f (x )在(0,1)上单调递减,∴f (x )>f (1)=-1,∵x 1∈(0,1),从而有f (x 1)>-1.综上可知:f (x 2)<-1<f (x 1).22.解 (1)依题意,f (1)=1-(a +2)=-2,得a =1,此时f ′(x )=2x -3+1x =(x -1)(2x -1)x(x >0). 令f ′(x )=0,得x =1或x =12,当0<x <12或x >1时,f ′(x )>0;当12<x <1时,f ′(x )<0.所以f (x )在⎝ ⎛⎭⎪⎫0,12与(1,+∞)上单调递增, 在⎝ ⎛⎭⎪⎫12,1 上单调递减, 因此,当x =12时,f (x )有极大值-54+ln 12.(2)由f (x )=x 2-(a +2)x +a ln x (x >0),得f ′(x )=2x -(a +2)+a x =(2x -a )(x -1)x, ∴f ′(1)=0,且f (1)=-a -1.所以f (x )在点(1,f (1))处的切线方程为g (x )=-a -1.∵点(1,f (1))是函数f (x )在(0,+∞)内的“类优点”,令F (x )=f (x )-g (x )=x 2-(a +2)x +a ln x +a +1,常数a >0,则当x ∈(0,1)∪(1,+∞)时,恒有F (x )x -1>0(*) 又F (1)=0,且F ′(x )=2x -(a +2)+a x =(2x -a )(x -1)x(x >0). 令F ′(x )=0,得x =1或x =a 2(a >0).①当a =2时,F ′(x )≥0,F (x )在(0,+∞)上是增函数. ∴0<x <1时,F (x )<F (1)=0;当x >1时,F (x )>F (1)=0.从而当x ≠1时,恒有F (x )x -1>0成立. ②当a >2时,由F ′(x )<0,得1<x <a 2,∴函数F (x )在⎝ ⎛⎭⎪⎫1,a 2上是减函数,F (x )<F (1)=0, ∴1<x <a 2时,F (x )x -1>0不成立. ③当0<a <2时,由F ′(x )<0,得a 2<x <1,∴函数F (x )在⎝ ⎛⎭⎪⎫a 2,1上是减函数,∴x ∈⎝ ⎛⎭⎪⎫a 2,1时,F (x )>F (1)=0,F (x )x -1>0不成立. 综上可知,若点(1,f (1))是函数f (x )的“类优点”,则实数a =2.。
专题一 函数与导数、不等式 第5讲 导数与实际应用及不等式问题练习 文一、填空题1.设f (x )是定义在R 上的奇函数,当x <0时,f ′(x )>0,且f (0)=0,f ⎝ ⎛⎭⎪⎫-12=0,则不等式f (x )<0的解集为________.解析 如图所示,根据图象得不等式f (x )<0的解集为⎝⎛⎭⎪⎫-∞,-12∪⎝ ⎛⎭⎪⎫0,12.答案 ⎝⎛⎭⎪⎫-∞,-12∪⎝ ⎛⎭⎪⎫0,122.若不等式2x ln x ≥-x 2+ax -3恒成立,则实数a 的取值范围为________. 解析 条件可转化为a ≤2ln x +x +3x恒成立.设f (x )=2ln x +x +3x,则f ′(x )=(x +3)(x -1)x2(x >0). 当x ∈(0,1)时,f ′(x )<0,函数f (x )单调递减; 当x ∈(1,+∞)时,f ′(x )>0,函数f (x )单调递增, 所以f (x )min =f (1)=4.所以a ≤4. 答案 (-∞,4]3.若存在正数x 使2x(x -a )<1成立,则a 的取值范围是________. 解析 ∵2x(x -a )<1,∴a >x -12x .令f (x )=x -12x ,∴f ′(x )=1+2-xln 2>0. ∴f (x )在(0,+∞)上单调递增, ∴f (x )>f (0)=0-1=-1, ∴a 的取值范围为(-1,+∞). 答案 (-1,+∞)4.(2015·全国Ⅱ卷改编)设函数f ′(x )是奇函数f (x )(x ∈R )的导函数,f (-1)=0,当x >0时,xf ′(x )-f (x )<0,则使得f (x )>0成立的x 的取值范围是________. 解析 令F (x )=f (x )x,因为f (x )为奇函数,所以F (x )为偶函数,由于F ′(x )=xf ′(x )-f (x )x 2,当x >0时,xf ′(x )-f (x )<0,所以F (x )=f (x )x在(0,+∞)上单调递减,根据对称性,F (x )=f (x )x在(-∞,0)上单调递增,又f (-1)=0,f (1)=0,数形结合可知,使得f (x )>0成立的x 的取值范围是(-∞,-1)∪(0,1). 答案 (-∞,-1)∪(0,1)5.已知不等式e x-x >ax 的解集为P ,若[0,2]⊆P ,则实数a 的取值范围是________. 解析 由题意知不等式e x-x >ax 在x ∈[0,2]上恒成立. 当x =0时,显然对任意实数a ,该不等式都成立. 当x ∈(0,2]时,原不等式即a <exx-1,令g (x )=exx-1,则g ′(x )=e x(x -1)x2, 当0<x <1时,g ′(x )<0,g (x )单调递减, 当1<x <2时,g ′(x )>0,g (x )单调递增, 故g (x )在(0,2]上的最小值为g (1)=e -1, 故a 的取值范围为(-∞,e -1). 答案 (-∞,e -1)6.设函数f (x )=3sin πx m.若存在f (x )的极值点x 0满足x 20+[f (x 0)]2<m 2,则m 的取值范围是________.解析 ∵f (x )=3sin πxm的极值为±3,即[f (x 0)]2=3.又|x 0|≥|m |2,∴x 20+[f (x 0)]2≥m 24+3,∴m 24+3<m 2, 解得m >2或m <-2.答案 (-∞,-2)∪(2,+∞)7.已知函数f (x )=ln x -a ,若f (x )<x 2在(1,+∞)上恒成立,则实数a 的取值范围是________.解析 ∵函数f (x )=ln x -a ,且f (x )<x 2在(1,+∞)上恒成立,∴a >ln x -x 2,x ∈(1,+∞).令h (x )=ln x -x 2,有h ′(x )=1x-2x .∵x >1,∴1x-2x <0,∴h (x )在(1,+∞)上为减函数,∴当x ∈(1,+∞)时,h (x )<h (1)=-1,∴a ≥-1. 答案 [-1,+∞)8.(2015·南师附中调研)已知函数f (x )=13x 3-x 2-3x +43,直线l :9x +2y +c =0,若当x ∈[-2,2]时,函数y =f (x )的图象恒在直线l 下方,则c 的取值范围是________.解析 根据题意知13x 3-x 2-3x +43<-92x -c2在x ∈[-2,2]上恒成立,则-c 2>13x 3-x 2+32x +43,设g (x )=13x 3-x 2+32x +43,则g ′(x )=x 2-2x +32,则g ′(x )>0恒成立,所以g (x )在[-2,2]上单调递增,所以g (x )max=g (2)=3,则c <-6. 答案 (-∞,-6) 二、解答题9.(2016·南通调研)已知函数f (x )=x 2e x. (1)求f (x )的单调区间;(2)证明:∀x 1,x 2∈(-∞,0],f (x 1)-f (x 2)≤4e 2.(1)解 f ′(x )=x (x +2)e x. 令f ′(x )=x (x +2)e x=0, 则x 1=-2,x 2=0.当x 变化时,f ′(x ),f (x )的变化情况如下表+∞).(2)证明 由(1)知f (x )的单调递增区间为(-∞,-2),单调递减区间为(-2,0), 所以当x ∈(-∞,0]时,f (x )最大值=f (-2)=4e 2.因为当x ∈(-∞,-2]时,f (x )>0,f (0)=0, 所以当x ∈(-∞,0]时,f (x )最小值=f (0)=0. 所以f (x )最大值-f (x )最小值=4e2.所以对∀x 1,x 2∈(-∞,0],都有f (x 1)-f (x 2)≤f (x )最大值-f (x )最小值=4e2.10.如图,现要在边长为100 m 的正方形ABCD 内建一个交通“环岛”.以正方形的四个顶点为圆心在四个角分别建半径为x m(x 不小于9)的扇形花坛,以正方形的中心为圆心建一个半径为15x 2m 的圆形草地.为了保证道路畅通,岛口宽不小于60 m ,绕岛行驶的路宽均不小于10 m.(1)求x 的取值范围;(运算中2取1.4)(2)若中间草地的造价为a 元/m 2,四个花坛的造价为433ax 元/m 2,其余区域的造价为12a 11元/m 2,当x 取何值时,可使“环岛”的整体造价最低?解 (1)由题意得⎩⎪⎨⎪⎧x ≥9,100-2x ≥60,1002-2x -2×15x 2≥2×10,解得⎩⎪⎨⎪⎧x ≥9,x ≤20,-20≤x ≤15,即9≤x ≤15.所以x 的取值范围是[9,15].(2)记“环岛”的整体造价为y 元,则由题意得y =a ×π×⎝ ⎛⎭⎪⎫15x 22+433ax ×πx 2+12a 11×⎣⎢⎡⎦⎥⎤104-π×⎝ ⎛⎭⎪⎫15x 22-πx 2=a 11⎣⎢⎡⎦⎥⎤π⎝ ⎛⎭⎪⎫-125x 4+43x 3-12x 2+12×104,令f (x )=-125x 4+43x 3-12x 2,则f ′(x )=-425x 3+4x 2-24x=-4x ⎝ ⎛⎭⎪⎫125x 2-x +6. 由f ′(x )=0解得x =0(舍去)或x =10或x =15, 列表如下:所以当x 故当x =10时,可使“环岛”的整体造价最低.11.(2016·苏北四市调研)已知函数f (x )=ln x +x 2-ax (a 为常数). (1)若x =1是函数f (x )的一个极值点,求a 的值; (2)当0<a ≤2时,试判断f (x )的单调性;(3)若对任意的a ∈(1,2),x 0∈[1,2],不等式f (x 0)>m ln a 恒成立,求实数m 的取值范围.解 f ′(x )=1x+2x -a .(1)由已知得:f ′(1)=0,所以1+2-a =0,所以a =3.(2)当0<a ≤2时,f ′(x )=1x +2x -a =2x 2-ax +1x=2⎝ ⎛⎭⎪⎫x -a 42+1-a 28x.因为0<a ≤2,所以1-a 28>0,而x >0,即f ′(x )=2x 2-ax +1x>0,故f (x )在(0,+∞)上是增函数.(3)当a ∈(1,2)时,由(2)知,f (x )在[1,2]上的最小值为f (1)=1-a ,故问题等价于:对任意的a ∈(1,2),不等式1-a >m ln a 恒成立,即m <1-aln a 恒成立.记g (a )=1-a ln a (1<a <2),则g ′(a )=-a ln a -1+aa (ln a )2.令M (a )=-a ln a -1+a ,则M ′(a )=-ln a <0, 所以M (a )在(1,2)上单调递减, 所以M (a )<M (1)=0,故g ′(a )<0, 所以g (a )=1-aln a 在a ∈(1,2)上单调递减,所以m ≤g (2)=12ln 2=-log 2e , 即实数m 的取值范围为(-∞,-log 2e].。
高三文科数学导数专题复习1.已知函数)(,3,sin )(x f x x b ax x f 时当π=+=取得极小值33-π。
(Ⅰ)求a ,b 的值;(Ⅱ)设直线)(:),(:x F y S x g y l ==曲线. 若直线l 与曲线S 同时满足下列两个条件: (1)直线l 与曲线S 相切且至少有两个切点;(2)对任意x ∈R 都有)()(x F x g ≥. 则称直线l 为曲线S 的“上夹线”. 试证明:直线2:+=x y l 是曲线x b ax y S sin :+=的“上夹线”.2。
设函数3221()231,0 1.3f x x ax a x a =-+-+<<(1)求函数)(x f 的极大值;(2)若[]1,1x a a ∈-+时,恒有()a f x a '-≤≤成立(其中()f x '是函数()f x 的导函数),试确定实数a 的取值范围.3.如图所示,A 、B 为函数)11(32≤≤-=x x y 图象上两点,且AB//x 轴,点M (1,m)(m 〉3)是△ABC 边AC 的中点. (1)设点B 的横坐标为t ,△ABC 的面积为S ,求S 关于t 的函数关系式)(t f S =;(2)求函数)(t f S =的最大值,并求出相应的点C 的坐标。
4。
已知函数x a x x f ln )(2-=在]2,1(是增函数,x a x x g -=)(在(0,1)为减函数。
(I )求)(x f 、)(x g 的表达式;(II )求证:当0>x 时,方程2)()(+=x g x f 有唯一解; (III )当1->b 时,若212)(xbx x f -≥在x ∈]1,0(内恒成立,求b 的取值范围5。
已知函数32()f x x ax bx c =+++在2x =处有极值,曲线()y f x =在1x =处的切线平行于直线32y x =--,试求函数()f x 的极大值与极小值的差.6.函数xax x f -=2)(的定义域为]1,0((a 为实数).(1)当1-=a 时,求函数)(x f y =的值域;(2)若函数)(x f y =在定义域上是减函数,求a 的取值范围;(3)求函数)(x f y =在∈x ]1,0(上的最大值及最小值,并求出函数取最值时x 的值。
第一章函数与导数专题06 函数、导数与数列、不等式的综合应用【压轴综述】纵观近几年的高考命题,应用导数研究函数的单调性、极(最)值问题,证明不等式、研究函数的零点等,是高考考查的“高频点”问题,常常出现在“压轴题”的位置.其中,函数、导数与数列、不等式的综合应用问题的主要命题角度有:函数与不等式的交汇、函数与数列的交汇、导数与数列不等式的交汇等.本专题就函数、导数与数列、不等式的综合应用问题,进行专题探讨,通过例题说明此类问题解答规律与方法.1.数列不等式问题,通过构造函数、应用函数的单调性或对不等式进行放缩,进而限制参数取值范围.如2.涉及等差数列的求和公式问题,应用二次函数图象和性质求解.3.涉及数列的求和问题,往往要利用“错位相减法”、“裂项相消法”等,先求和、再构造函数.【压轴典例】例1.(2018·浙江高考真题)已知成等比数列,且.若,则A. B. C. D.【答案】B【解析】分析:先证不等式,再确定公比的取值范围,进而作出判断.详解:令则,令得,所以当时,,当时,,因此,若公比,则,不合题意;若公比,则但,即,不合题意;因此,,选B.例2.(2019·全国高考真题(文))记S n 为等差数列{a n }的前n 项和,已知S 9=-a 5. (1)若a 3=4,求{a n }的通项公式;(2)若a 1>0,求使得S n ≥a n 的n 的取值范围. 【答案】(1)210n a n =-+; (2)110()n n N *≤≤∈. 【解析】(1)设等差数列{}n a 的首项为1a ,公差为d ,根据题意有111989(4)224a d a d a d ⨯⎧+=-+⎪⎨⎪+=⎩, 解答182a d =⎧⎨=-⎩,所以8(1)(2)210n a n n =+-⨯-=-+,所以等差数列{}n a 的通项公式为210n a n =-+; (2)由条件95S a =-,得559a a =-,即50a =,因为10a >,所以0d <,并且有5140a a d =+=,所以有14a d =-, 由n n S a ≥得11(1)(1)2n n na d a n d -+≥+-,整理得2(9)(210)n n d n d -≥-, 因为0d <,所以有29210n n n -≤-,即211100n n -+≤, 解得110n ≤≤,所以n 的取值范围是:110()n n N *≤≤∈例3.(2019·江苏高考真题)定义首项为1且公比为正数的等比数列为“M-数列”. (1)已知等比数列{a n }满足:245132,440a a a a a a =-+=,求证:数列{a n }为“M-数列”; (2)已知数列{b n }满足:111221,n n n b S b b +==-,其中S n 为数列{b n }的前n 项和. ①求数列{b n }的通项公式;②设m 为正整数,若存在“M-数列”{c n }θ,对任意正整数k ,当k ≤m 时,都有1k k k c b c +剟成立,求m 的最大值.【答案】(1)见解析;(2)①b n =n ()*n ∈N ;②5.【解析】(1)设等比数列{a n }的公比为q ,所以a 1≠0,q ≠0.由245321440a a a a a a =⎧⎨-+=⎩,得244112111440a q a q a q a q a ⎧=⎨-+=⎩,解得112a q =⎧⎨=⎩.因此数列{}n a 为“M —数列”.(2)①因为1122n n n S b b +=-,所以0n b ≠. 由1111,b S b ==得212211b =-,则22b =. 由1122n n n S b b +=-,得112()n n n n n b b S b b ++=-,当2n ≥时,由1n n n b S S -=-,得()()111122n n n nn n n n n b b b b b b b b b +-+-=---,整理得112n n n b b b +-+=.所以数列{b n }是首项和公差均为1的等差数列. 因此,数列{b n }的通项公式为b n =n ()*n N ∈.②由①知,b k =k ,*k N ∈.因为数列{c n }为“M –数列”,设公比为q ,所以c 1=1,q >0. 因为c k ≤b k ≤c k +1,所以1k k q k q -≤≤,其中k =1,2,3,…,m .当k =1时,有q ≥1;当k =2,3,…,m 时,有ln ln ln 1k kq k k ≤≤-. 设f (x )=ln (1)x x x >,则21ln ()xf 'x x -=. 令()0f 'x =,得x =e .列表如下:因为ln 2ln8ln 9ln 32663=<=,所以max ln 3()(3)3f k f ==.取q =k =1,2,3,4,5时,ln ln kq k…,即k k q ≤, 经检验知1k qk -≤也成立.因此所求m 的最大值不小于5.若m ≥6,分别取k =3,6,得3≤q 3,且q 5≤6,从而q 15≥243,且q 15≤216, 所以q 不存在.因此所求m 的最大值小于6. 综上,所求m 的最大值为5. 例4.(2010·湖南高考真题)数列中,是函数的极小值点(Ⅰ)当a=0时,求通项; (Ⅱ)是否存在a ,使数列是等比数列?若存在,求a 的取值范围;若不存在,请说明理由. 【答案】(1);(2)详见解析【解析】 易知.令.(1)若,则当时,单调递增;当时,单调递减;当时,单调递增.故在取得极小值.由此猜测:当时,.下面先用数学归纳法证明:当时,.事实上,当时,由前面的讨论知结论成立.假设当时,成立,则由(2)知,,从而,所以.故当时,成立.于是由(2)知,当时,,而,因此.综上所述,当时,,,.(Ⅱ)存在,使数列是等比数列.事实上,由(2)知,若对任意的,都有,则.即数列是首项为,公比为3的等比数列,且.而要使,即对一切都成立,只需对一切都成立.记,则令,则.因此,当时,,从而函数当时,可得数列不是等比数列.综上所述,存在,使数列是等比数列,且的取值范围为.例5.(2017·浙江高考真题)已知数列{}n x 满足: ()()*1n n 1n 1x =1x x ln 1x n N ++=++∈, 证明:当*n N ∈时 (I )n 1n 0x x +<<;(II )n n 1n 1n x x 2x -x 2++≤; (III) n n 1n-211x 22-≤≤【答案】(I )见解析;(II )见解析;(Ⅲ)见解析. 【解析】(Ⅰ)用数学归纳法证明: 0n x >. 当n =1时,x 1=1>0. 假设n =k 时,x k >0,那么n =k +1时,若10k x +≤,则()110ln 10k k k x x x ++<=++≤,矛盾,故10k x +>. 因此()*0n x n N >∈.所以()111ln 1n n n n x x x x +++=++>,因此()*10n n x x n N +<<∈. (Ⅱ)由()11ln 1n n n x x x ++=++得,()()21111114222ln 1n n n n n n n n x x x x x x x x ++++++-+=-+++.记函数()()()()222ln 10f x x x x x x =-+++≥,()()22'ln 10(0)1x x f x x x x +=++>>+,函数f (x )在[0,+∞)上单调递增,所以()()0f x f ≥=0,因此()()()21111122ln 10n n n n n x x x x f x +++++-+++=≥,故()*1122n n n n x x x x n N ++-≤∈. (Ⅲ)因为()11111ln 12n n n n n n x x x x x x +++++=++≤+=, 所以112n n x -≥, 由1122n n n n x x x x ++≥-,得111112022n n x x +⎛⎫-≥-> ⎪⎝⎭, 所以1211111111222222n n n n x x x ---⎛⎫⎛⎫-≥-≥⋅⋅⋅≥-= ⎪ ⎪⎝⎭⎝⎭, 故212n n x -≤.综上,()*121122n n n x n N --≤≤∈. 例6.(2019·湖南高考模拟(理))设函数()ln(1)(0)f x x x =+≥,(1)()(0)1x x a g x x x ++=≥+.(1)证明:2()f x x x ≥-.(2)若()()f x x g x +≥恒成立,求a 的取值范围; (3)证明:当*n N ∈时,22121ln(32)49n n n n -++>+++. 【答案】(1)见解析;(2)(,1]-∞;(3)见解析. 【解析】(1)证明:令函数()()2h x ln x 1x x =+-+,[)x 0,∞∈+,()212x xh x 2x 101x 1x+=+=++'-≥,所以()h x 为单调递增函数,()()h x h 00≥=, 故()2ln x 1x x +≥-.(2)()()f x x g x +≥,即为()axln x 11x+≥+, 令()()axm x ln x 11x=+-+,即()m x 0≥恒成立, ()()()()22a 1x ax 1x 1a m x x 11x 1x +-+-=-=++'+, 令()m x 0'>,即x 1a 0+->,得x a 1>-.当a 10-≤,即a 1≤时,()m x 在[)0,∞+上单调递增,()()m x m 00≥=,所以当a 1≤时,()m x 0≥在[)0,∞+上恒成立;当a 10->,即a 1>时,()m x 在()a 1,∞-+上单调递增,在[]0,a 1-上单调递减, 所以()()()min m x m a 1m 00=-<=, 所以()m x 0≥不恒成立.综上所述:a 的取值范围为(],1∞-. (3)证明:由(1)知()2ln x 1x x +≥-,令1x n=,*n N ∈,(]x 0,1∈, 2n 1n 1ln n n +->,即()2n 1ln n 1lnn n-+->,故有ln2ln10->,1ln3ln24->, …()2n 1ln n 1lnn n-+->, 上述各式相加可得()212n 1ln n 149n-+>+++. 因为()()22n 3n 2n 1n 10++-+=+>,2n 3n 2n 1++>+,()()2ln n 3n 2ln n 1++>+,所以()2212n 1ln n 3n 249n-++>+++. 例7.(2018·福建省安溪第一中学高三期中(文))公差不为零的等差数列中,,,成等比数列,且该数列的前10项和为100,数列的前n 项和为,且满足.Ⅰ求数列,的通项公式;Ⅱ令,数列的前n 项和为,求的取值范围.【答案】(I ),;(II ).【解析】Ⅰ依题意,等差数列的公差,,,成等比数列,,即,整理得:,即,又等差数列的前10项和为100,,即,整理得:,,;,,即,当时,,即,数列是首项为1、公比为2的等比数列,;Ⅱ由可知,记数列的前n项和为,数列的前n项和为,则,,,,,,记,则,故数列随着n的增大而减小,又,,.例8.(2019·江苏高考模拟)已知数列满足(),().(1)若,证明:是等比数列;(2)若存在,使得,,成等差数列.① 求数列的通项公式;② 证明:.【答案】(1)见解析;(2)①,②见解析【解析】(1)由,得,得,即,因为,所以,所以(),所以是以为首项,2为公比的等比数列.(2)① 设,由(1)知,,所以,即,所以.因为,,成等差数列,则,所以,所以,所以,即.② 要证,即证,即证.设,则,且,从而只需证,当时,.设(),则,所以在上单调递增,所以,即,因为,所以,所以,原不等式得证.【压轴训练】1.(黑龙江省哈尔滨三中高考模拟)已知1(1)32(1,2)n n n b b a b n b--+-=>≥,若对不小于4的自然数n ,恒有不等式1n n a a +>成立,则实数b 的取值范围是__________. 【答案】3+∞(,) 【解析】由题设可得1(1)(1)32(1)32n n n b b n b b b b-+-+--+->,即22(1)341n b b b ->-+,也即(1)31n b b ->-对一切4n ≥的正整数恒成立,则3141b b b -<≥-,即31444311b b b b -⇒---,所以3b >,应填答案(3,)+∞. 2.(2019·山东济南一中高三期中(理))(1)已知函数的图象经过点,如图所示,求的最小值;(2)已知对任意的正实数恒成立,求的取值范围.【答案】(1)最小值,当且仅当时等号成立;(2)【解析】⑴函数的图象经过点,当且仅当时取等号⑵①令,,当时,,递增当时,,递减代入时,②,令,,,综上所述,的取值范围为3.(2019·桃江县第一中学高三月考(理))已知都是定义在R上的函数,,,且,且,.若数列的前n项和大于62,求n的最小值.【答案】6【解析】∵,∴,∵,∴,即,∴,∵,∴,∴,∴,∴,∴数列为等比数列,∴,∴,即,所以n的最小值为6.4.(2019·福建省漳平第一中学高三月考(文))已知数列的首项,前项和满足,.(1)求数列通项公式;(2)设,求数列的前项为,并证明:.【答案】(1);(2)见解析【解析】 (1)当时,,得. 又由及得,数列是首项为,公比为的等比数列,所以.(2),①②①②得: ,所以,又,故,令,则,故单调递减,又,所以恒成立,所以.5.(2019·江苏高考模拟(文))已知正项等比数列{}n a 的前n 项和为n S ,且218S =,490S =. (1)求数列{}n a 的通项公式;(2)令2115log 3n n b a ⎛⎫=- ⎪⎝⎭,记数列{}n b 的前n 项和为n T ,求n T 及n T 的最大值.【答案】(1)32nn a =⨯(2)22922n n nT =-+;最大值为105. 【解析】(1)设数列{}n a 的公比为(0)q q >,若1q =,有414S a =,212S a =,而4490236S S =≠=,故1q ≠,则()()()()21242211411811119011a q S q a q a q q S q q ⎧-⎪==-⎪⎨-+-⎪===⎪--⎩,解得162a q =⎧⎨=⎩.故数列{}n a 的通项公式为16232n nn a -=⨯=⨯. (2)由215log 215nn b n =-=-,则2(1415)29222n n n n n T +-==-+. 由二次函数22922x x y =-+的对称轴为292921222x =-=⎛⎫⨯- ⎪⎝⎭, 故当14n =或15时n T 有最大值,其最大值为14151052⨯=. 6.(2019·黑龙江高三月考(理))已知数列的前n 项和为, 其中,数列满足.(1)求数列的通项公式;(2)令,数列的前n 项和为,若对一切恒成立,求实数k 的最小值.【答案】(1),;(2)【解析】 (1)由可得,两式相减得: ,又由可得,数列是首项为2,公比为4的等比数列,从而,于是.(2)由(1)知,于是,依题意对一切恒成立,令,则由于易知,即有,∴只需,从而所求k的最小值为.7.(2018·浙江高考模拟)已知数列满足,().(Ⅰ)证明数列为等差数列,并求的通项公式;(Ⅱ)设数列的前项和为,若数列满足,且对任意的恒成立,求的最小值.【答案】(Ⅰ)证明见解析,;(Ⅱ).【解析】∵(n+1)a n+1﹣(n+2)a n=2,∴﹣==2(﹣),又∵=1,∴当n≥2时,=+(﹣)+(﹣)+…+(﹣)=1+2(﹣+﹣+…+﹣)=,又∵=1满足上式,∴=,即a n=2n,∴数列{a n}是首项、公差均为2的等差数列;(Ⅱ)解:由(I)可知==n+1,∴b n=n•=n•,令f(x)=x•,则f′(x)=+x••ln,令f′(x)=0,即1+x•ln=0,解得:x0≈4.95,则f(x)在(0, x0)上单调递增,在(x0,+单调递减.∴0<f(x)≤max{f(4),f(5),f(6)},又∵b5=5•=,b4=4•=﹣,b6=6•=﹣,∴M的最小值为.8.(2018·浙江镇海中学高三期中)已知数列的前项和为,且,(1)求证:数列为等比数列,并求出数列的通项公式;(2)是否存在实数,对任意,不等式恒成立?若存在,求出的取值范围,若不存在请说明理由.【答案】(1)证明略;(2)【解析】证明:(1)已知数列{a n}的前n项和为S n,且,①当n=1时,,则:当n≥2时,,②①﹣②得:a n=2a n﹣2a n﹣1﹣+,整理得:,所以:,故:(常数),故:数列{a n}是以为首项,2为公比的等比数列.故:,所以:.由于:,所以:(常数).故:数列{b n}为等比数列.(2)由(1)得:,所以:+(),=,=,假设存在实数λ,对任意m,n∈N*,不等式恒成立,即:,由于:,故当m=1时,,所以:,当n=1时,.故存在实数λ,且.9.(2019·宁夏银川一中高三月考(理))(1)当时,求证:;(2)求的单调区间;(3)设数列的通项,证明.【答案】(1)见解析;(2)见解析;(3)见解析.【解析】(1)的定义域为,恒成立;所以函数在上单调递减,得时即:(2)由题可得,且.当时,当有,所以单调递减,当有,所以单调递增,当时,当有,所以单调递增,当有,所以单调递减,当时,当有,所以单调递增,当时,当有,所以单调递增,当有,所以单调递减,当时,当有,所以单调递减,当有,所以单调递增,(3)由题意知.由(1)知当时当时即令则,同理:令则.同理:令则以上各式两边分别相加可得:即所以:10.(2019·北京人大附中高考模拟(理))已知数列{a n}满足:a1+a2+a3+…+a n=n-a n,(n=1,2,3,…)(Ⅰ)求证:数列{a n-1}是等比数列;(Ⅱ)令b n=(2-n)(a n-1)(n=1,2,3,…),如果对任意n∈N*,都有b n+t≤t2,求实数t的取值范围.【答案】(Ⅰ)见解析. (Ⅱ).【解析】(Ⅰ)由题可知:,①,②②-①可得.即:,又.所以数列是以为首项,以为公比的等比数列.(Ⅱ)由(Ⅰ)可得,∴.由可得,由可得.所以,,故有最大值.所以,对任意,都有,等价于对任意,都有成立.所以,解得或.所以,实数的取值范围是.11.(2019·江苏高三月考)已知数列的各项均为正数,前项和为,首项为2.若对任意的正整数,恒成立.(1)求,,;(2)求证:是等比数列;(3)设数列满足,若数列,,…,(,)为等差数列,求的最大值.【答案】(1),,;(2)详见解析;(3)3.【解析】(1)由,对任意的正整数,恒成立取,得,即,得.取,,得,取,,得,解得,.(2)取,得,取,得,两式相除,得,即,即.由于,所以对任意均成立,所以是首项为4,公比为2的等比数列,所以,即.时,,而也符合上式,所以.因为(常数),所以是等比数列.(3)由(2)知,.设,,成等差数列,则.即,整理得,.若,则,因为,所以只能为2或4,所以只能为1或2.若,则.因为,故矛盾.综上,只能是,,,成等差数列或,,成等差数列,其中为奇数.所以的最大值为3.12.(2019·上海高考模拟)已知平面直角坐标系xOy,在x轴的正半轴上,依次取点,,,,并在第一象限内的抛物线上依次取点,,,,,使得都为等边三角形,其中为坐标原点,设第n个三角形的边长为.⑴求,,并猜想不要求证明);⑵令,记为数列中落在区间内的项的个数,设数列的前m项和为,试问是否存在实数,使得对任意恒成立?若存在,求出的取值范围;若不存在,说明理由;⑶已知数列满足:,数列满足:,求证:.【答案】⑴,,;⑵;⑶详见解析【解析】,猜想,由,,,,对任意恒成立⑶证明:,记,则,记,则,当时,可知:,13.(2019·广西高考模拟(理))已知函数2()2ln 1()f x ax x x a =--∈R .(1) 若1x e=时,函数()f x 取得极值,求函数()f x 的单调区间; (2) 证明:()*11111ln(21)3521221nn n n n +++⋯+>++∈-+N . 【答案】(1)见解析;(2)见解析 【解析】(1)由题意可得,()'222(0,)f x ax lnx x a R =-->∈,由1x e =时,函数()f x 取得极值知12'220af e e ⎛⎫=+-= ⎪⎝⎭,所以0a =. 所以()()21,'22(0)f x xlnx f x lnx x =--=-->, 所以10x e <<时,()'0f x >;1x e>时,()'0f x <; 所以()f x 的单调增区间10e ⎛⎫ ⎪⎝⎭,,单调减区间为1e⎛⎫+∞ ⎪⎝⎭,. (2)当1a =时,()221f x x xlnx =--,所以()()'22221f x x lnx x lnx =--=--,令()ln 1g x x x =--,则()11'1x g x x x-=-=,当01x <<时,()'0g x <;当1x >时,()'0g x >,()g x 的单调减区间为()01,,单调增区间为()1+∞,, 所以()()10g x g ≥=,所以()'0f x ≥,()f x 是增函数,所以1x >时,()()22ln 110f x x x x f =-->=,所以1x >时,12ln x x x->, 令*211,21n x n N n +=>∈-,得2121212ln 212121n n n n n n +-+->-+- 即2221112ln 212121n n n n +⎛⎫+--> ⎪-+-⎝⎭ 所以1121111ln 2122122121n n n n n +⎛⎫>+- ⎪---+⎝⎭上式中123n =,,,…,n ,然后n 个不等式相加, 得到()11111...ln 213521221nn n n ++++>++-+ 14.(2019·宁夏高考模拟(文))已知函数()()ln 1(0)f x ax x a =->.()1求函数()y f x =的单调递增区间;()2设函数()()316g x x f x =-,函数()()h x g x =' .①若()0h x ≥恒成立,求实数a 的取值范围;②证明:()22222ln(123)123.e n n n N +⨯⨯⨯⋯⨯<+++⋯+∈【答案】(1)单调递增区间为[)1,+∞.(2)①(]0,e .②见证明 【解析】()10a >,0x >.()()1'ln 1ln 0f x a x ax a x x=-+⋅=≥. 解得1x ≥.∴函数()y f x =的单调递增区间为[)1,+∞.()2函数()()316g x x f x =-,函数()()21h =x ln 2x g x a x '=-.()'ah x x x=-①,0a ≤时,函数()h x 单调递增,不成立,舍去; 0a >时,()('x x a h x x xx+=-=,可得x =()h x 取得极小值即最小值,()11ln 022h x ha a a ∴≥=-≥,解得:0a e <≤. ∴实数a 的取值范围是(]0,e .②证明:由①可得:a e =,1x ≥时满足:22ln x e x ≥,只有1x =时取等号.依次取x n =,相加可得:()222221232ln1ln2ln ln(12)en e n n +++⋯+>++⋯⋯+=⨯⨯⋯.因此()22222ln(123)123.e n n n N +⨯⨯⨯⋯⨯<+++⋯+∈15.(2019·黑龙江高考模拟(理))已知函数2()2ln 2(1)(0)a f x ax x a a x-=-+-+>. (1)若()0f x ≥在[1,)+∞上恒成立,求实数a 的取值范围; (2)证明:11113521n ++++>-*1ln(21)()221nn n N n ++∈+.【答案】(1)[1,)+∞;(2)证明见解析. 【解析】(1)()f x 的定义域为()0,+∞,()2222222a ax x a f x a x x x--+-=--=' ()221a a x x a x -⎛⎫-- ⎪⎝⎭=. ①当01a <<时,21aa->, 若21a x a -<<,则()0f x '<,()f x 在21,a a -⎡⎫⎪⎢⎣⎭上是减函数,所以21,a x a -⎛⎫∈ ⎪⎝⎭时,()()10f x f <=,即()0f x ≥在[)1,+∞上不恒成立. ②当1a ≥时,21aa-≤,当1x >时,()0f x '>,()f x 在[)1,+∞上是增函数,又()10f =,所以()0f x ≥. 综上所述,所求a 的取值范围是[)1,+∞.(2)由(1)知当1a ≥时,()0f x ≥在[)1,+∞上恒成立.取1a =得12ln 0x x x --≥,所以12ln x x x-≥. 令21121n x n +=>-,*n N ∈,得2121212ln 212121n n n n n n +-+->-+-, 即2221112ln 212121n n n n +⎛⎫+--> ⎪-+-⎝⎭, 所以1121111ln 2122122121n n n n n +⎛⎫>+- ⎪---+⎝⎭. 上式中1,2,3,,n n =,然后n 个不等式相加,得到()11111ln 213521221nn n n ++++>++-+. 16.(2019·江苏高考模拟)已知数列{}n a ,12a =,且211n n n a a a +=-+对任意n N *∈恒成立.(1)求证:112211n n n n a a a a a a +--=+(n N *∈);(2)求证:11nn a n +>+(n N *∈). 【答案】(1)见解析(2)见解析 【解析】(1)①当1n =时,2221112213a a a =-+=-+= 满足211a a =+成立.②假设当n k =时,结论成立.即:112211k k k k a a a a a a +--=+成立下证:当1n k =+时,112211k k k k a a a a a a +-+=+成立.因为()211211111k k k k k a a a a a +++++=-+-+=()()11221112211111k k k k k k k k a a a a a a a a a a a a +--+--=+=++-即:当1n k =+时,112211k k k k a a a a a a +-+=+成立由①、②可知,112211n n n n a a a a a a +--=+(n *N ∈)成立.(2)(ⅰ)当1n =时,221221311a >=-=++成立,当2n =时,()2322222172131112a a a a a =-+=-+=>⨯>++成立,(ⅱ)假设n k =时(3k ≥),结论正确,即:11kk a k +>+成立 下证:当1n k =+时,()1211k k a k ++>++成立.因为()()2211112111111kkkk k k k k k a a a a a k k kk +++++-+==-+>++=++要证()1211k k a k ++>++,只需证()12111k k k k k k +++>++只需证:()121k k k k ++>,只需证:()12ln ln 1k k k k ++>即证:()()12l l n n 10k k k k -++>(3k ≥) 记()()()2ln 11ln h x x x x x -++=∴()()()()2ln 1112ln 11ln ln x x x x h x +-++=-++⎡⎤⎦=⎣'21ln 1ln 12111x x x x ⎛⎫=+=++-+ ⎪++⎝⎭当12x +≥时,1111ln 121ln 221ln 1ln 10122x x e ⎛⎫⎛⎫++-+≥+-+=+>+= ⎪ ⎪+⎝⎭⎝⎭所以()()()2ln 11ln h x x x x x -++=在[)1,+∞上递增, 又()6423ln34ln3ln 34ln729ln2564l 0n h ⨯-=-=->=所以,当3x ≥时,()()30h x h ≥>恒成立. 即:当3k ≥时,()()30h k h ≥>成立.即:当3k ≥时,()()12l l n n 10k k k k -++>恒成立. 所以当3k ≥,()1211k k a k ++>++恒成立.由(ⅰ)(ⅱ)可得:对任意的正整数n *∈N ,不等式11nn a n +>+恒成立,命题得证.。
【合集】浙江省2016届高三数学(理)专题复习检测(真题体验+模拟演练+过关提升)专题一函数、不等式及其应用目录真题体验.引领卷 (1)经典模拟.演练卷 (4)专题过关.提升卷 (8)参考答案 (13)真题体验·引领卷一、选择题1.(2015·浙江高考)已知集合P={x|x2-2x≥0},Q={x|1<x≤2},则(∁R P)∩Q=()A.[0,1) B.(0,2]C.(1,2) D.[1,2]2.(2015·浙江高考)命题“∀n∈N*,f(n)∈N*且f(n)≤n”的否定形式是()A.∀n∈N*,f(n)∉N*且f(n)>nB.∀n∈N*,f(n)∉N*或f(n)>nC.∃n0∈N*,f(n0)∉N*且f(n0)>n0D.∃n0∈N*,f(n0)∉N*或f(n0)>n03.(2015·浙江高考)存在函数f(x)满足:对任意x∈R都有() A.f(sin 2x)=sin x B.f(sin 2x)=x2+xC .f (x 2+1)=|x +1|D .f (x 2+2x )=|x +1|4.(2015·山东高考)已知x ,y满足约束条件⎩⎪⎨⎪⎧x -y ≥0,x +y ≤2,y ≥0,若z =ax +y的最大值为4,则a =( )A .3B .2C .-2D .-35.(2015·全国卷Ⅱ)如图,长方形ABCD 的边AB =2,BC =1,O 是AB 的中点,点P 沿着边BC ,CD 与DA 运动,记∠BOP =x .将动点P 到A ,B 两点距离之和表示为x 的函数f (x ),则y =f (x )的图象大致为()6.(2015·天津高考)已知函数f (x )=⎩⎪⎨⎪⎧2-|x |,x ≤2,(x -2)2,x >2,函数g (x )=b -f (2-x ),其中b ∈R ,若函数y =f (x )-g (x )恰有4个零点,则b 的取值范围是( )A.⎝ ⎛⎭⎪⎫74,+∞ B.⎝⎛⎭⎪⎫-∞,74C.⎝ ⎛⎭⎪⎫0,74D.⎝ ⎛⎭⎪⎫74,2 二、填空题7.(2015·浙江高考)已知函数f (x )=⎩⎨⎧x +2x -3,x ≥1,lg (x 2+1),x <1,则f (f (-3))=________,f (x )的最小值是________.8.(2015·浙江高考)若实数x ,y 满足x 2+y 2≤1,则|2x +y -2|+|6-x -3y |的最小值是________.9.(2015·湖南高考)已知函数f (x )=⎩⎪⎨⎪⎧x 3,x ≤a ,x 2,x >a ,若存在实数b ,使函数g (x )=f (x )-b 有两个零点,则a 的取值范围是________. 三、解答题10.(2015·湖北高考改编)a 为实数,函数f (x )=|x 2-ax |在区间[0,1]上的最大值记为g (a ).当a 为何值时,g (a )的值最小?11.(2015·浙江高考)已知函数f (x )=x 2+ax +b (a ,b ∈R ),记M (a ,b )是|f (x )|在区间[-1,1]上的最大值. (1)证明:当|a |≥2时,M (a ,b )≥2;(2)当a ,b 满足M (a ,b )≤2时,求|a |+|b |的最大值.12.(2015·浙江高考(文))设函数f (x )=x 2+ax +b (a ,b ∈R ). (1)当b =a 24+1时,求函数f (x )在[-1,1]上的最小值g (a )的表达式; (2)已知函数f (x )在[-1,1]上存在零点,0≤b -2a ≤1,求b 的取值范围.专题一 函数、不等式及其应用经典模拟·演练卷一、选择题1.(2015·济南模拟)已知集合P ={1,m },Q ={1,3,5},则“m =5”是“P ⊆Q ”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件2.(2015·西安模拟)已知f (x )是定义在R 上的周期为2的奇函数,当x ∈(0,1)时,f (x )=3x-1,则f ⎝ ⎛⎭⎪⎫2 0152=( )A.3+1B.3-1 C .-3-1D .-3+13.(2015·安徽“江南十校”联考)已知向量a =(3,-2),b =(x ,y -1),且a ∥b ,若x ,y 均为正数,则3x +2y 的最小值是( ) A.53 B.83 C .8D .244.(2015·台州十校联考)函数f (x )=2x |log 0.5 x |-1的零点个数为( ) A .1 B .2 C .3 D .45.(2015·东北三省四市联考)在如图所示的坐标平面的可行域内(阴影部分且包括边界),若目标函数z =x +ay 取得最小值的最优解有无数个,则y x -a的最大值是( )A.25B.23C.16D.146.(2015·杭州模拟)已知f (x )为偶函数,当x ≥0时,f (x )=⎩⎪⎨⎪⎧cos πx ,x ∈⎣⎢⎡⎦⎥⎤0,12,2x -1,x ∈⎝ ⎛⎭⎪⎫12,+∞,则不等式f (x -1)≤12的解集为( )A.⎣⎢⎡⎦⎥⎤14,23∪⎣⎢⎡⎦⎥⎤43,74 B.⎣⎢⎡⎦⎥⎤-34,-13∪⎣⎢⎡⎦⎥⎤14,23 C.⎣⎢⎡⎦⎥⎤13,34∪⎣⎢⎡⎦⎥⎤43,74 D.⎣⎢⎡⎦⎥⎤-34,-13∪⎣⎢⎡⎦⎥⎤13,34 二、填空题7.(2015·镇江二模)若正实数x ,y 满足2x +y +6=xy ,则xy 的最小值是________.8.(2015·西安八校联考)已知函数f (x )=213,1,log ,1x x x x x ⎧-+≤⎪⎨>⎪⎩若关于x 的不等式f (x )≥m 2-34m 有解,则实数m 的取值范围是________.9.(2015·温州联考)当实数x ,y 满足⎩⎪⎨⎪⎧x +2y -4≤0,x -y -1≤0,x ≥1时,1≤ax +y ≤4恒成立,则实数a 的取值范围是________. 三、解答题10.(2015·杭州二中模拟)设a 为实数,函数f (x )=(x -a )2+|x -a |-a (a -1).(1)若f (0)≤1,求a 的取值范围; (2)讨论f (x )的单调性;(3)当a ≥2时,讨论f (x )+4x 在区间(0,+∞)内的零点个数.11.(2015·绍兴一中模拟)已知函数f (x )=x 2-1,g (x )=a |x -1|. (1)若当x ∈R 时,不等式f (x )≥g (x )恒成立,求实数a 的取值范围; (2)求函数h (x )=|f (x )|+g (x )在区间[0,2]上的最大值.12.(2015·杭州七校联考)已知a ∈R ,设函数f (x )=x |x -a |-x . (1)若a =1时,求函数f (x )的单调区间;(2)若a ≤1时,对于任意的x ∈[0,t ],不等式-1≤f (x )≤6恒成立,求实数t的最大值及此时a的值.专题一函数、不等式及其应用专题过关·提升卷第Ⅰ卷(选择题)一、选择题1.(2015·全国卷Ⅱ)已知集合A={-2,-1,0,1,2},B={x|(x-1)(x+2)<0},则A∩B=()A.{-1,0} B.{0,1}C.{-1,0,1} D.{0,1,2}2.下列函数中,既是偶函数,又在区间(0,+∞)上是减函数的是() A.y=-x3B.y=2|x|C.y=-lg|x| D.y=e x-e-x3.设p:|2a-1|<1,q:f(x)=log a(1-x)在(-∞,1)上是增函数,则p是q的()A.充分不必要条件B.充要条件C.必要不充分条件D.既不充分又不必要条件4.(2015·湖南高考)设函数f (x )=ln(1+x )-ln(1-x ),则f (x )是( ) A .奇函数,且在(0,1)上是增函数 B .奇函数,且在(0,1)上是减函数 C .偶函数,且在(0,1)上是增函数 D .偶函数,且在(0,1)上是减函数5.(2015·湖南高考)若变量x ,y 满足约束条件⎩⎪⎨⎪⎧x +y ≥-1,2x -y ≤1,y ≤1,则z =3x-y 的最小值为( ) A .-7 B .-1 C .1D .26.(2015·天津高考)已知定义在R 上的函数f (x )=2|x -m |-1(m 为实数)为偶函数,记a =f (log 0.53),b =f (log 25),c =f (2m ),则a ,b ,c 的大小关系为( ) A .a <b <c B .a <c <b C .c <a <bD .c <b <a7.设函数g (x )=|x +2|+1,φ(x )=kx ,若函数f (x )=g (x )-φ(x )仅有两个零点,则实数k 的取值范围是( ) A.⎝⎛⎭⎪⎫0,12B.⎝⎛⎭⎪⎫-12,1 C.()-∞,-1D.⎝ ⎛⎭⎪⎫-1,-12 8.若函数y =f (x )(x ∈A )满足:∃x 0∈A ,使x 0=f [f (x 0)]成立,则称“x 0是函数y =f (x )的稳定点”.若x 0是函数f (x )=⎩⎪⎨⎪⎧2x (0<x <1),1-log 2x (1<x <2)的稳定点,则x 0的取值为( ) A. 2 B.12 C.12或 2D.22或 2 第Ⅱ卷 (非选择题)二、填空题9.(2015·全国卷Ⅰ)若函数f (x )=x ln(x +a +x 2)为偶函数,则实数a =________.10.(2015·全国卷Ⅰ)若x ,y满足约束条件⎩⎪⎨⎪⎧x -1≥0,x -y ≤0,x +y -4≤0,则yx 的最大值为________.11.(2015·福建高考)若函数f (x )=⎩⎪⎨⎪⎧-x +6,x ≤2,3+log a x ,x >2(a >0,且a ≠1)的值域是[4,+∞),则实数a 的取值范围是________.12.设函数f (x )=⎩⎪⎨⎪⎧x 2+x ,x <0,-x 2,x ≥0.若f (f (a ))≤2,则实数a 的取值范围是________.13.设函数f (x )=⎩⎪⎨⎪⎧log 2x ,x >0,4x ,x ≤0,则f (f (-1))=________;若函数g (x )=f (x )-k 存在两个零点,则实数k 的取值范围是________. 14.已知f (x )是定义在R 上且周期为3的函数,当x ∈[0,3)时,f (x )=|x 2-2x +12|.若函数y =f (x )-a 在区间[-3,4]上有10个零点(互不相同),则实数a的取值范围是________.15.设x,y为实数,若4x2+y2+xy=1,则2x+y的最大值是________.三、解答题16.(2015·温州模拟)已知函数f(x)=-x|x-a|+1(x∈R).(1)当a=1时,求使f(x)=x成立的x的值;(2)当a∈(0,3),求函数y=f(x)在x∈[1,2]上的最大值.17.(2015·杭州七校联考)设向量p=(x,1),q=(x+a,2),其中x∈R,函数f(x)=p·q.(1)若不等式f(x)≤0的解集为[1,2],求不等式f(x)≥1-x2的解集;(2)若函数g(x)=f(x)+x2+1在区间(1,2)上有两个不同的零点,求实数a的取值范围.18.已知函数f(x)=2x-12|x|.(1)若f(x)=2,求x的值;(2)若2t f(2t)+mf(t)≥0对于t∈[1,2]恒成立,求实数m的取值范围.19.(2015·杭州高级中学模拟)已知f(x)=2x2-tx,且|f(x)|=2有且仅有两个不同的实根α和β(α<β).(1)求实数t的取值范围;(2)若x1、x2∈[α,β],且x1≠x2,求证:4x1x2-t(x1+x2)-4<0;(3)设g(x)=4x-tx2+1,对于任意x1、x2∈[α,β]上恒有|g(x1)-g(x2)|≤λ(β-α)成立,求λ的取值范围.20.(2015·金华一中模拟)已知函数f(x)=x2+2x|x-a|,其中a∈R.(1)求函数f(x)的单调区间;(2)若不等式4≤f(x)≤16在x∈[1,2]上恒成立,求a的取值范围.参考答案第一部分 专题集训 专题一 函数、不等式及其应用真题体验·引领卷1.C [∵P ={x |x ≥2或x ≤0},∁R P ={x |0<x <2}, ∴(∁R P )∩Q ={x |1<x <2},故选C.]2.D [由全称命题与特称命题之间的互化关系知选D.]3.D [排除法,A 中,当x 1=π2,x 2=-π2时,f (sin 2x 1)=f (sin 2x 2)=f (0),而sin x 1≠sin x 2,∴A 不对;B 同上;C 中,当x 1=-1,x 2=1时,f (x 21+1)=f (x 22+1)=f (2),而|x 1+1|≠|x 2+1|,∴C 不对,故选D.]4.B [不等式组表示的平面区域如图阴影部分所示,易知A(2,0),由⎩⎪⎨⎪⎧x -y =0,x +y =2,得B (1,1).由z =ax +y ,得y =-ax +z .∴当a =-2或a =-3时,z =ax +y 在O (0,0)处取得最大值,最大值为z max =0,不满足题意,排除C ,D 选项;当a =2或3时,z =ax +y 在A(2,0)处取得最大值,∴2a =4,∴a =2,排除A ,只有B 项满足.]5.B [当点P 沿着边BC 运动,即0≤x ≤π4时, 在Rt △POB 中,|PB |=|OB |tan ∠POB =tan x ,在Rt △P AB 中,|P A |=|AB |2+|PB |2=4+tan 2x ,则f (x )=|P A |+|PB |=4+tan 2x +tan x ,它不是关于x 的一次函数,图象不是线段,故排除A 和C ;当点P 与点C 重合,即x =π4时,由上得f ⎝ ⎛⎭⎪⎫π4=4+tan 2π4+tan π4=5+1,又当点P 与边CD 的中点重合,即x =π2时,△P AO 与△PBO是全等的腰长为1的等腰直角三角形,故f ⎝ ⎛⎭⎪⎫π2=|P A |+|PB |=2+2=22,知f ⎝ ⎛⎭⎪⎫π2<f ⎝ ⎛⎭⎪⎫π4,故又可排除D.综上,选B.]6.D [法一 当x >2时,g (x )=x +b -4,f (x )=(x -2)2; 当0≤x ≤2时,g (x )=b -x ,f (x )=2-x ; 当x <0时,g (x )=b -x 2,f (x )=2+x .由于函数y =f (x )-g (x )恰有4个零点,所以方程f (x )-g (x )=0恰有4个根.当b =0时,当x >2时,方程f (x )-g (x )=0可化为x 2-5x +8=0,无解;当0≤x ≤2时,方程f (x )-g (x )=0可化为2-x -(-x )=0,无解; 当x <0时,方程f (x )-g (x )=0可化为x 2+x +2=0,无解. 所以b ≠0,排除答案B.当b =2时,当x >2时,方程f (x )-g (x )=0可化为(x -2)2=x -2,得x=2(舍去)或x =3,有1解;当0≤x ≤2时,方程f (x )-g (x )=0可化为2-x =2-x ,有无数个解; 当x <0时,方程f (x )-g (x )=0可化为2-x 2=x +2,得x =0(舍去)或x =-1,有1解. 所以b ≠2,排除答案A.当b =1时,当x >2时,方程f (x )-g (x )=0可化为x 2-5x +7=0,无解;当0≤x ≤2时,方程f (x )-g (x )=0可化为1-x =2-x ,无解; 当x <0时,方程f (x )-g (x )=0可化为x 2+x +1=0,无解. 所以b ≠1,排除答案C.因此答案选D.法二 记h (x )=-f (2-x )在同一坐标系中作出f (x )与h (x )的图象如图,直线AB :y =x -4,当直线l ∥AB 且与f (x )的图象相切时,由⎩⎪⎨⎪⎧y =x +b ′,y =(x -2)2,解得b ′=-94,-94-(-4)=74,所以曲线h (x )向上平移74个单位后,所得图象在y 轴右边与f (x )的图象有两个公共点,同理,在y 轴左方也有两个公共点,平移2个单位后,两图象有无数个公共点,因此,当74<b <2时,f (x )与g (x )的图象有4个不同的交点,即y =f (x )-g (x )恰有4个零点.选D.]7.0 22-3 [f (f (-3))=f (1)=0,当x ≥1时,f (x )=x +2x -3≥22-3,当且仅当x =2时,取等号;当x <1时,f (x )=lg(x 2+1)≥lg 1=0,当且仅当x =0时,取等号,∴f (x )的最小值为22-3.]8.3 [设z =|2x +y -2|+|6-x -3y |.∵x 2+y 2≤1,∴6-x -3y >0, ∴z =|2x +y -2|+6-x -3y .①若2x +y -2≥0,则z =x -2y +4.由数形结合知,x =35,y =45时,z min =3;②若2x +y -2≤0,则z =-3x -4y +8.由数形结合知,x =35,y =45时,z min =3;由①②知,z min =3.故答案为3.]9.(-∞,0)∪(1,+∞) [若0≤a ≤1时,函数f (x )=⎩⎪⎨⎪⎧x 3(x ≤a ),x 2 (x >a )在R 上递增,其与直线y =b 至多有一个公共点;若a >1或a <0时,由图象知y =f (x )-b 存在b 使之有两个零点,故a ∈(-∞,0)∪(1,+∞).]10.解 (1)当a =0时,f (x )=x 2,函数f (x )在区间[0,1]上单调递增,故g (a )=f (1)=1.(2)当a <0时,函数f (x )的图象如图(1)所示,函数f (x )在区间[0,1]上单调递增,故g (a )=f (1)=1-a .(3)当0<a <1时,函数f (x )的图象如图(2)所示,f ⎝ ⎛⎭⎪⎫a 2=a24,f (1)=1-a ,f ⎝ ⎛⎭⎪⎫a 2-f (1)=a 24-(1-a )=(a +2)2-84.①当0<a <22-2时,因为f ⎝ ⎛⎭⎪⎫a 2-f (1)<0,即f ⎝ ⎛⎭⎪⎫a 2<f (1),所以g (a )=f (1)=1-a ;②当22-2≤a <1时,因为f ⎝ ⎛⎭⎪⎫a 2-f (1)≥0,即f ⎝ ⎛⎭⎪⎫a 2≥f (1),所以g (a )=f ⎝ ⎛⎭⎪⎫a 2=a 24.(4)当1≤a <2时,函数f (x )的图象如图(3)所示,因为函数f (x )在区间⎣⎢⎡⎦⎥⎤0,a 2上单调递增,在区间⎣⎢⎡⎦⎥⎤a 2,1上单调递减,故g (a )=f ⎝ ⎛⎭⎪⎫a 2=a 24.(5)当a ≥2时,函数f (x )的图象如图(4)所示,因为函数f (x )在区间[0,1]上单调递增,故g (a )=f (1)=a -1.综上,g (a )=⎩⎪⎨⎪⎧1-a ,a <22-2,a24,22-2≤a <2,a -1,a ≥2,当a <22-2时,g (a )>g (22-2)=3-22; 当22-2≤a <2时,g (a )≥g (22-2)=3-22; 当a ≥2时,g (a )≥g (2)=1>3-2 2. 综上,当a =22-2时,g (a )min =3-2 2.11.(1)证明 由f (x )=⎝ ⎛⎭⎪⎫x +a 22+b -a 24,得对称轴为直线x =-a2.由|a |≥2,得|-a2|≥1,故f (x )在[-1,1]上单调, 所以M (a ,b )=max{|f (1)|,|f (-1)|}. 当a ≥2时,由f (1)-f (-1)=2a ≥4, 得max{f (1),-f (-1)}≥2, 即M (a ,b )≥2.当a ≤-2时,由f (-1)-f (1)=-2a ≥4, 得max{f (-1),-f (1)}≥2, 即M (a ,b )≥2.综上,当|a |≥2时,M (a ,b )≥2.(2)解 由M (a ,b )≤2得|1+a +b |=|f (1)|≤2, |1-a +b |=|f (-1)|≤2, 故|a +b |≤3,|a -b |≤3.由|a |+|b |=⎩⎪⎨⎪⎧|a +b |,ab ≥0,|a -b |,ab <0,得|a |+|b |≤3.当a =2,b =-1时,|a |+|b |=3,且|x 2+2x -1|在[-1,1]上的最大值为2.即M (2,-1)=2.所以|a |+|b |的最大值为3.12.解 (1)当b =a 24+1时,f (x )=⎝ ⎛⎭⎪⎫x +a 22+1,故对称轴为直线x =-a2.当a ≤-2时,g (a )=f (1)=a 24+a +2.当-2<a ≤2时,g (a )=f ⎝ ⎛⎭⎪⎫-a 2=1.当a >2时,g (a )=f (-1)=a 24-a +2. 综上,g (a )=⎩⎪⎨⎪⎧a 24+a +2,a ≤-2,1,-2<a ≤2,a 24-a +2,a >2.(2)设s ,t 为方程f (x )=0的解,且-1≤t ≤1,则⎩⎪⎨⎪⎧s +t =-a ,st =b , 由于0≤b -2a ≤1,因此-2t t +2≤s ≤1-2t t +2(-1≤t ≤1).当0≤t ≤1时,-2t 2t +2≤st ≤t -2t 2t +2,由于-23≤-2t 2t +2≤0和-13≤t -2t 2t +2≤9-45,所以-23≤b ≤9-4 5.当-1≤t <0时,t -2t 2t +2≤st ≤-2t 2t +2,由于-2≤-2t 2t +2<0和-3≤t -2t 2t +2<0,所以-3≤b <0.故b 的取值范围是[-3,9-45].经典模拟·演练卷1.A [当m =5时,P ⊆Q ;若“P ⊆Q ”,则“m =3或m =5”,∴“m =5”是“P ⊆Q ”的充分不必要条件.] 2.D [∵f (x )是在R 上的周期为2的奇函数,∴f ⎝ ⎛⎭⎪⎫2 0152=f ⎝ ⎛⎭⎪⎫1 007+12=f ⎝ ⎛⎭⎪⎫2×503+32=f ⎝ ⎛⎭⎪⎫32=f ⎝ ⎛⎭⎪⎫-12=-f ⎝ ⎛⎭⎪⎫12. 又当x ∈(0,1)时,f (x )=3x -1,∴f ⎝ ⎛⎭⎪⎫2 0152=-f ⎝ ⎛⎭⎪⎫12=-(312-1)=-3+1.] 3.C [∵a ∥b ,∴3(y -1)+2x =0,即2x +3y =3.∵x >0,y >0, ∴3x +2y =⎝ ⎛⎭⎪⎫3x +2y ·13(2x +3y )=13⎝ ⎛⎭⎪⎫6+6+9y x +4x y ≥13(12+2×6)=8, 当且仅当3y =2x 时取等号.∴当x =34且y =12时,3x +2y 取得最小值8.]4.B [当0<x <1时,f (x )=2x log 0.5x -1,令f (x )=0,则log 0.5x =⎝ ⎛⎭⎪⎫12x,由y =log 0.5x ,y =⎝ ⎛⎭⎪⎫12x的图象知,在(0,1)内有一个交点,即f (x )在(0,1)上有一个零点.当x >1时,f (x )=-2x log 0.5x -1=2x log 2x -1,令f (x )=0得log 2x =⎝ ⎛⎭⎪⎫12x ,由y =log 2x ,y =⎝ ⎛⎭⎪⎫12x 的图象知在(1,+∞)上有一个交点,即f (x )在(1,+∞)上有一个零点,故选B.]5.A [目标函数可化为y =-1a x +1a z .要使目标函数z =x +ay 取得最小值的最优解有无数个,则-1a =k AC =1.则a =-1,故y x -a =y x +1, 其几何意义为可行域内的点(x ,y )与点M (-1,0)的连线的斜率,可知⎝ ⎛⎭⎪⎫y x +1max =k MC =25.] 6.A [先画出y 轴右边的图象,如图所示.∵f (x )是偶函数,∴图象关于y 轴对称,∴可画出y 轴右边的图象,再画y 轴左侧图象及直线y =12.设y =12与f (x )图象交于点A ,B ,C ,D ,先分别求出A ,B 两点的横坐标.令cos πx =12,∵x ∈⎣⎢⎡⎦⎥⎤0,12,∴πx =π3,∴x =13. 令2x -1=12,∴x =34,∴x A =13,x B =34.根据对称性可知直线y =12与f (x )图象另外两个交点的横坐标为x C =-34,x D =-13.∵f (x -1)≤12,则在直线y =12下方的f (x )图象及其交点满足,∴13≤x -1≤34或-34≤x -1≤-13,∴43≤x ≤74或14≤x ≤23.]7.18 [∵x >0,y >0,2x +y +6=xy ,∴22xy +6≤xy ,即xy -22xy -6≥0,解得xy ≥18.当且仅当x =3,y =6时,取等号.]8.⎣⎢⎡⎦⎥⎤-14,1 [当x ≤1时,f (x )=-x 2+x =-⎝ ⎛⎭⎪⎫x -122+14≤14, 当x >1时,f (x )=log 13x <0,∴f (x )的最大值为14, 因此原不等式为14≥m 2-34m ,解之得-14≤m ≤1.]9.⎣⎢⎡⎦⎥⎤1,32 [画可行域如图所示,设目标函数z =ax +y ,即y =-ax +z ,要使1≤z ≤4恒成立,则a >0,数形结合知,满足⎩⎪⎨⎪⎧1≤2a +1≤4,1≤a ≤4即可,解得1≤a ≤32,所以a 的取值范围是1≤a ≤32.]10.解 (1)f (0)=a 2+|a |-a 2+a =|a |+a ,因为f (0)≤1,所以|a |+a ≤1,当a ≤0时,|a |+a =-a +a =0≤1,显然成立;当a >0时,则有|a |+a =2a ≤1,所以a ≤12,所以0<a ≤12,综上所述,a 的取值范围是a ≤12.(2)f (x )=⎩⎪⎨⎪⎧x 2-(2a -1)x ,x ≥a ,x 2-(2a +1)x +2a ,x <a . 对于u 1=x 2-(2a -1)x ,其对称轴为x =2a -12=a -12<a ,开口向上,所以f (x )在(a ,+∞)上单调递增;对于u 2=x 2-(2a +1)x +2a ,其对称轴为x =2a +12=a +12>a ,开口向上,所以f (x )在(-∞,a )上单调递减,综上,f (x )在(a ,+∞)上单调递增,在(-∞,a )上单调递减.(3)由(2)得f (x )在(a ,+∞)上单调递增,在(0,a )上单调递减,所以f (x )min =f (a )=a -a 2.(ⅰ)当a =2时,f (x )min =f (2)=-2,f (x )=⎩⎪⎨⎪⎧x 2-3x ,x ≥2,x 2-5x +4,x <2, 令f (x )+4x =0,即f (x )=-4x (x >0),因为f (x )在(0,2)上单调递减,所以f (x )>f (2)=-2,而y =-4x 在(0,2)上单调递增,y <f (2)=-2,所以y =f (x )与y =-4x 在(0,2)无交点.当x ≥2时,f (x )=x 2-3x =-4x ,即x 3-3x 2+4=0,所以x 3-2x 2-x 2+4=0,所以(x -2)2(x +1)=0,因为x ≥2,所以x =2,即当a =2时,f (x )+4x 有一个零点x =2.(ⅱ)当a >2时,f (x )min =f (a )=a -a 2,当x ∈(0,a )时,f (0)=2a >4,f (a )=a -a 2,而y =-4x 在x ∈(0,a )上单调递增,当x =a 时,y =-4a ,下面比较f (a )=a -a 2与-4a 的大小,因为a -a 2-⎝ ⎛⎭⎪⎫-4a =-(a 3-a 2-4)a =-(a -2)(a 2+a +2)a<0, 所以f (a )=a -a 2<-4a .结合图象不难得当a >2时,y =f (x )与y =-4x 有两个交点,综上,当a =2时,f (x )+4x 在(0,+∞)上有一个零点x =2;当a >2时,f (x )+4x 在(0,+∞)上有两个零点.11.解 (1)不等式f (x )≥g (x )对x ∈R 恒成立,即x 2-1≥a |x -1|(*)对x ∈R 恒成立,①当x =1时,(*)显然成立,此时a ∈R ;②当x ≠1时,(*)可变形为a ≤x 2-1|x -1|, 令φ(x )=x 2-1|x -1|=⎩⎪⎨⎪⎧x +1,x >1,-(x +1),x <1,因为当x >1时,φ(x )>2,当x <1时φ(x )>-2,所以φ(x )>-2,故此时a ≤-2,综合①②,得所求实数a 的取值范围是a ≤-2.(2)h (x )=⎩⎪⎨⎪⎧-x 2-ax +a +1,0≤x ≤1,x 2+ax -a -1,1≤x ≤2, 当-a 2≤0时,即a ≥0,(-x 2-ax +a +1)max =h (0)=a +1,(x 2+ax -a -1)max =h (2)=a +3,此时h (x )max =a +3;当0<-a 2≤1时,即-2≤a <0,(-x 2-ax +a +1)max=h ⎝ ⎛⎭⎪⎫-a 2=a 24+a +1, (x 2+ax -a -1)max =h (2)=a +3,此时h (x )max =a +3;当1<-a 2≤2时,即-4≤a <-2,(-x 2-ax +a +1)max =h (1)=0.(x 2+ax -a -1)max =max{h (1),h (2)}=max{0,3+a }=⎩⎪⎨⎪⎧0,-4≤a <-3,3+a ,-3≤a <-2, 此时h (x )max =⎩⎪⎨⎪⎧0,-4≤a <-3,3+a ,-3≤a <-2,当-a 2>2时,即a <-4,(-x 2-ax +a +1)max =h (1)=0,(x 2+ax -a -1)max =h (1)=0,此时h (x )max =0,综上h (x )max =⎩⎪⎨⎪⎧3+a ,a ≥-3,0,a <-3. 12.解 (1)当a =1时,f (x )=⎩⎪⎨⎪⎧-x 2,x <1,x 2-2x ,x ≥1, 函数f (x )的单调递增区间为(-∞,0),(1,+∞),单调递减区间为(0,1).(2)f (x )=⎩⎪⎨⎪⎧-x 2+(a -1)x ,x <a ,x 2-(a +1)x ,x ≥a , ①当a ≤-1时,a ≤a -12<a +12≤0,f (x )在[0,t ]上单调递增,f (x )min=f (0)=0,f (x )max =f (t )=t 2-(a +1)t ,由题意得f (x )max ≤6,即t 2-(a +1)t ≤6,解得0≤t ≤(a +1)+(a +1)2+242, 令m =-(a +1)≥0,h (m )=m 2+24-m 2=12m 2+24+m 在[0,+∞)上单调递减,∴h (m )max =h (0)=6,即当a =-1时,t max = 6.②当-1<a ≤0时,a -12<a ≤0<a +12,f (x )在⎣⎢⎡⎦⎥⎤0,a +12上单调递减, 在⎣⎢⎡⎭⎪⎫a +12,+∞上单调递增,f (x )min =f ⎝ ⎛⎭⎪⎫a +12=-(a +1)24∈⎣⎢⎡⎭⎪⎫-14,0, 满足f (x )min ≥-1,f (x )max =f (t )=t 2-(a +1)t ,由题意得f (x )max ≤6,即t 2-(a +1)t ≤6,解得0≤t ≤(a +1)+(a +1)2+242, 令m =a +1>0,h (m )=m +m 2+242在(0,1]上单调递增, ∴h (m )max =h (1)=3,即当a =0时,t max =3.③当0<a ≤1时,a -12≤0<a ≤a +12,f (x )在[0,a ],⎣⎢⎡⎦⎥⎤a ,a +12单调递减,在⎣⎢⎡⎭⎪⎫a +12,+∞上单调递增,f (x )min =f ⎝ ⎛⎭⎪⎫a +12=-(a +1)24∈⎣⎢⎡⎭⎪⎫-1,-14, 满足f (x )min ≥-1,f (x )max =f (t )=t 2-(a +1)t ,由题意得f (x )max ≤6,即t 2-(a +1)t ≤6,解得0≤t ≤(a +1)+(a +1)2+242, 同②得h (m )=m +m 2+242在(1,2]上单调递增, ∴h (m )max =h (2)=1+7,即当a =1时,t max =1+7,综上所述,t max =1+7,此时a =1.专题过关·提升卷1.A [由A ={-2,-1,0,1,2},B ={x |(x -1)(x +2)<0}={x |-2<x <1},得A ∩B ={-1,0}.]2.C [选项A ,D 中,y =-x 3为奇函数,y =e x -e -x 也为奇函数.又y =2|x |=2x (x >0)是增函数,B 不满足.易知y =-lg|x |是偶函数,且当x >0时,y =-lg x 为减函数.]3.B [p :|2a -1|<1⇔0<a <1.q :f (x )在(-∞,1)内是增函数⇔0<a <1.∴p 是q 的充要条件.]4.A [易知函数定义域为(-1,1),f (-x )=ln(1-x )-ln(1+x )=-f (x ),故函数f (x )为奇函数,又f (x )=ln 1+x 1-x =ln ⎝⎛⎭⎪⎫-1-2x -1,由复合函数单调性判断方法知,f (x )在(0,1)上是增函数,故选A.]5.A[不等式组⎩⎪⎨⎪⎧x +y ≥-1,2x -y ≤1,y ≤1表示的平面区域如图所示,平移直线y =3x -z ,过点M (-2,1)时,直线的截距最大,此时z 有最小值、∴z min =3×(-2)-1=-7.]6.C [因为函数f (x )=2|x -m |-1为偶函数可知,m =0,所以f (x )=2|x |-1.当x >0时,f (x )为增函数,log 0.53=-log 23, ∴log 25>|-log 0.53|>0,∴b =f (log 25)>a =f (log 0.53)>c =f (2m ).]7.D [在同一坐标系内作函数y =g (x )与y =φ(x )的图象,依题意知,两个函数的图象有两个交点.则直线φ(x )=kx 应介于两直线y =-x 与y =-x 2之间,应有-1<k <-12.]8.C [(1)当x 0∈(0,1)时,1<2x 0<2.∴f [f (x 0)]=f (2x 0)=1-log 22x 0=x 0,则x 0=12.(2)当x 0∈(1,2)时,0<1-log 2x 0<1,∴f [f (x 0)]=f (1-log 2x 0)=21-log 2x 0=x 0,则x 0= 2.因此x 0的取值为12或 2.]9.1 [f (x )为偶函数,则ln(x +a +x 2)为奇函数,所以ln(x +a +x 2)+ln(-x +a +x 2)=0,即ln(a +x 2-x 2)=0,则ln a =0,a =1.]10.3 [由约束条件可画出可行域,利用y x 的几何意义求解.画出可行域如图阴影所示,∵y x 表示过点(x ,y )与原点(0,0)的直线的斜率,∴点(x ,y )在点A 处时y x 最大.由⎩⎪⎨⎪⎧x =1,x +y -4=0, 得⎩⎪⎨⎪⎧x =1,y =3.∴A (1,3).∴y x 的最大值为3.]11.(1,2] [由题意f (x )的图象如图,则⎩⎪⎨⎪⎧a >1,3+log a2≥4,∴1<a ≤2.]12.(-∞,2] [由题意得⎩⎪⎨⎪⎧f (a )<0,f 2(a )+f (a )≤2或⎩⎪⎨⎪⎧f (a )≥0,-f 2(a )≤2,解之得f (a )≥-2,∴⎩⎪⎨⎪⎧a <0,a 2+a ≥-2或⎩⎪⎨⎪⎧a ≥0,-a 2≥-2,解得a ≤ 2.]13.-2 (0,1] [f (f (-1))=f (4-1)=f ⎝ ⎛⎭⎪⎫14=log 214=-2.令f (x )-k =0,即f (x )=k ,设y =f (x ),y =k ,画出图象,如图所示,函数g (x )=f (x )-k 存在两个零点,即y =f (x )与y =k 的图象有两个交点,由图象可得实数k 的取值范围为(0,1].] 14.⎝⎛⎭⎪⎫0,12 [∵当x ∈[0,3)时,f (x )=|x 2-2x +12|,作出函数的图象如图所示,可知f (0)=f (1)=12,f (3)=72.若使得f (x )-a =0在x ∈[-3,4]上有10个零点,由于f (x )的周期为3,则只需直线y =a 与函数f (x )=|x 2-2x +12|,x ∈[0,3)应有4个交点,则有a ∈⎝ ⎛⎭⎪⎫0,12.] 15.2105 [∵4x 2+y 2+xy =1,∴(2x +y )2-3xy =1, 即(2x +y )2-32·2xy =1,∴(2x +y )2-32·⎝ ⎛⎭⎪⎫2x +y 22≤1,解之得(2x +y )2≤85,即2x +y ≤2105.等号当且仅当2x =y >0,即x =1010,y =105时成立.]16.解 (1)当a =1时,f (x )=-x |x -1|+1=⎩⎪⎨⎪⎧-x 2+x +1,x ≥1,x 2-x +1,x <1,由f (x )=x 可得:⎩⎪⎨⎪⎧-x 2+x +1=x ,x ≥1,x 2-x +1=x ,x <1.解得x =1,(2)f (x )=⎩⎪⎨⎪⎧-x 2+ax +1,x ≥a ,x 2-ax +1,x <a作出示意图,注意到几个关键点的值:f (0)=f (a )=1,f ⎝ ⎛⎭⎪⎫a 2=1-a24, 当0<a ≤1时,f (x )在[1,2]上单调递减,函数的最大值为f (1)=a ; 1<a <2时,f (x )在[1,a ]上单调递增,在[a ,2]上单调递减, 函数的最大值为f (a )=1;当2≤a <3时,f (x )在⎣⎢⎡⎦⎥⎤1,a 2上单调递减,在⎣⎢⎡⎦⎥⎤a 2,2上单调递增,且直线x =a2是函数的对称轴,由于⎝ ⎛⎭⎪⎫2-a 2-⎝ ⎛⎭⎪⎫a 2-1=3-a >0, 故函数的最大值为f (2)=5-2a .综上可得,f (x )max =⎩⎪⎨⎪⎧a ,0<a ≤1,1,1<a <2,5-2a ,2≤a <3.17.解 (1)f (x )=p·q =x (x +a )+2=x 2+ax +2, 不等式f (x )≤0的解集为[1,2],得a =-3, 于是f (x )=x 2-3x +2.由f (x )≥1-x 2得1-x 2≤x 2-3x +2,解得x ≤12或x ≥1,∴不等式f (x )≥1-x 2的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x ≤12或x ≥1. (2)g (x )=2x 2+ax +3在区间(1,2)上有两个不同的零点,则⎩⎪⎨⎪⎧g (1)>0,g (2)>0,1<-a4<2,a 2-24>0,即⎩⎪⎨⎪⎧a +5>0,2a +11>0,-8<a <-4,a <-26或a >26,解得-5<a <-2 6. ∴a 的取值范围是(-5,-26). 18.解 (1)当x ≥0时,f (x )=2x -12x =2, 则(2x )2-12x =2, 即(2x )2-2·2x -1=0,解得2x =1+2或2x =1-2(舍去),则x =log 2(1+2).当x <0时,f (x )=2x-12-x =2,即2x -2x =2,无解. 故x =log 2(1+2).(2)因为2t f (2t )+mf (t )≥0对于t ∈[1,2]恒成立,而f (t )在区间[1,2]上恒为正数,故m ≥-2t·f (2t )f (t )对于t ∈[1,2]恒成立.令y =-2t·f (2t )f (t )=-2t·⎝ ⎛⎭⎪⎫22t -122t 2t -12t=-(22t +1),函数y =-(22t +1)在R 上为减函数,当t =1时,y max =-22-1=-5.所以m ≥y max =-5,故m 的取值范围为[-5,+∞).19.(1)解 根据f (x )=2x 2-tx 在x 轴下方的图象沿x 轴翻折后顶点值t 28<2, 得-4<t <4,即有t 的取值范围是(-4,4).(2)证明 由韦达定理知α+β=t2,αβ=-1, 不妨设α<x 1<x 2<β,由于x 1、x 2∈[α,β],故(x 1-α)(x 2-β)≤0,x 1x 2-(αx 2+βx 1)+αβ≤0, 即4x 1x 2-4(αx 2+βx 1)-4≤0.4x 1x 2-t (x 1+x 2)-4≤4(αx 2+βx 1)-t (x 1+x 2)=4(αx 2+βx 1)-2(α+β)(x 1+x 2)=2(αx 2+βx 1)-2(αx 1+βx 2)=2(x 2-x 1)(α-β)<0.(3)解 任取x 1、x 2∈[α,β],x 1<x 2,则g (x 1)-g (x 2)=4x 1x 2-t (x 1+x 2)-4(x 21+1)(x 22+1)(x 2-x 1)<0, 所以g (x )在[α,β]上是增函数,故|g (x 1)-g (x 2)|≤λ(β-α)等价于λ≥g (β)-g (α)β-a=-4αβ-t (α+β)-4(α2+1)(β2+1)=2,故λ≥2.20.解 (1)因为f (x )=x 2+2x |x -a |=⎩⎨⎧-(x -a )2+a 2,x ≤a ,3⎝⎛⎭⎪⎫x -a 32-a 23,x >a ,当a ≥0时,f (x )在(-∞,a )和(a ,+∞)上均递增;当a <0时(如图),f (x )在(-∞,a )和⎝⎛⎭⎪⎫a 3,+∞上递增,在⎝⎛⎭⎪⎫a ,a 3上递减.(2)由题意知,只需f (x )min ≥4,f (x )max ≤16, 首先,由(1)可知,f (x )在x ∈[1,2]上递增,则f (x )min =f (1)=1+2|1-a |≥4,解得a ≤-12或a ≥52;其次,当a ≥52时,f (x )在R 上递增,故f (x )max =f (2)=4a -4≤16,解得52≤a ≤5;当a ≤-12时,f (x )在[1,2]上递增,故f (x )max =f (2)=12-4a ≤16,解得-1≤a ≤-12.综上:-1≤a ≤-12或52≤a ≤5.。
专题一 函数、不等式及导数的应用真题体验·引领卷一、填空题1.(2015·江苏高考)不等式2x 2-x <4的解集为________.2.(2011·江苏高考)函数f (x )=log 5(2x +1)的单调增区间是________.3.(2015·全国卷Ⅰ)若函数f (x )=x ln(x +a +x 2)为偶函数,则实数a =________.4.(2015·全国卷Ⅱ改编)设函数f (x )=⎩⎪⎨⎪⎧1+log 2(2-x ),x <1,2x -1,x ≥1,则f (-2)+f (log 212)=______.5.(2014·江苏高考)已知函数f (x )=x 2+mx -1,若对于任意x ∈[m ,m +1],都有f (x )<0成立,则实数m 的取值范围是________.6.(2015·湖南高考)已知函数f (x )=⎩⎪⎨⎪⎧x 3,x ≤a ,x 2,x >a ,若存在实数b ,使函数g (x )=f (x )-b 有两个零点,则a 的取值范围是________.7.(2012·江苏高考)设f (x )是定义在R 上且周期为2的函数,在区间[-1,1]上,f (x )=⎩⎪⎨⎪⎧ax +1,-1≤x <0,bx +2x +1,0≤x ≤1,其中a ,b ∈R .若f ⎝ ⎛⎭⎪⎫12=f ⎝ ⎛⎭⎪⎫32,则a +3b 的值为________.8.(2013·江苏高考)已知f (x )是定义在R 上的奇函数.当x >0时,f (x )=x 2-4x ,则不等式f (x )>x 的解集用区间表示为________.9.(2012·江苏高考)已知正数a ,b ,c 满足:5c -3a ≤b ≤4c -a ,c ln b ≥a +c ln c ,则ba的取值范围是________.10.(2015·江苏高考)已知函数f (x )=|ln x |,g (x )=⎩⎪⎨⎪⎧0,0<x ≤1,|x 2-4|-2,x >1,则方程|f (x )+g (x )|=1实根的个数为________. 二、解答题11.(2015·江苏高考)某山区外围有两条相互垂直的直线型公路,为进一步改善山区的交通现状,计划修建一条连接两条公路和山区边界的直线型公路,记两条相互垂直的公路为l 1,l 2,山区边界曲线为C ,计划修建的公路为l ,如图所示,M ,N 为C 的两个端点,测得点M 到l 1,l 2的距离分别为5千米和40千米,点N 到l 1,l 2的距离分别为20千米和2.5千米,以l 2,l 1所在的直线分别为x ,y 轴,建立平面直角坐标系xOy ,假设曲线C 符合函数y =ax 2+b(其中a ,b 为常数)模型.(1)求a ,b 的值;(2)设公路l 与曲线C 相切于P 点,P 的横坐标为t . ①请写出公路l 长度的函数解析式f (t ),并写出其定义域; ②当t 为何值时,公路l 的长度最短?求出最短长度.12.(2015·全国卷Ⅱ)设函数f (x )=e mx +x 2-mx .(1)证明:f (x )在(-∞,0)上单调递减,在(0,+∞)上单调递增;(2)若对于任意x 1,x 2∈[-1,1],都有|f (x 1)-f (x 2)|≤e -1,求m 的取值范围.13.(2015·江苏高考)已知函数f (x )=x 3+ax 2+b (a ,b ∈R ). (1)试讨论f (x )的单调性;(2)若b =c -a (实数c 是与a 无关的常数),当函数f (x )有三个不同的零点时,a 的取值范围恰好是(-∞,-3)∪⎝ ⎛⎭⎪⎫1,32∪⎝ ⎛⎭⎪⎫32,+∞,求c 的值.专题一 函数、不等式及导数的应用经典模拟·演练卷一、填空题1.(2015·宿迁调研模拟)函数f (x )=ln x +1-x 的定义域为________.2.(2015·苏北四市调研)已知函数y =log 2(ax -1)在(1,2)上单调递增,则a 的取值范围为________.3.(2015·西安模拟)已知f (x )是定义在R 上的周期为2的奇函数,当x ∈(0,1)时,f (x )=3x-1,则f ⎝⎛⎭⎪⎫2 0152=________.4.(2015·安徽“江南十校”联考)已知向量a =(3,-2),b =(x ,y -1),且a ∥b ,若x ,y 均为正数,则3x +2y的最小值是________.5.(2015·苏州调研)已知f (x )=⎩⎪⎨⎪⎧x 2+x (x ≥0),-x 2+x (x <0),则不等式f (x 2-x +1)<12的解集是________.6.(2015·镇江调研)函数f (x )=x 3-3ax -a 在(0,1)内有最小值,则a 的取值范围是________.7.(2015·保定联考)设关于x ,y 的不等式组⎩⎪⎨⎪⎧2x -y +1>0,x -m <0,y +m >0表示的平面区域内存在点P (x 0,y 0)满足x 0-2y 0=2,则m 的取值范围是________.8.(2015·西安八校联考)已知函数f (x )=⎩⎪⎨⎪⎧-x 2+x ,x ≤1,log 13x ,x >1,若关于x 的不等式f (x )≥m 2-34m 有解,则实数m 的取值范围是________. 9.(2015·南京、盐城模拟)已知函数f (x )=1x +2-m |x |有三个零点,则实数m 的取值范围为________.10.(2015·苏、锡、常、镇模拟)设函数f (x )=ax 3-3x +1(x ∈R ),若对于任意x ∈[-1,1],都有f (x )≥0成立,则实数a 的值为________. 二、解答题11.(2015·苏北四市调研)某单位拟建一个扇环面形状的花坛(如图所示),该扇环面是由以点O 为圆心的两个同心圆弧和延长后通过点O 的两条直线段围成.按设计要求扇环面的周长为30米,其中大圆弧所在圆的半径为10米.设小圆弧所在圆的半径为x 米,圆心角为θ(弧度).(1)求θ关于x 的函数关系式;(2)已知在花坛的边缘(实线部分)进行装饰时,直线部分的装饰费用为4元/米,弧线部分的装饰费用为9元/米.设花坛的面积与装饰总费用的比为y ,求y 关于x 的函数关系式,并求出x 为何值时,y 取得最大值?12.(2015·南京、盐城模拟)已知函数f (x )=(x 2-3x +3)·e x的定义域为[-2,t ](t >-2).(1)试确定t 的取值范围,使得函数f (x )在[-2,t ]上为单调函数; (2)当1<t <4时,求满足f ′(x 0)e x=23(t -1)2的x 0的个数.13.(2015·南通调研)已知a 为实常数,y =f (x )是定义在(-∞,0)∪(0,+∞)上的奇函数,且当x <0时,f (x )=2x -a 3x2+1.(1)求函数f (x )的单调区间;(2)若f (x )≥a -1对一切x >0成立,求a 的取值范围.专题一 函数、不等式及导数的应用专题过关·提升卷(时间:120分钟 满分:160分)一、填空题(本大题共14小题,每小题5分,共70分)1.(2015·陕西高考)设曲线y =e x在点(0,1)处的切线与曲线y =1x(x >0)上点P 处的切线垂直,则P 的坐标为________.2.(2015·苏北四市模拟)设奇函数y =f (x )(x ∈R ),满足对任意t ∈R 都有f (t )=f (1-t ),且x ∈⎣⎢⎡⎦⎥⎤0,12时,f (x )=-x 2,则f (3)+f ⎝ ⎛⎭⎪⎫-32的值等于________.3.(2015·南师附中模拟)已知函数f (x )=12mx 2+ln x -2x 在定义域内是增函数,则实数m的取值范围是________.4.若函数y =f (x )(x ∈A )满足:∃x 0∈A ,使x 0=f [f (x 0)]成立,则称“x 0是函数y =f (x )的稳定点”.若x 0是函数f (x )=⎩⎪⎨⎪⎧2x (0<x <1),1-log 2x (1<x <2)的稳定点,则x 0的取值为________.5.(2015·湖南高考改编)若变量x ,y 满足约束条件⎩⎪⎨⎪⎧x +y ≥-1,2x -y ≤1,y ≤1,则z =3x -y 的最小值为________.6.对于定义在R 上的函数f (x ),若实数x 0满足f (x 0)=x 0,则称x 0是函数f (x )的一个不动点.若二次函数f (x )=x 2+2ax +a 2没有不动点,则实数a 的取值范围是________. 7.已知函数y =log a (x +b )(a ,b 为常数,其中a >1)的图象如图所示,则函数g (x )=bx 2-2x ,x ∈[0,3]的最大值为________.8.(2015·天津高考改编)已知定义在R 上的函数f (x )=2|x -m |-1(m 为实数)为偶函数,记a=f (log 0.53),b =f (log 25),c =f (2m ),则a ,b ,c 的大小关系为________.9.设函数f (x )=x 22+m x,若函数f (x )的极值点x 0满足x 0f (x 0)-x 30>m 2,则实数m 的取值范围是________.10.设函数g (x )=|x +2|+1,φ(x )=kx ,若函数f (x )=g (x )-φ(x )仅有两个零点,则实数k 的取值范围是________. 11.已知关于x 的不等式ax -1x -b >0的解集为(-1,1),且函数φ(x )=a +log 12(bx ),则不等式φ(x )>1的解集为________.12.(2015·济南模拟)已知正实数m ,n 满足m +n =1,且使1m +16n取得最小值.若曲线y =xα过点P ⎝ ⎛⎭⎪⎫m ,54n ,则α的值为________. 13.已知定义在R 上的函数g (x )的导函数为g ′(x ),满足g ′(x )-g (x )<0,若函数g (x )的图象关于直线x =2对称,且g (4)=1,则不等式g (x )ex>1的解集为________.14.(2014·江苏高考)已知f (x )是定义在R 上且周期为3的函数,当x ∈[0,3)时,f (x )=|x 2-⎪⎪⎪2x +12.若函数y =f (x )-a 在区间[-3,4]上有10个零点(互不相同),则实数a 的取值范围是________.二、解答题(本大题共6小题,共90分,解答应写出文字说明,证明过程或演算步骤) 15.(本小题满分14分)(2015·苏北四市模拟)已知f (x )=ln x +a (1-x ). (1)讨论f (x )的单调性;(2)当f (x )有最大值,且最大值大于2a -2时,求a 的取值范围.16.(本小题满分14分)(2012·江苏高考)如图,建立平面直角坐标系xOy ,x 轴在地平面上,y 轴垂直于地平面,单位长度为1千米.某炮位于坐标原点.已知炮弹发射后的轨迹在方程y =kx -120(1+k 2)x 2(k >0)表示的曲线上,其中k 与发射方向有关.炮的射程是指炮弹落地点的横坐标.(1)求炮的最大射程;(2)设在第一象限有一飞行物(忽略其大小),其飞行高度为3.2千米,试问它的横坐标a 不超过多少时,炮弹可以击中它?请说明理由.17.(本小题满分14分)(2015·北京高考)设函数f (x )=x 22-k ln x ,k >0.(1)求f (x )的单调区间和极值;(2)证明:若f (x )存在零点,则f (x )在区间(1,e]上仅有一个零点.18.(本小题满分16分)某世界园艺博览会的主题是“让生活走进自然”,为了宣传“会议主题”和“城市时尚”,博览会指挥中心拟在如图所示的空地“扇形ABCD ”上竖立一块长方形液晶广告屏幕MNEF .已知扇形ABCD 所在圆的半径R =30米,圆心角θ=π2,电源在点K 处,点K 到半径AD ,AB 的距离分别为9米、3米.若MN ∶NE =16∶9,线段MN 必过点K ,端点M ,N 分别在半径AD ,AB 上.设AN =x 米,液晶广告屏幕MNEF 的面积为S 平方米.(1)求S 关于x 的函数关系式及其定义域;(2)若液晶屏每平米造价为1 500元,当x 为何值时,液晶广告屏幕MNEF 的造价最低?19.(本小题满分16分)(2015·广东高考)设a >1,函数f (x )=(1+x 2)e x-a . (1)求f (x )的单调区间;(2)证明:f (x )在(-∞,+∞)上仅有一个零点;(3)若曲线y =f (x )在点P 处的切线与x 轴平行,且在点M (m ,n )处的切线与直线OP 平行(O是坐标原点),证明:m ≤3a -2e-1.20.(本小题满分16分)已知函数f (x )=x 2-(a +2)x +a ln x ,常数a >0. (1)当x =1时,函数f (x )取得极小值-2,求函数f (x )的极大值;(2)设定义在D 上的函数y =h (x )在点P (x 0,h (x 0))处的切线方程为l :y =g (x ),当x ≠x 0时,若h (x )-g (x )x -x 0>0在D 内恒成立,则称点P 为h (x )的“类优点”.若点(1,f (1))是函数f (x )的“类优点”,求实数a 的取值范围.参考答案专题一 函数、不等式及导数的应用真题体验·引领卷1.{x |-1<x <2} [∵2x 2-x <4=22,∴x 2-x <2,即x 2-x -2<0,解得-1<x <2.]2.⎝ ⎛⎭⎪⎫-12,+∞ [函数f (x )的定义域为⎝ ⎛⎭⎪⎫-12,+∞,令t =2x +1(t >0).因为y =log 5t 在t ∈(0,+∞)上为增函数,t =2x +1在⎝ ⎛⎭⎪⎫-12,+∞上为增函数,所以函数y =log 5(2x+1)的单调增区间为⎝ ⎛⎭⎪⎫-12,+∞.]3.1 [f (x )为偶函数,则ln(x +a +x 2)为奇函数,所以ln(x +a +x 2)+ln(-x +a +x 2)=0,即ln(a +x 2-x 2)=0,则ln a =0,a =1.]4.9 [∵f (-2)=1+log 24=1+2=3,f (log 212)=2log212-1=6.∴f (-2)+f (log 212)=3+6=9.] 5.⎝ ⎛⎭⎪⎫-22,0 [作出二次函数f (x )的图象,对于任意x ∈[m ,m +1],都有f (x )<0,则有⎩⎪⎨⎪⎧f (m )<0,f (m +1)<0,即⎩⎪⎨⎪⎧m 2+m 2-1<0,(m +1)2+m (m +1)-1<0,解得-22<m <0.]6.(-∞,0)∪(1,+∞) [若0≤a ≤1时,函数f (x )=⎩⎪⎨⎪⎧x 3(x ≤a ),x 2 (x >a )在R 上递增,若a >1或a <0时,由图象知y =f (x )-b 存在b 使之有两个零点,故a ∈(-∞,0)∪(1,+∞).] 7.-10 [因为函数f (x )是周期为2的函数,所以f (-1)=f (1)⇒-a +1=b +22,又f ⎝ ⎛⎭⎪⎫12=f ⎝ ⎛⎭⎪⎫32=f ⎝ ⎛⎭⎪⎫-12⇒12b +232=-12a +1,联立列成方程组解得a =2,b =-4,所以a +3b =2-12=-10.]8.(-5,0)∪(5,+∞) [由已知得f (0)=0,当x <0时,f (x )=-f (-x )=-x 2-4x ,因此f (x )=⎩⎪⎨⎪⎧x 2-4x ,x ≥0,-x 2-4x ,x <0,不等式f (x )>x 等价于⎩⎪⎨⎪⎧x ≥0,x 2-4x >x 或⎩⎪⎨⎪⎧x <0,-x 2-4x >x , 解得:x >5或-5<x <0.]9.[e ,7] [由题意知⎩⎪⎨⎪⎧a +b ≤4c ,3a +b ≥5c ,c ln b -a ≥c ln c ⇒b ≥c e a c.作出可行域(如图所示).由⎩⎪⎨⎪⎧a +b =4c ,3a +b =5c ,得a =c 2,b =72c .此时⎝ ⎛⎭⎪⎫b amax=7.由⎩⎪⎨⎪⎧a +b =4c ,b =c e a c ,得a =4c e +1,b =4c e e +1.此时⎝ ⎛⎭⎪⎫b a min =4c e e +14ce +1=e.所以ba∈[e ,7].]10.4 [令h (x )=f (x )+g (x ),则h (x )=⎩⎪⎨⎪⎧-ln x ,0<x ≤1,-x 2+ln x +2,1<x <2,x 2+ln x -6,x ≥2,当1<x <2时,h ′(x )=-2x +1x =1-2x2x<0,故当1<x <2时h (x )单调递减,在同一坐标系中画出y =|h (x )|和y =1的图象如图所示.由图象可知|f (x )+g (x )|=1的实根个数为4.]11.解 (1)由题意知,点M ,N 的坐标分别为(5,40),(20,2.5). 将其分别代入y =ax 2+b,得⎩⎪⎨⎪⎧a 25+b =40,a 400+b =2.5,解得⎩⎪⎨⎪⎧a =1 000,b =0.(2)①由(1)知,y =1 000x2(5≤x ≤20),则点P 的坐标为⎝⎛⎭⎪⎫t ,1 000t2,设在点P 处的切线l 交x ,y 轴分别于A ,B 两点,y ′=-2 000x3, 则l 的方程为y -1 000t 2=-2 000t3(x -t ),由此得A ⎝ ⎛⎭⎪⎫3t 2,0,B ⎝⎛⎭⎪⎫0,3 000t 2.故f (t )=⎝ ⎛⎭⎪⎫3t 22+⎝ ⎛⎭⎪⎫3 000t 22=32t 2+4×106t4,t ∈[5,20].②设g (t )=t 2+4×106t 4,则g ′(t )=2t -16×106t5. 令g ′(t )=0,解得t =10 2.当t ∈(5,102)时,g ′(t )<0,g (t )是减函数; 当t ∈(102,20)时,g ′(t )>0,g (t )是增函数. 从而,当t =102时,函数g (t )有极小值,也是最小值, 所以g (t )min =300,此时f (t )min =15 3.答:当t =102时,公路l 的长度最短,最短长度为153千米. 12.(1)证明 f ′(x )=m (e mx-1)+2x .若m ≥0,则当x ∈(-∞,0)时,e mx-1≤0,f ′(x )<0; 当x ∈(0,+∞)时,e mx-1≥0,f ′(x )>0.若m <0,则当x ∈(-∞,0)时,e mx-1>0,f ′(x )<0; 当x ∈(0,+∞)时,e mx-1<0,f ′(x )>0.所以,f (x )在(-∞,0)上单调递减,在(0,+∞)上单调递增.(2)解 由(1)知,对任意的m ,f (x )在[-1,0]上单调递减,在[0,1]上单调递增,故f (x )在x =0处取得最小值.所以对于任意x 1,x 2∈[-1,1]时,|f (x 1)-f (x 2)|≤e -1的充要条件是⎩⎪⎨⎪⎧f (1)-f (0)≤e -1,f (-1)-f (0)≤e -1,即⎩⎪⎨⎪⎧e m-m ≤e -1,e -m +m ≤e -1.① 设函数g (t )=e t -t -e +1,则g ′(t )=e t-1.当t <0时,g ′(t )<0;当t >0时,g ′(t )>0.故g (t )在(-∞,0)上单调递减,在(0,+∞)上单调递增.又g (1)=0,g (-1)=e -1+2-e<0,故当t ∈[-1,1]时,g (t )≤0. 当m ∈[-1,1]时,g (m )≤0,g (-m )≤0,即①式成立; 当m >1时,由g (t )的单调性,g (m )>0,即e m-m >e -1; 当m <-1时,g (-m )>0,即e -m+m >e -1. 综上,m 的取值范围是[-1,1]. 13.解 (1)f ′(x )=3x 2+2ax , 令f ′(x )=0,解得x 1=0,x 2=-2a 3.当a =0时,因为f ′(x )=3x 2≥0, 所以函数f (x )在(-∞,+∞)上单调递增;当a >0时,x ∈⎝ ⎛⎭⎪⎫-∞,-2a 3∪(0,+∞)时,f ′(x )>0,x ∈⎝ ⎛⎭⎪⎫-2a 3,0时,f ′(x )<0,所以函数f (x )在⎝ ⎛⎭⎪⎫-∞,-2a 3,(0,+∞)上单调递增,在⎝ ⎛⎭⎪⎫-2a 3,0上单调递减; 当a <0时,x ∈(-∞,0)∪⎝ ⎛⎭⎪⎫-2a 3,+∞时,f ′(x )>0,x ∈⎝ ⎛⎭⎪⎫0,-2a 3时,f ′(x )<0,所以函数f (x )在(-∞,0),⎝ ⎛⎭⎪⎫-2a 3,+∞上单调递增,在⎝ ⎛⎭⎪⎫0,-2a 3上单调递减. (2)由(1)知,函数f (x )的两个极值为f (0)=b ,f ⎝⎛⎭⎪⎫-2a 3=427a 3+b ,则函数f (x )有三个零点等价于f (0)·f ⎝⎛⎭⎪⎫-2a 3=b ⎝⎛⎭⎪⎫427a 3+b <0,从而⎩⎪⎨⎪⎧a >0,-427a 3<b <0或⎩⎪⎨⎪⎧a <0,0<b <-427a 3.又b =c -a ,所以当a >0时,427a 3-a +c >0或当a <0时,427a 3-a +c <0.设g (a )=427a 3-a +c ,因为函数f (x )有三个零点时,a 的取值范围恰好是(-∞,-3)∪⎝ ⎛⎭⎪⎫1,32∪⎝ ⎛⎭⎪⎫32,+∞, 则在(-∞,-3)上g (a )<0,且在⎝ ⎛⎭⎪⎫1,32∪⎝ ⎛⎭⎪⎫32,+∞上g (a )>0均恒成立.从而g (-3)=c -1≤0,且g ⎝ ⎛⎭⎪⎫32=c -1≥0,因此c =1. 此时,f (x )=x 3+ax 2+1-a =(x +1)[x 2+(a -1)x +1-a ],因函数有三个零点,则x 2+(a -1)x +1-a =0有两个异于-1的不等实根,所以Δ=(a -1)2-4(1-a )=a 2+2a -3>0, 且(-1)2-(a -1)+1-a ≠0,解得a ∈(-∞,-3)∪⎝ ⎛⎭⎪⎫1,32∪⎝ ⎛⎭⎪⎫32,+∞.综上c =1. 经典模拟·演练卷1.(0,1] [要使函数f (x )=ln x +1-x 有意义,则⎩⎪⎨⎪⎧x >0,1-x ≥0,解得0<x ≤1,即函数定义域是(0,1].]2.[1,+∞) [根据复合函数的单调性及对数函数的定义域求解.因为y =log 2(ax -1)在(1,2)上单调递增,所以u =ax -1在(1,2)单调递增,且恒大于0,即⎩⎪⎨⎪⎧a >0,a -1≥0⇒a ≥1.]3.-3+1 [∵f (x )是在R 上的周期为2的奇函数, ∴f ⎝⎛⎭⎪⎫2 0152=f ⎝ ⎛⎭⎪⎫1 007+12=f ⎝ ⎛⎭⎪⎫2×503+32=f ⎝ ⎛⎭⎪⎫32=f ⎝ ⎛⎭⎪⎫-12=-f ⎝ ⎛⎭⎪⎫12.又当x ∈(0,1)时,f (x )=3x-1, ∴f ⎝⎛⎭⎪⎫2 0152=-f ⎝ ⎛⎭⎪⎫12=-(312-1)=-3+1.]4.8 [∵a ∥b ,∴3(y -1)+2x =0,即2x +3y =3.∵x >0,y >0, ∴3x +2y =⎝ ⎛⎭⎪⎫3x +2y ·13(2x +3y ) =13⎝⎛⎭⎪⎫6+6+9y x +4x y ≥13(12+2×6)=8,当且仅当3y =2x 时取等号.∴当x =34且y =12时,3x +2y取得最小值8.]5.(-1,2) [依题意得,函数f (x )是R 上的增函数,且f (3)=12,因此不等式f (x 2-x +1)<12等价于x 2-x +1<3,即x 2-x -2<0,由此解得-1<x <2.因此,不等式f (x 2-x +1)<12的解集是(-1,2).]6.(0,1) [f ′(x )=3x 2-3a =3(x 2-a ). 当a ≤0时,f ′(x )>0,∴f (x )在(0,1)内单调递增,无最小值. 当a >0时,f ′(x )=3(x -a )(x +a ).当x ∈(-∞,-a )和(a ,+∞)时,f (x )单调递增; 当x ∈(-a ,a )时,f (x )单调递减,所以当a <1,即0<a <1时,f (x )在(0,1)内有最小值.]7.⎝ ⎛⎭⎪⎫23,+∞ [作不等式组表示的平面区域(如图),依题意,直线x -2y =2与平面区域有公共点.如图,直线x =m 与y =-m 交于(m ,-m ),把(m ,-m )代入x -2y =2得m =23,结合图形得m >23.]8.⎣⎢⎡⎦⎥⎤-14,1 [当x ≤1时,f (x )=-x 2+x =-⎝ ⎛⎭⎪⎫x -122+14≤14,当x >1时,f (x )=log 13x <0,∴f (x )的最大值为14,因此原不等式为14≥m 2-34m ,解之得-14≤m ≤1.]9.(1,+∞) [函数f (x )有三个零点等价于方程1x +2=m |x |有且仅有三个实根. ∵1x +2=m |x |⇔1m=|x |(x +2),作函数y =|x |(x +2)的图象,如图所示,由图象可知m 应满足0<1m<1,故m >1.]10.4 [若x =0,则不论a 取何值,f (x )≥0显然成立; 当x >0时,即x ∈(0,1]时,f (x )=ax 3-3x +1≥0可化为a ≥3x 2-1x3. 令g (x )=3x 2-1x 3,则g ′(x )=3(1-2x )x4, 所以g (x )在区间⎝ ⎛⎦⎥⎤0,12上单调递增,在区间⎣⎢⎡⎦⎥⎤12,1上单调递减. 因此g (x )max =g ⎝ ⎛⎭⎪⎫12=4,从而a ≥4. 当x <0时,即x ∈[-1,0)时,同理a ≤3x 2-1x3.g (x )在区间[-1,0)上单调递增,所以g (x )min =g (-1)=4, 从而a ≤4,综上可知a =4.]11.解 (1)设扇环的圆心角为θ,则30=θ(10+x )+2(10-x ), 所以θ=10+2x10+x.(2)花坛的面积为12θ(102-x 2)=(5+x )(10-x )=-x 2+5x +50(0<x <10).装饰总费用为9θ(10+x )+8(10-x )=170+10x ,所以花坛的面积与装饰总费用的比y =-x 2+5x +50170+10x=-x 2-5x -5010(17+x ),令t =17+x ,则y =3910-110⎝ ⎛⎭⎪⎫t +324t ≤310,当且仅当t =18时取等号, 此时x =1,θ=1211.答:当x =1时,花坛的面积与装饰总费用的比最大.12.解 (1)∵f ′(x )=(x 2-3x +3)·e x +(2x -3)·e x =x ·(x -1)e x, 由f ′(x )>0,得x >1或x <0;由f ′(x )<0,得0<x <1. ∴f (x )在(-∞,0],[1,+∞)上单调递增,在(0,1)上单调递减, 若使f (x )在[-2,t ]上为单调函数,则需-2<t ≤0, 即t 的取值范围为(-2,0]. (2)∵f ′(x 0)e x=x 20-x 0,f ′(x 0)e x 0=23(t -1)2,即x 20-x 0=23(t -1)2,令g (x )=x 2-x -23(t -1)2,则问题转化为当1<t <4时,求方程g (x )=x 2-x -23(t -1)2=0在[-2,t ]上的解的个数.∵g (-2)=6-23(t -1)2=-23(t +2)(t -4),g (t )=t (t -1)-23(t -1)2=13(t +2)(t -1),∴当1<t <4时,g (-2)>0且g (t )>0, ∵g (0)=-23(t -1)2<0,∴g (x )=0在[-2,t ]上有两解. 即满足f ′(x 0)e x=23(t -1)2的x 0的个数为2. 13.解 (1)由奇函数的对称性可知,我们只要讨论f (x )在区间(-∞,0)的单调性即可. f ′(x )=2+2a3x3,令f ′(x )=0,得x =-a .①当a ≤0时,f ′(x )>0,所以f (x )在区间(-∞,0)上单调递增. ②当a >0时,x ∈(-∞,-a ),f ′(x )>0,所以f (x )在区间(-∞, -a )上单调递增.x ∈(-a ,0),f ′(x )<0,所以f (x )在区间(-a ,0)上单调递减.综上所述,当a ≤0时,f (x )单调递增区间为(-∞,0),(0,+∞);当a >0时,f (x )单调增区间为(-∞,-a ),(a ,+∞),单调减区间为(-a ,0),(0,a ).(2)因为f (x )为奇函数,所以当x >0时,f (x )=-f (-x )=-⎝ ⎛⎭⎪⎫-2x -a 3x 2+1 =2x +a 3x2-1.①当a <0时,要使f (x )≥a -1对一切x >0成立,即2x +a 3x2≥a 对一切x >0成立.而当x =-a2>0时,有-a +4a ≥a ,所以a ≥0,则与a <0矛盾. 所以a <0不成立.②当a =0时,f (x )=2x -1>-1=a -1对一切x >0成立, 故a =0满足题设要求.③当a >0时,由(1)可知f (x )在(0,a )上是减函数,在(a ,+∞)上是增函数,所以f (x )min =f (a )=3a -1>a -1, 所以a >0时也满足题设要求. 综上所述,a 的取值范围是[0,+∞).专题过关·提升卷1.(1,1) [∵y ′|x =0=e x|x =0=1. 设P (x 0,y 0),则y ′|x =x 0=⎪⎪⎪⎝ ⎛⎭⎪⎫1x ′x =x 0=-1x 20. 依题意,得1·⎝ ⎛⎭⎪⎫-1x 20=-1,且x 0>0,则x 0=1.因此切点P 为(1,1).]2.-14[根据对任意t ∈R 都有f (t )=f (1-t )可得f (-t )=f (1+t ),即f (t +1)=-f (t ),进而得到f (t +2)=-f (t +1)=-[-f (t )]=f (t ),得函数y =f (x )的一个周期为2,故f (3)=f (1)=f (0+1)=-f (0)=0, f ⎝ ⎛⎭⎪⎫-32=f ⎝ ⎛⎭⎪⎫12=-14.所以f (3)+f ⎝ ⎛⎭⎪⎫-32的值是0+⎝ ⎛⎭⎪⎫-14=-14.]3.[1,+∞) [f ′(x )=mx +1x-2≥0对一切x >0恒成立,∴m ≥-⎝ ⎛⎭⎪⎫1x 2+2x.令g (x )=-⎝ ⎛⎭⎪⎫1x 2+2x,则当1x =1,即x =1时,函数g (x )取最大值1.故m ≥1.] 4.12或 2 [(1)当x 0∈(0,1)时,1<2x 0<2. ∴f [f (x 0)]=f (2x 0)=1-log 22x 0=x 0,则x 0=12.(2)当x 0∈(1,2)时,0<1-log 2x 0<1,∴f [f (x 0)]=f (1-log 2x 0)=21-log 2x 0=x 0,则x 0= 2. 因此x 0的取值为12或 2.]5.-7 [不等式组⎩⎪⎨⎪⎧x +y ≥-1,2x -y ≤1,y ≤1表示的平面区域如图所示,平移直线y =3x -z ,过点M (-2,1)时,直线的截距最大,此时z 有最小值、∴z min =3×(-2)-1=-7.]6.⎝ ⎛⎭⎪⎫14,+∞ [若使函数f (x )=x 2+2ax +a 2无不动点,则方程x 2+2ax +a 2=x 无实数根,即方程x 2+(2a -1)x +a 2=0无实数根,所以Δ=(2a -1)2-4a 2<0,解得a >14.]7.1b[∵将y =log a x 的图象向左平移b 个单位,得到函数y =log a (x +b )的图象,∴0<b <1,则y =b t在R 上是减函数. 又t =x 2-2x =(x -1)2-1,x ∈[0,3], ∴-1≤t ≤3,因此y =b t的最大值为1b.]8.b >a >c [因为函数f (x )=2|x -m |-1为偶函数可知,m =0,所以f (x )=2|x |-1.当x >0时,f (x )为增函数,log 0.53=-log 23, ∴log 25>|-log 0.53|>0,∴b =f (log 25)>a =f (log 0.53)>c =f (2m )=f (0).]9.⎝ ⎛⎭⎪⎫0,12 [由f (x )=x 22+m x ,得f ′(x )=x -m x 2, 又x 0是f (x )的极值点,∴f ′(x 0)=0,解之得x 0=3m , 因此x 0f (x 0)-x 30=x 302+m -x 30=m2,所以m 2>m 2,解之得0<m <12.]10.⎝ ⎛⎭⎪⎫-1,-12 [在同一坐标系内作函数y =g (x )与y =φ(x )的图象,依题意知,两个函数的图象有两个交点.则直线φ(x )=kx 应介于两直线y =-x 与y =-x 2之间,应有-1<k <-12.]11.⎩⎨⎧⎭⎬⎫x ⎪⎪⎪0<x <14 [易知(ax -1)(x -b )>0的解集为(-1,1),∴a <0,且1a=-1,b =1,则φ(x )=-1+log 12x ,由φ(x )>1,得log 12x >2,解之得0<x <14.]12.12[∵m +n =1,且m >0,n >0, ∴1m +16n=(m +n )⎝ ⎛⎭⎪⎫1m +16n =17+n m +16m n≥17+2n m ·16mn=25. 当且仅当n m=16mn,即n =4m 时,等号成立.故1m +16n 取得最小值时,应有n =4m ,从而m =15,n =45, 又y =x α过点P ⎝ ⎛⎭⎪⎫m ,54n , ∴54n =m α,即5m =m α,则51-α=5,故α=12.] 13.(-∞,0) [令F (x )=g (x )ex-1,则F ′(x )=g ′(x )e x -e x g (x )(e x)2=[g ′(x )-g (x )]·1ex .∵g ′(x )-g (x )<0,∴F ′(x )<0,则函数F (x )在(-∞,+∞)上是减函数. 又函数y =g (x )的图象关于直线x =2对称, ∴g (0)=g (4)=1,从而F (0)=g (0)e-1=0.故F (x )>0⎝ ⎛⎭⎪⎫即g (x )e x >1的解集为(-∞,0).] 14.⎝ ⎛⎭⎪⎫0,12 [作出函数y =f (x )在[-3,4]上的图象,f (-3)=f (-2)=f (-1)=f (0)=f (1)=f (2)=f (3)=f (4)=12,观察图象可得0<a <12.]15.解 (1)f (x )的定义域为(0,+∞),f ′(x )=1x-a .若a ≤0,则f ′(x )>0,所以f (x )在(0,+∞)上单调递增.若a >0,则当x ∈⎝⎛⎭⎪⎫0,1a 时,f ′(x )>0;当x ∈⎝ ⎛⎭⎪⎫1a ,+∞时,f ′(x )<0.所以f (x )在⎝⎛⎭⎪⎫0,1a 上单调递增,在⎝ ⎛⎭⎪⎫1a ,+∞上单调递减.综上,当a ≤0时,f (x )在(0,+∞)上单调递增;当a >0时,f (x )在⎝⎛⎭⎪⎫0,1a 上单调递增,在⎝ ⎛⎭⎪⎫1a,+∞上单调递减. (2)由(1)知,当a ≤0时,f (x )在(0,+∞)上无最大值;当a >0时,f (x )在x =1a处取得最大值,最大值为f ⎝ ⎛⎭⎪⎫1a =ln ⎝ ⎛⎭⎪⎫1a +a ⎝⎛⎭⎪⎫1-1a =-ln a +a -1.因此f ⎝ ⎛⎭⎪⎫1a>2a -2等价于ln a +a -1<0.令g (a )=ln a +a -1,则g (a )在(0,+∞)上单调递增,g (1)=0. 于是,当0<a <1时,g (a )<0;当a >1时,g (a )>0.因此,a 的取值范围是(0,1).16.解 (1)令y =0,得kx -120(1+k 2)x 2=0,由实际意义和题设条件知x >0,k >0, 故x =20k 1+k 2=20k +1k≤202=10, 当且仅当k =1时取等号.所以炮的最大射程为10千米.(2)因为a >0,所以炮弹可击中目标⇔存在k >0,使3.2=ka -120(1+k 2)a 2成立⇔关于k 的方程a 2k 2-20ak +a 2+64=0有正根⇔判别式Δ=(-20a )2-4a 2(a 2+64)≥0⇔a ≤6.所以当a 不超过6千米时,可击中目标.17.(1)解 ∵f (x )=x 22-k ln x ,定义域为(0,+∞),且k >0.∴f ′(x )=x -k x =x 2-kx.令f ′(x )=0,得x =k (负值舍去).f (x )与f ′(x )在区间(0,+∞)上的变化情况如下表:所以,f (x )的单调递减区间是(0,k ),单调递增区间是(k ,+∞),f (x )在x =k 处取得极小值f (k )=k (1-ln k )2.(2)证明 由(1)知,f (x )在区间(0,+∞)上的最小值为f (k )=k (1-ln k )2.因为f (x )存在零点,所以k (1-ln k )2≤0,从而k ≥e ,当k =e 时,f (x )在区间(1,e)上单调递减,且f (e)=0, 所以x =e 是f (x )在区间(1,e]上的唯一零点.当k >e 时,f (x )在区间(0,e)上单调递减,且f (1)=12>0,f (e)=e -k 2<0,所以f (x )在区间(1,e]上仅有一个零点.综上可知,若f (x )存在零点,则f (x )在区间(1,e]上仅有一个零点.18.解 (1)在Rt △AMN 中,依题意,得9x =MK MN ,3AM =NK MN ,所以9x +3AM =1,则AM =3xx -9.所以MN =AM 2+AN 2=x 2+9x2(x -9)2.当点N 与点B 重合时,AM 取最小值307;当点M 与点D 重合时,AN 取最小值10.∴307≤AM ≤30,且10≤AN ≤30,因此307≤3xx -9≤30且10≤x ≤30,解之得10≤x ≤30.所以S =916⎣⎢⎡⎦⎥⎤x 2+9x2(x -9)2,其定义域为[10,30].(2)根据题设条件,要使液晶广告屏的造价最低,只需广告屏的面积S 最小.设S =f (x )=916⎣⎢⎡⎦⎥⎤x 2+9x2(x -9)2(10≤x ≤30),则f ′(x )=916⎣⎢⎡⎦⎥⎤2x +18x (x -9)2-2(x -9)·9x 2(x -9)4=9x [(x -9)3-81]8(x -9)3.令f ′(x )=0,得x =9+333,当10≤x <9+333时,f ′(x )<0;当9+333<x ≤30时,f ′(x )>0,∴当x =9+333时,S 取得最小值,即液晶广告屏幕面积最小.故当x =9+333时,液晶广告屏幕的造价最低.19.(1)解 f ′(x )=2x e x +(1+x 2)e x =(x 2+2x +1)e x =(x +1)2e x , ∀x ∈R ,f ′(x )≥0恒成立,∴f (x )的单调增区间为(-∞,+∞),无单调递减区间.(2)证明 ∵f (0)=1-a ,f (a )=(1+a 2)e a -a ,∵a >1,∴f (0)<0,f (a )>2a e a -a >2a -a =a >0,∴f (0)·f (a )<0,∴f (x )在(0,a )上有一零点,又函数f (x )在(-∞,+∞)上是增函数.∴f (x )在(0,a )上仅有一个零点,∴f (x )在(-∞,+∞)上仅有一个零点,(3)证明 f ′(x )=(x +1)2e x ,设P (x 0,y 0),则f ′(x 0)=e x 0(x 0+1)2=0,∴x 0=-1,把x 0=-1,代入y =f (x )得y 0=2e -a ,∴k OP =a -2e .f ′(m )=e m (m +1)2=a -2e ,令g (m )=e m -(m +1),g ′(m )=e m -1.令g ′(x )>0,则m >0,∴g (m )在(0,+∞)上增.令g ′(x )<0,则m <0,∴g (m )在(-∞,0)上减.∴g (m )min =g (0)=0.∴e m -(m +1)≥0,即e m ≥m +1.∴e m (m +1)2≥(m +1)3,即a -2e ≥(m +1)3.∴m +1≤3a -2e ,即m ≤3a -2e -1.20.解 (1)依题意,f (1)=1-(a +2)=-2,得a =1, 此时f ′(x )=2x -3+1x =(x -1)(2x -1)x (x >0).令f ′(x )=0,得x =1或x =12, 当0<x <12或x >1时,f ′(x )>0;当12<x <1时,f ′(x )<0.所以f (x )在⎝ ⎛⎭⎪⎫0,12与(1,+∞)上单调递增,在⎝ ⎛⎭⎪⎫12,1上单调递减,因此,当x =12时,f (x )有极大值-54+ln 12.(2)由f (x )=x 2-(a +2)x +a ln x (x >0),得f ′(x )=2x -(a +2)+a x =(2x -a )(x -1)x ,∴f ′(1)=0,且f (1)=-a -1.所以f (x )在点(1,f (1))处的切线方程为g (x )=-a -1. ∵点(1,f (1))是函数f (x )在(0,+∞)内的“类优点”,令F (x )=f (x )-g (x )=x 2-(a +2)x +a ln x +a +1,常数a >0, 则当x ∈(0,1)∪(1,+∞)时,恒有F (x )x -1>0(*) 又F (1)=0,且F ′(x )=2x -(a +2)+a x =(2x -a )(x -1)x(x >0).令F ′(x )=0,得x =1或x =a 2(a >0).①当a =2时,F ′(x )≥0,F (x )在(0,+∞)上是增函数. ∴0<x <1时,F (x )<F (1)=0;当x >1时,F (x )>F (1)=0.从而当x ≠1时,恒有F (x )x -1>0成立.②当a >2时,由F ′(x )<0,得1<x <a 2,∴函数F (x )在⎝ ⎛⎭⎪⎫1,a 2上是减函数,F (x )<F (1)=0,∴1<x <a 2时,F (x )x -1>0不成立.③当0<a <2时,由F ′(x )<0,得a 2<x <1,∴函数F (x )在⎝ ⎛⎭⎪⎫a 2,1上是减函数,∴x ∈⎝ ⎛⎭⎪⎫a 2,1时,F (x )>F (1)=0,F (x )x -1>0不成立.综上可知,若点(1,f (1))是函数f (x )的“类优点”,则实数a =2.。
专题强化练五 导数的综合应用一、选择题1.设f (x )是定义在R 上的奇函数,且f (2)=0,当x >0时,有xf ′(x )-f (x )x 2<0恒成立,则不等式x 2f (x )>0的解集是( )A .(-2,0)∪(2,+∞)B .(-2,0)∪(0,2)C .(-∞,-2)∪(2,+∞)D .(-∞,-2)∪(0,2) 解析:当x >0时,⎣⎢⎡⎦⎥⎤f (x )x ′=xf ′(x )-f (x )x 2<0,所以φ(x )=f (x )x在(0,+∞)上为减函数,又φ(2)=0, 所以当且仅当0<x <2时,φ(x )>0,此时x 2f (x )>0. 又f (x )为奇函数,所以h (x )=x 2f (x )也为奇函数. 故x 2f (x )>0的解集为(-∞,-2)∪(0,2). 答案:D2.(2018·贵阳联考)已知函数f (x )的定义域为[-1,4],部分对应值如下表:f (x )的导函数y =f y =f (x )-a 的零点的个数为( )A .1B .2C .3D .4解析:根据导函数图象,知2是函数的极小值点,函数y =f (x )的大致图象如图所示. 由于f (0)=f (3)=2,1<a <2,所以y =f (x )-a 的零点个数为4.答案:D3.(2018·广东二模)已知函数f (x )=e x-ln x ,则下面对函数f (x )的描述正确的是( )A .∀x ∈(0,+∞),f (x )≤2B .∀x ∈(0,+∞),f (x )>2C .∃x 0∈(0,+∞),f (x 0)=0D .f (x )min ∈(0,1)解析:因为f (x )=e x-ln x 的定义域为(0,+∞), 且f ′(x )=e x-1x =x e x -1x,令g (x )=x e x-1,x >0,则g ′(x )=(x +1)e x>0在(0,+∞)上恒成立, 所以g (x )在(0,+∞)上单调递增, 又g (0)·g (1)=-(e -1)<0,所以∃x 0∈(0,1),使g (x 0)=0,则f (x )在(0,x 0)上单调递减,在(x 0,+∞)上单调递增,则f (x )min =f (x 0)=e x 0-ln x 0,又e x 0=1x 0,x 0=-ln x 0,所以f (x )min =1x 0+x 0>2.答案:B4.若函数f (x )在R 上可导,且满足f (x )-xf ′(x )>0,则( ) A .3f (1)<f (3) B .3f (1)>f (3) C .3f (1)=f (3)D .f (1)=f (3)解析:由于f (x )>xf ′(x ),则⎣⎢⎡⎦⎥⎤f (x )x ′=xf ′(x )-f (x )x 2<0恒成立,因此y =f (x )x在R 上是单调减函数, 所以f (3)3<f (1)1,即3f (1)>f (3).答案:B5.(2018·佛山市质检)已知函数f (x )=⎩⎪⎨⎪⎧ln x ,x >1,12x +12,x ≤1,若m <n ,且f (m )=f (n ),则n -m 的最小值是( )A .3-2ln 2B .e -1C .2D .e +1解析:作出函数y =f (x )的图象如图所示.若m <n ,且f (m )=f (n ), 则当ln x =1时,得x =e , 因此1<n ≤e ,-1<m ≤1. 又ln n =12m +12,即m =2ln n -1.所以n -m =n -2ln n +1,设h (n )=n -2ln n +1(1<n ≤e),则h ′(n )=1-2n.当h ′(n )>0,得2<n ≤e ;当h ′(n )<0,得1<n <2. 故当n =2时,函数h (n )取得最小值h (2)=3-2ln 2. 答案:A 二、填空题6.做一个无盖的圆柱形水桶,若要使其体积是27π dm 3,且用料最省,则圆柱的底面半径为________dm.解析:设圆柱的底面半径为R dm ,母线长为l dm ,则V =πR 2l =27π,所以l =27R2,要使用料最省,只需使圆柱形水桶的表面积最小.S 表=πR 2+2πRl =πR 2+2π·27R,所以S ′表=2πR -54πR2.令S ′表=0,得R =3,则当R =3时,S 表最小. 答案:37.对于函数y =f (x ),若其定义域内存在两个不同实数x 1,x 2,使得x i f (x i )=1(i =1,2)成立,则称函数f (x )具有性质P .若函数f (x )=exa具有性质P ,则实数a 的取值范围为________.解析:依题意,xf (x )=1,即x e xa=1在R 上有两个不相等实根,所以a =x e x在R 上有两个不同的实根,令φ(x )=x e x, 则φ′(x )=e x (x +1),当x <-1时,φ′(x )<0,φ(x )在(-∞,-1)上是减函数; 当x >-1时,φ′(x )>0,φ(x )在(-1,+∞)上是增函数.因此φ(x )极小值为φ(-1)=-1e.在同一坐标系中作y =φ(x )与y =a 的图象,又当x <0时,φ(x )=x e x<0.由图象知,当-1e <a <0时,两图象有两个交点.故实数a 的取值范围为⎝ ⎛⎭⎪⎫-1e ,0. 答案:⎝ ⎛⎭⎪⎫-1e ,08.(2018·江苏卷改编)若函数f (x )=2x 3-ax 2+1(a ∈R)在(0,+∞)内有且只有一个零点,则f (x )在[0,1]上的最大值是________.解析:f ′(x )=6x 2-2ax =2x (3x -a )(a ∈R),①当a ≤0时,f ′(x )>0在(0,+∞)上恒成立,则f (x )在(0,+∞)上单调递增.又f (0)=1,所以此时f (x )在(0,+∞)内无零点,不满足题意,因此a >0.②当a >0时,令f ′(x )=0得x =a3.当0<x <a 3时,f ′(x )<0,f (x )为减函数;当x >a3时,f ′(x )>0,f (x )为增函数,所以x >0时,f (x )有极小值,为f ⎝ ⎛⎭⎪⎫a 3=-a 327+1.因为f (x )在(0,+∞)内有且只有一个零点, 所以f ⎝ ⎛⎭⎪⎫a 3=0,所以a =3.所以f (x )=2x 3-3x 2+1,则f ′(x )=6x (x -1).当x ∈(0,1)时,f ′(x )<0,故f (x )在x ∈[0,1]上是减函数, 所以f (x )max =f (0)=1. 答案:1 三、解答题 9.已知函数f (x )=x -1x-ln x . (1)求f (x )的单调区间; (2)求证:ln e 2x ≤x +1x.(1)解:f (x )=x -1x -ln x =1-1x-ln x , f (x )的定义域为(0,+∞).f ′(x )=1x 2-1x =1-xx2,令f ′(x )>0⇒0<x <1,令f ′(x )<0⇒x >1,所以f (x )=1-1x-ln x 在(0,1)上单调递增,在(1,+∞)上单调递减.(2)证明:要证ln e 2x ≤1+x x ,即证2-ln x ≤1+1x,即证1-1x-ln x ≤0.由(1)可知,f (x )=1-1x-ln x 在(0,1)上单调递增,在(1,+∞)上单调递减,所以f (x )在(0,+∞)上的最大值为f (1)=1-1-ln 1=0,即f (x )≤0,所以1-1x-ln x ≤0恒成立.原不等式得证.10.已知函数f (x )=e x-1,g (x )=x +x ,其中e 是自然对数的底数,e =2.718 28… (1)证明:函数h (x )=f (x )-g (x )在区间(1,2)上有零点; (2)求方程f (x )=g (x )的根的个数,并说明理由.(1)证明:由题意可得h (x )=f (x )-g (x )=e x-1-x -x , 所以h (1)=e -3<0,h (2)=e 2-3-2>0, 所以h (1)·h (2)<0,所以函数h (x )在区间(1,2)上有零点.(2)解:由(1)可知,h (x )=f (x )-g (x )=e x-1-x -x . 由g (x )=x +x 知x ∈[0,+∞), 而h (0)=0,则x =0为h (x )的一个零点. 又h (x )在(1,2)内有零点,因此h (x )在[0,+∞)上至少有两个零点.h ′(x )=e x -12x -12-1,记φ(x )=e x -12x -12-1.则φ′(x )=e x+14x -32,当x ∈(0,+∞)时,φ′(x )>0,则φ(x )在(0,+∞)上递增.易知φ(x )在(0,+∞)内只有一个零点,所以h (x )在[0,+∞)上有且只有两个零点, 所以方程f (x )=g (x )的根的个数为2.11.(2018·佛山质检)设函数f (x )=e (x 2-ax +a )ex(a ∈R).(1)若曲线y =f (x )在x =1处的切线过点M (2,3),求a 的值; (2)设g (x )=x +1x +1-13,若对任意的n ∈[0,2],存在m ∈[0,2],使得f (m )≥g (n )成立,求a 的取值范围.解:(1)因为f (x )=e (x 2-ax +a )ex, 所以f ′(x )=e ·(2x -a )e x-(x 2-ax +a )exe 2x= -(x -2)(x -a )ex -1. 又f (1)=1,即切点为(1,1),所以k =f ′(1)=1-a =3-12-1,解得a =-1.(2)“对任意的n ∈[0,2],存在m ∈[0,2],使得f (m )≥g (n )成立”,等价于“在[0,2]上,f (x )的最大值大于或等于g (x )的最大值.”因为g (x )=x +1x +1-13,g ′(x )=x 2+2x (x +1)2≥0,所以g (x )在[0,2]上单调递增, 所以g (x )max =g (2)=2. 令f ′(x )=0,得x =2或x =a .①当a ≤0时,f ′(x )≥0在[0,2]上恒成立,f (x )单调递增,f (x )max =f (2)=(4-a )e -1≥2,解得a ≤4-2e ;②当0<a <2时,f ′(x )≤0在[0,a ]上恒成立,f (x )单调递减,f ′(x )≥0在[a ,2]上恒成立,f (x )单调递增,f (x )的最大值为f (2)=(4-a )e -1或f (0)=a e ,所以(4-a )e -1≥2或a e ≥2.解得a ≤4-2e 或a ≥2e ,所以2e≤a <2;③当a ≥2时,f ′(x )≤0在[0,2]上恒成立,f (x )单调递减,f (x )max =f (0)=a e ≥2,解得a ≥2e,所以a ≥2.综上所述,a ≤4-2e 或a ≥2e.故a 的取值范围为(-∞,4-2e]∪[2e ,+∞).满分示范练——函数与导数【典例】 (2017·全国卷Ⅲ)已知函数f (x )=ln x +ax 2+(2a +1)x . (1)讨论函数f (x )的单调性;(2)当a <0时,证明:f (x )≤-34a -2.(1)解:f (x )的定义域(0,+∞).f ′(x )=1x+2ax +2a +1=(2ax +1)(x +1)x,若a ≥0,则当x ∈(0,+∞)时,f ′(x )>0, 故f (x )在(0,+∞)上单调递增.若a <0时,当x ∈⎝⎛⎭⎪⎫0,-12a 时,f ′(x )>0; 当x ∈⎝ ⎛⎭⎪⎫-12a ,+∞时,f ′(x )<0.故f (x )在⎝ ⎛⎭⎪⎫0,-12a 上单调递增,在⎝ ⎛⎭⎪⎫-12a ,+∞上单调递减.(2)证明:由(1)知,当a <0时,f (x )在x =-12a 处取得最大值,最大值为f ⎝ ⎛⎭⎪⎫-12a =ln ⎝ ⎛⎭⎪⎫-12a -1-14a ,所以f (x )≤-34a -2等价于ln ⎝ ⎛⎭⎪⎫-12a -1-14a ≤-34a -2,即ln ⎝ ⎛⎭⎪⎫-12a +12a+1≤0,设g (x )=ln x -x +1,则g ′(x )=1x-1.当x ∈(0,1)时,g ′(x )>0;x ∈(1,+∞)时,g ′(x )<0. 所以g (x )在(0,1)上单调递增,在(1,+∞)上单调递减. 故当x =1时,g (x )取得最大值,最大值为g (1)=0. 所以当x >0时,g (x )≤0,从而当a <0时,ln ⎝ ⎛⎭⎪⎫-12a +12a+1≤0,即f (x )≤-34a-2.高考状元满分心得1.得步骤分:抓住得分点的步骤,“步步为赢”,求得满分.如第(1)问中,求导正确,分类讨论;第(2)问中利用单调性求g (x )的最小值和不等式性质的运用.2.得关键分:解题过程不可忽视关键点,有则给分,无则没分,如第(1)问中,求出f (x )的定义域,f ′(x )在(0,+∞)上单调性的判断;第(2)问,f (x )在x =-12a处最值的判定,f (x )≤-34a -2等价转化为ln ⎝ ⎛⎭⎪⎫-12a +12a+1≤0等.3.得计算分:解题过程中计算准确是得满分的根本保证.如第(1)问中,求导f ′(x )准确,否则全盘皆输,第(2)问中,准确计算f (x )在x =-12a处的最大值.[解题程序] 第一步:求函数f (x )的导函数f ′(x ); 第二步:分类讨论f (x )的单调性; 第三步:利用单调性,求f (x )的最大值;第四步:根据要证的不等式的结构特点,构造函数g (x ); 第五步:求g (x )的最大值,得出要证的不等式; 第六步:反思回顾,查看关键点、易错点和解题规范. [跟踪训练] (2017·全国卷Ⅲ)已知函数f (x )=x -1-a ln x . (1)若f (x )≥0,求a 的值;(2)设m 为整数,且对于任意正整数n ,⎝ ⎛⎭⎪⎫1+12(1+122)·…·⎝ ⎛⎭⎪⎫1+12n <m ,求m 的最小值. 解:(1)f (x )的定义域为(0,+∞),①若a ≤0,因为f ⎝ ⎛⎭⎪⎫12=-12+a ln 2<0,所以不满足题意.②若a >0,由f ′(x )=1-a x =x -ax知,当x ∈(0,a )时,f ′(x )<0;当x ∈(a ,+∞)时,f ′(x )>0. 所以f (x )在(0,a )上单调递减,在(a ,+∞)上单调递增. 故x =a 是f (x )在(0,+∞)的唯一最小值点. 因为f (1)=0,所以当且仅当a =1时,f (x )≥0, 故a =1.(2)由(1)知当x ∈(1,+∞)时,x -1-ln x >0. 令x =1+12n ,得ln ⎝ ⎛⎭⎪⎫1+12n <12n ,从而ln ⎝ ⎛⎭⎪⎫1+12+ln ⎝ ⎛⎭⎪⎫1+122+…+ln ⎝ ⎛⎭⎪⎫1+12n <12+122+…+12n =1-12n <1.故⎝ ⎛⎭⎪⎫1+12⎝ ⎛⎭⎪⎫1+122·…·⎝ ⎛⎭⎪⎫1+12n <e.又⎝ ⎛⎭⎪⎫1+12⎝ ⎛⎭⎪⎫1+122·…·⎝ ⎛⎭⎪⎫1+12n >⎝ ⎛⎭⎪⎫1+12⎝ ⎛⎭⎪⎫1+122·⎝ ⎛⎭⎪⎫1+123=13564>2,所以当n ≥3时,⎝ ⎛⎭⎪⎫1+12⎝ ⎛⎭⎪⎫1+122·…·⎝ ⎛⎭⎪⎫1+12n ∈(2,e), 由于⎝ ⎛⎭⎪⎫1+12⎝ ⎛⎭⎪⎫1+122·…·(1+12n )<m ,且m ∈N *.所以整数m 的最小值为3.。
专题一 函数、不等式及导数的应用真题体验·引领卷一、填空题1.(2015·江苏高考)不等式2x 2-x <4的解集为________.2.(2011·江苏高考)函数f (x )=log 5(2x +1)的单调增区间是________.3.(2015·全国卷Ⅰ)若函数f (x )=x ln(x +a +x 2)为偶函数,则实数a =________.4.(2015·全国卷Ⅱ改编)设函数f (x )=⎩⎪⎨⎪⎧1+log 2(2-x ),x <1,2x -1,x ≥1,则f (-2)+f (log 212)=______.5.(2014·江苏高考)已知函数f (x )=x 2+mx -1,若对于任意x ∈[m ,m +1],都有f (x )<0成立,则实数m 的取值范围是________.6.(2015·湖南高考)已知函数f (x )=⎩⎪⎨⎪⎧x 3,x ≤a ,x 2,x >a ,若存在实数b ,使函数g (x )=f (x )-b 有两个零点,则a 的取值范围是________. 7.(2012·江苏高考)设f (x )是定义在R 上且周期为2的函数,在区间 [-1,1]上,f (x )=⎩⎪⎨⎪⎧ax +1,-1≤x <0,bx +2x +1,0≤x ≤1,其中a ,b ∈R .若f ⎝ ⎛⎭⎪⎫12=f ⎝ ⎛⎭⎪⎫32,则a +3b 的值为________. 8.(2013·江苏高考)已知f (x )是定义在R 上的奇函数.当x >0时,f (x )=x 2-4x ,则不等式f (x )>x 的解集用区间表示为________.9.(2012·江苏高考)已知正数a ,b ,c 满足:5c -3a ≤b ≤4c -a ,c ln b ≥a +c ln c ,则ba 的取值范围是________.10.(2015·江苏高考)已知函数f (x )=|ln x |,g (x )=⎩⎪⎨⎪⎧0,0<x ≤1,|x 2-4|-2,x >1,则方程|f (x )+g (x )|=1实根的个数为________. 二、解答题11.(2015·江苏高考)某山区外围有两条相互垂直的直线型公路,为进一步改善山区的交通现状,计划修建一条连接两条公路和山区边界的直线型公路,记两条相互垂直的公路为l 1,l 2,山区边界曲线为C ,计划修建的公路为l ,如图所示,M ,N 为C 的两个端点,测得点M 到l 1,l 2的距离分别为5千米和40千米,点N 到l 1,l 2的距离分别为20千米和2.5千米,以l 2,l 1所在的直线分别为x ,y 轴,建立平面直角坐标系xOy ,假设曲线C 符合函数y =ax 2+b (其中a ,b 为常数)模型.(1)求a ,b 的值;(2)设公路l 与曲线C 相切于P 点,P 的横坐标为t . ①请写出公路l 长度的函数解析式f (t ),并写出其定义域; ②当t 为何值时,公路l 的长度最短?求出最短长度.12.(2015·全国卷Ⅱ)设函数f (x )=e mx +x 2-mx .(1)证明:f (x )在(-∞,0)上单调递减,在(0,+∞)上单调递增; (2)若对于任意x 1,x 2∈[-1,1],都有|f (x 1)-f (x 2)|≤e -1,求m 的取值范围.13.(2015·江苏高考)已知函数f (x )=x 3+ax 2+b (a ,b ∈R ). (1)试讨论f (x )的单调性;(2)若b =c -a (实数c 是与a 无关的常数),当函数f (x )有三个不同的零点时,a 的取值范围恰好是(-∞,-3)∪⎝⎛⎭⎪⎫1,32∪⎝⎛⎭⎪⎫32,+∞,求c 的值.专题一 函数、不等式及导数的应用经典模拟·演练卷一、填空题1.(2015·宿迁调研模拟)函数f (x )=ln x +1-x 的定义域为________.2.(2015·苏北四市调研)已知函数y =log 2(ax -1)在(1,2)上单调递增,则a 的取值范围为________.3.(2015·西安模拟)已知f (x )是定义在R 上的周期为2的奇函数,当x∈(0,1)时,f (x )=3x-1,则f ⎝ ⎛⎭⎪⎫2 0152=________.4.(2015·安徽“江南十校”联考)已知向量a =(3,-2),b =(x ,y -1),且a ∥b ,若x ,y 均为正数,则3x +2y 的最小值是________.5.(2015·苏州调研)已知f (x )=⎩⎪⎨⎪⎧x 2+x (x ≥0),-x 2+x (x <0),则不等式f (x 2-x +1)<12的解集是________.6.(2015·镇江调研)函数f (x )=x 3-3ax -a 在(0,1)内有最小值,则a 的取值范围是________.7.(2015·保定联考)设关于x ,y 的不等式组⎩⎪⎨⎪⎧2x -y +1>0,x -m <0,y +m >0表示的平面区域内存在点P (x 0,y 0)满足x 0-2y 0=2,则m 的取值范围是________.8.(2015·西安八校联考)已知函数f (x )=⎩⎨⎧-x 2+x ,x ≤1,log 13x ,x >1,若关于x 的不等式f (x )≥m 2-34m 有解,则实数m 的取值范围是________. 9.(2015·南京、盐城模拟)已知函数f (x )=1x +2-m |x |有三个零点,则实数m 的取值范围为________.10.(2015·苏、锡、常、镇模拟)设函数f (x )=ax 3-3x +1(x ∈R ),若对于任意x ∈[-1,1],都有f (x )≥0成立,则实数a 的值为________. 二、解答题11.(2015·苏北四市调研)某单位拟建一个扇环面形状的花坛(如图所示),该扇环面是由以点O 为圆心的两个同心圆弧和延长后通过点O 的两条直线段围成.按设计要求扇环面的周长为30米,其中大圆弧所在圆的半径为10米.设小圆弧所在圆的半径为x 米,圆心角为θ(弧度).(1)求θ关于x 的函数关系式;(2)已知在花坛的边缘(实线部分)进行装饰时,直线部分的装饰费用为4元/米,弧线部分的装饰费用为9元/米.设花坛的面积与装饰总费用的比为y ,求y 关于x 的函数关系式,并求出x 为何值时,y 取得最大值?12.(2015·南京、盐城模拟)已知函数f (x )=(x 2-3x +3)·e x 的定义域为[-2,t ](t >-2).(1)试确定t 的取值范围,使得函数f (x )在[-2,t ]上为单调函数; (2)当1<t <4时,求满足f ′(x 0)e x 0=23(t -1)2的x 0的个数.13.(2015·南通调研)已知a 为实常数,y =f (x )是定义在(-∞,0)∪(0,+∞)上的奇函数,且当x <0时,f (x )=2x -a 3x 2+1. (1)求函数f (x )的单调区间;(2)若f (x )≥a -1对一切x >0成立,求a 的取值范围.专题一 函数、不等式及导数的应用专题过关·提升卷(时间:120分钟 满分:160分)一、填空题(本大题共14小题,每小题5分,共70分)1.(2015·陕西高考)设曲线y =e x 在点(0,1)处的切线与曲线y =1x (x >0)上点P 处的切线垂直,则P 的坐标为________.2.(2015·苏北四市模拟)设奇函数y =f (x )(x ∈R ),满足对任意t ∈R 都有f (t )=f (1-t ),且x ∈⎣⎢⎡⎦⎥⎤0,12时,f (x )=-x 2,则f (3)+f ⎝ ⎛⎭⎪⎫-32的值等于________.3.(2015·南师附中模拟)已知函数f (x )=12mx 2+ln x -2x 在定义域内是增函数,则实数m 的取值范围是________.4.若函数y =f (x )(x ∈A )满足:∃x 0∈A ,使x 0=f [f (x 0)]成立,则称“x 0是函数y =f (x )的稳定点”.若x 0是函数f (x )=⎩⎪⎨⎪⎧2x (0<x <1),1-log 2x (1<x <2)的稳定点,则x 0的取值为________.5.(2015·湖南高考改编)若变量x ,y 满足约束条件⎩⎪⎨⎪⎧x +y ≥-1,2x -y ≤1,y ≤1,则z=3x -y 的最小值为________.6.对于定义在R 上的函数f (x ),若实数x 0满足f (x 0)=x 0,则称x 0是函数f (x )的一个不动点.若二次函数f (x )=x 2+2ax +a 2没有不动点,则实数a 的取值范围是________.7.已知函数y =log a (x +b )(a ,b 为常数,其中a >1)的图象如图所示,则函数g (x )=bx 2-2x ,x ∈[0,3]的最大值为________.8.(2015·天津高考改编)已知定义在R 上的函数f (x )=2|x -m |-1(m 为实数)为偶函数,记a =f (log 0.53),b =f (log 25),c =f (2m ),则a ,b ,c 的大小关系为________.9.设函数f (x )=x 22+m x ,若函数f (x )的极值点x 0满足x 0f (x 0)-x 30>m 2,则实数m 的取值范围是________.10.设函数g (x )=|x +2|+1,φ(x )=kx ,若函数f (x )=g (x )-φ(x )仅有两个零点,则实数k 的取值范围是________.11.已知关于x 的不等式ax -1x -b >0的解集为(-1,1),且函数φ(x )=a+log 12(bx ),则不等式φ(x )>1的解集为________.12.(2015·济南模拟)已知正实数m ,n 满足m +n =1,且使1m +16n 取得最小值.若曲线y =x α过点P ⎝⎛⎭⎪⎫m ,54n ,则α的值为________.13.已知定义在R 上的函数g (x )的导函数为g ′(x ),满足g ′(x )-g (x )<0,若函数g (x )的图象关于直线x =2对称,且g (4)=1,则不等式g (x )e x >1的解集为________.14.(2014·江苏高考)已知f (x )是定义在R 上且周期为3的函数,当x ∈[0,3)时,f (x )=|x 2-⎪⎪⎪2x +12.若函数y =f (x )-a 在区间[-3,4]上有10个零点(互不相同),则实数a 的取值范围是________.二、解答题(本大题共6小题,共90分,解答应写出文字说明,证明过程或演算步骤)15.(本小题满分14分)(2015·苏北四市模拟)已知f (x )=ln x +a (1-x ).(1)讨论f (x )的单调性;(2)当f (x )有最大值,且最大值大于2a -2时,求a 的取值范围.16.(本小题满分14分)(2012·江苏高考)如图,建立平面直角坐标系xOy ,x 轴在地平面上,y 轴垂直于地平面,单位长度为1千米.某炮位于坐标原点.已知炮弹发射后的轨迹在方程y =kx -120(1+k 2)x 2(k >0)表示的曲线上,其中k 与发射方向有关.炮的射程是指炮弹落地点的横坐标.(1)求炮的最大射程;(2)设在第一象限有一飞行物(忽略其大小),其飞行高度为3.2千米,试问它的横坐标a 不超过多少时,炮弹可以击中它?请说明理由.17.(本小题满分14分)(2015·北京高考)设函数f (x )=x 22-k ln x ,k >0. (1)求f (x )的单调区间和极值;(2)证明:若f (x )存在零点,则f (x )在区间(1,e]上仅有一个零点.18.(本小题满分16分)某世界园艺博览会的主题是“让生活走进自然”,为了宣传“会议主题”和“城市时尚”,博览会指挥中心拟在如图所示的空地“扇形ABCD ”上竖立一块长方形液晶广告屏幕MNEF .已知扇形ABCD 所在圆的半径R =30米,圆心角θ=π2,电源在点K 处,点K 到半径AD ,AB 的距离分别为9米、3米.若MN ∶NE =16∶9,线段MN 必过点K ,端点M ,N 分别在半径AD ,AB 上.设AN =x 米,液晶广告屏幕MNEF 的面积为S 平方米.(1)求S关于x的函数关系式及其定义域;(2)若液晶屏每平米造价为1 500元,当x为何值时,液晶广告屏幕MNEF的造价最低?19.(本小题满分16分)(2015·广东高考)设a>1,函数f(x)=(1+x2)e x -a.(1)求f(x)的单调区间;(2)证明:f(x)在(-∞,+∞)上仅有一个零点;(3)若曲线y=f(x)在点P处的切线与x轴平行,且在点M(m,n)处的切线与直线OP平行(O是坐标原点),证明:m≤3a-2e-1.20.(本小题满分16分)已知函数f(x)=x2-(a+2)x+a ln x,常数a>0.(1)当x=1时,函数f(x)取得极小值-2,求函数f(x)的极大值;(2)设定义在D上的函数y=h(x)在点P(x0,h(x0))处的切线方程为l:y=g (x ),当x ≠x 0时,若h (x )-g (x )x -x 0>0在D 内恒成立,则称点P 为h (x )的“类优点”.若点(1,f (1))是函数f (x )的“类优点”,求实数a 的取值范围.参考答案专题一 函数、不等式及导数的应用真题体验·引领卷1.{x |-1<x <2} [∵2x 2-x <4=22,∴x 2-x <2,即x 2-x -2<0,解得-1<x <2.]2.⎝ ⎛⎭⎪⎫-12,+∞ [函数f (x )的定义域为⎝ ⎛⎭⎪⎫-12,+∞,令t =2x +1(t >0).因为y =log 5t 在t ∈(0,+∞)上为增函数,t =2x +1在⎝ ⎛⎭⎪⎫-12,+∞上为增函数,所以函数y =log 5(2x +1)的单调增区间为⎝ ⎛⎭⎪⎫-12,+∞.] 3.1 [f (x )为偶函数,则ln(x +a +x 2)为奇函数,所以ln(x +a +x 2)+ln(-x +a +x 2)=0,即ln(a +x 2-x 2)=0,则ln a =0,a =1.]4.9 [∵f (-2)=1+log 24=1+2=3,f (log 212)=2log212-1=6.∴f (-2)+f (log 212)=3+6=9.]5.⎝ ⎛⎭⎪⎫-22,0 [作出二次函数f (x )的图象,对于任意x ∈[m ,m +1],都有f (x )<0,则有⎩⎪⎨⎪⎧f (m )<0,f (m +1)<0,即⎩⎪⎨⎪⎧m 2+m 2-1<0,(m +1)2+m (m +1)-1<0,解得-22<m <0.] 6.(-∞,0)∪(1,+∞) [若0≤a ≤1时,函数f (x )=⎩⎪⎨⎪⎧x 3(x ≤a ),x 2 (x >a )在R 上递增,若a >1或a <0时,由图象知y =f (x )-b 存在b 使之有两个零点,故a ∈(-∞,0)∪(1,+∞).]7.-10 [因为函数f (x )是周期为2的函数,所以f (-1)=f (1)⇒-a+1=b +22,又f ⎝ ⎛⎭⎪⎫12=f ⎝ ⎛⎭⎪⎫32=f ⎝ ⎛⎭⎪⎫-12⇒12b +232=-12a +1,联立列成方程组解得a =2,b =-4,所以a +3b =2-12=-10.]8.(-5,0)∪(5,+∞) [由已知得f (0)=0,当x <0时,f (x )=-f (-x )=-x 2-4x ,因此f (x )=⎩⎪⎨⎪⎧x 2-4x ,x ≥0,-x 2-4x ,x <0,不等式f (x )>x 等价于⎩⎪⎨⎪⎧x ≥0,x 2-4x >x 或⎩⎪⎨⎪⎧x <0,-x 2-4x >x , 解得:x >5或-5<x <0.]9.[e ,7] [由题意知⎩⎨⎧a +b ≤4c ,3a +b ≥5c ,c ln b -a ≥c ln c ⇒b ≥c e ac .作出可行域(如图所示).由⎩⎪⎨⎪⎧a +b =4c ,3a +b =5c ,得a =c 2,b =72c . 此时⎝ ⎛⎭⎪⎫b a max =7. 由⎩⎨⎧a +b =4c ,b =c e a c ,得a =4c e +1, b =4c e e +1.此时⎝ ⎛⎭⎪⎫b a min =4c ee +14c e +1=e. 所以b a ∈[e ,7].]10.4 [令h (x )=f (x )+g (x ),则h (x )=⎩⎪⎨⎪⎧-ln x ,0<x ≤1,-x 2+ln x +2,1<x <2,x 2+ln x -6,x ≥2,当1<x <2时,h ′(x )=-2x +1x =1-2x 2x <0,故当1<x <2时h (x )单调递减,在同一坐标系中画出y =|h (x )|和y =1的图象如图所示.由图象可知|f (x )+g (x )|=1的实根个数为4.]11.解 (1)由题意知,点M ,N 的坐标分别为(5,40),(20,2.5).将其分别代入y =a x +b,得⎩⎨⎧a 25+b=40,a 400+b=2.5,解得⎩⎪⎨⎪⎧a =1 000,b =0. (2)①由(1)知,y =1 000x 2(5≤x ≤20),则点P 的坐标为⎝ ⎛⎭⎪⎫t ,1 000t 2,设在点P 处的切线l 交x ,y 轴分别于A ,B 两点,y ′=-2 000x 3,则l 的方程为y -1 000t 2=-2 000t 3(x -t ),由此得A ⎝ ⎛⎭⎪⎫3t 2,0,B ⎝ ⎛⎭⎪⎫0,3 000t 2. 故f (t )=⎝ ⎛⎭⎪⎫3t 22+⎝ ⎛⎭⎪⎫3 000t 22=32t 2+4×106t 4,t ∈[5,20]. ②设g (t )=t 2+4×106t 4,则g ′(t )=2t -16×106t 5.令g ′(t )=0,解得t =10 2.当t ∈(5,102)时,g ′(t )<0,g (t )是减函数;当t ∈(102,20)时,g ′(t )>0,g (t )是增函数.从而,当t =102时,函数g (t )有极小值,也是最小值,所以g (t )min =300,此时f (t )min =15 3.答:当t =102时,公路l 的长度最短,最短长度为153千米.12.(1)证明 f ′(x )=m (e mx -1)+2x .若m ≥0,则当x ∈(-∞,0)时,e mx -1≤0,f ′(x )<0;当x ∈(0,+∞)时,e mx -1≥0,f ′(x )>0.若m <0,则当x ∈(-∞,0)时,e mx -1>0,f ′(x )<0;当x ∈(0,+∞)时,e mx -1<0,f ′(x )>0.所以,f (x )在(-∞,0)上单调递减,在(0,+∞)上单调递增.(2)解 由(1)知,对任意的m ,f (x )在[-1,0]上单调递减,在[0,1]上单调递增,故f (x )在x =0处取得最小值.所以对于任意x 1,x 2∈[-1,1]时,|f (x 1)-f (x 2)|≤e -1的充要条件是⎩⎪⎨⎪⎧f (1)-f (0)≤e -1,f (-1)-f (0)≤e -1,即⎩⎪⎨⎪⎧e m -m ≤e -1,e -m +m ≤e -1.① 设函数g (t )=e t -t -e +1,则g ′(t )=e t -1.当t <0时,g ′(t )<0;当t >0时,g ′(t )>0.故g (t )在(-∞,0)上单调递减,在(0,+∞)上单调递增.又g (1)=0,g (-1)=e -1+2-e<0,故当t ∈[-1,1]时,g (t )≤0. 当m ∈[-1,1]时,g (m )≤0,g (-m )≤0,即①式成立;当m >1时,由g (t )的单调性,g (m )>0,即e m -m >e -1;当m <-1时,g (-m )>0,即e -m +m >e -1.综上,m 的取值范围是[-1,1].13.解 (1)f ′(x )=3x 2+2ax ,令f ′(x )=0,解得x 1=0,x 2=-2a 3.当a =0时,因为f ′(x )=3x 2≥0,所以函数f (x )在(-∞,+∞)上单调递增;当a >0时,x ∈⎝ ⎛⎭⎪⎫-∞,-2a 3∪(0,+∞)时,f ′(x )>0,x ∈⎝ ⎛⎭⎪⎫-2a 3,0时,f ′(x )<0,所以函数f (x )在⎝⎛⎭⎪⎫-∞,-2a 3,(0,+∞)上单调递增,在⎝ ⎛⎭⎪⎫-2a 3,0上单调递减; 当a <0时,x ∈(-∞,0)∪⎝ ⎛⎭⎪⎫-2a 3,+∞时,f ′(x )>0,x ∈⎝ ⎛⎭⎪⎫0,-2a 3时,f ′(x )<0,所以函数f (x )在(-∞,0),⎝ ⎛⎭⎪⎫-2a 3,+∞上单调递增,在⎝ ⎛⎭⎪⎫0,-2a 3上单调递减. (2)由(1)知,函数f (x )的两个极值为f (0)=b ,f ⎝ ⎛⎭⎪⎫-2a 3=427a 3+b ,则函数f (x )有三个零点等价于f (0)·f ⎝ ⎛⎭⎪⎫-2a 3=b ⎝ ⎛⎭⎪⎫427a 3+b <0, 从而⎩⎨⎧a >0,-427a 3<b <0或⎩⎨⎧a <0,0<b <-427a 3.又b =c -a ,所以当a >0时,427a 3-a +c >0或当a <0时,427a 3-a+c <0.设g (a )=427a 3-a +c ,因为函数f (x )有三个零点时,a 的取值范围恰好是(-∞,-3)∪⎝ ⎛⎭⎪⎫1,32∪⎝ ⎛⎭⎪⎫32,+∞, 则在(-∞,-3)上g (a )<0,且在⎝ ⎛⎭⎪⎫1,32∪⎝ ⎛⎭⎪⎫32,+∞上g (a )>0均恒成立.从而g (-3)=c -1≤0,且g ⎝ ⎛⎭⎪⎫32=c -1≥0,因此c =1. 此时,f (x )=x 3+ax 2+1-a =(x +1)[x 2+(a -1)x +1-a ],因函数有三个零点,则x 2+(a -1)x +1-a =0有两个异于-1的不等实根,所以Δ=(a -1)2-4(1-a )=a 2+2a -3>0,且(-1)2-(a -1)+1-a ≠0,解得a ∈(-∞,-3)∪⎝ ⎛⎭⎪⎫1,32∪⎝ ⎛⎭⎪⎫32,+∞.综上c =1. 经典模拟·演练卷1.(0,1] [要使函数f (x )=ln x +1-x 有意义,则⎩⎪⎨⎪⎧x >0,1-x ≥0,解得0<x ≤1,即函数定义域是(0,1].]2.[1,+∞) [根据复合函数的单调性及对数函数的定义域求解.因为y =log 2(ax -1)在(1,2)上单调递增,所以u =ax -1在(1,2)单调递增,且恒大于0,即⎩⎪⎨⎪⎧a >0,a -1≥0⇒a ≥1.] 3.-3+1 [∵f (x )是在R 上的周期为2的奇函数,∴f ⎝ ⎛⎭⎪⎫2 0152=f ⎝⎛⎭⎪⎫1 007+12=f ⎝ ⎛⎭⎪⎫2×503+32=f ⎝ ⎛⎭⎪⎫32=f ⎝ ⎛⎭⎪⎫-12=-f ⎝ ⎛⎭⎪⎫12. 又当x ∈(0,1)时,f (x )=3x -1,∴f ⎝ ⎛⎭⎪⎫2 0152=-f ⎝ ⎛⎭⎪⎫12=-(312-1)=-3+1.] 4.8 [∵a ∥b ,∴3(y -1)+2x =0,即2x +3y =3.∵x >0,y >0,∴3x +2y =⎝ ⎛⎭⎪⎫3x +2y ·13(2x +3y ) =13⎝ ⎛⎭⎪⎫6+6+9y x +4x y ≥13(12+2×6)=8, 当且仅当3y =2x 时取等号.∴当x =34且y =12时,3x +2y 取得最小值8.]5.(-1,2) [依题意得,函数f (x )是R 上的增函数,且f (3)=12,因此不等式f (x 2-x +1)<12等价于x 2-x +1<3,即x 2-x -2<0,由此解得-1<x <2.因此,不等式f (x 2-x +1)<12的解集是(-1,2).]6.(0,1) [f ′(x )=3x 2-3a =3(x 2-a ).当a ≤0时,f ′(x )>0,∴f (x )在(0,1)内单调递增,无最小值.当a >0时,f ′(x )=3(x -a )(x +a ).当x ∈(-∞,-a )和(a ,+∞)时,f (x )单调递增;当x ∈(-a ,a )时,f (x )单调递减, 所以当a <1,即0<a <1时,f (x )在(0,1)内有最小值.]7.⎝ ⎛⎭⎪⎫23,+∞ [作不等式组表示的平面区域(如图),依题意,直线x -2y =2与平面区域有公共点.如图,直线x =m 与y =-m 交于(m ,-m ),把(m ,-m )代入x -2y=2得m =23,结合图形得m >23.]8.⎣⎢⎡⎦⎥⎤-14,1 [当x ≤1时,f (x )=-x 2+x =-⎝ ⎛⎭⎪⎫x -122+14≤14,当x >1时,f (x )=log 13x <0,∴f (x )的最大值为14, 因此原不等式为14≥m 2-34m ,解之得-14≤m ≤1.]9.(1,+∞) [函数f (x )有三个零点等价于方程1x +2=m |x |有且仅有三个实根.∵1x +2=m |x |⇔1m =|x |(x +2),作函数y =|x |(x +2)的图象,如图所示,由图象可知m 应满足0<1m <1,故m >1.]10.4 [若x =0,则不论a 取何值,f (x )≥0显然成立;当x >0时,即x ∈(0,1]时,f (x )=ax 3-3x +1≥0可化为a ≥3x 2-1x 3.令g (x )=3x 2-1x 3,则g ′(x )=3(1-2x )x 4, 所以g (x )在区间⎝⎛⎦⎥⎤0,12上单调递增, 在区间⎣⎢⎡⎦⎥⎤12,1上单调递减. 因此g (x )max =g ⎝ ⎛⎭⎪⎫12=4,从而a ≥4. 当x <0时,即x ∈[-1,0)时,同理a ≤3x 2-1x 3.g (x )在区间[-1,0)上单调递增,所以g (x )min =g (-1)=4,从而a ≤4,综上可知a =4.]11.解 (1)设扇环的圆心角为θ,则30=θ(10+x )+2(10-x ),所以θ=10+2x 10+x. (2)花坛的面积为12θ(102-x 2)=(5+x )(10-x )=-x 2+5x +50(0<x <10).装饰总费用为9θ(10+x )+8(10-x )=170+10x ,所以花坛的面积与装饰总费用的比y =-x 2+5x +50170+10x=-x 2-5x -5010(17+x ), 令t =17+x ,则y =3910-110⎝ ⎛⎭⎪⎫t +324t ≤310, 当且仅当t =18时取等号,此时x =1,θ=1211.答:当x =1时,花坛的面积与装饰总费用的比最大.12.解 (1)∵f ′(x )=(x 2-3x +3)·e x +(2x -3)·e x =x ·(x -1)e x ,由f ′(x )>0,得x >1或x <0;由f ′(x )<0,得0<x <1.∴f (x )在(-∞,0],[1,+∞)上单调递增,在(0,1)上单调递减, 若使f (x )在[-2,t ]上为单调函数,则需-2<t ≤0,即t 的取值范围为(-2,0].(2)∵f ′(x 0)e x 0=x 20-x 0,f ′(x 0)e x 0=23(t -1)2,即x 20-x 0=23(t -1)2,令g (x )=x 2-x -23(t -1)2,则问题转化为当1<t <4时,求方程g (x )=x 2-x -23(t -1)2=0在[-2,t ]上的解的个数.∵g (-2)=6-23(t -1)2=-23(t +2)(t -4),g (t )=t (t -1)-23(t -1)2=13(t +2)(t -1),∴当1<t <4时,g (-2)>0且g (t )>0,∵g (0)=-23(t -1)2<0,∴g (x )=0在[-2,t ]上有两解.即满足f ′(x 0)e x 0=23(t -1)2的x 0的个数为2.13.解 (1)由奇函数的对称性可知,我们只要讨论f (x )在区间(-∞,0)的单调性即可.f ′(x )=2+2a 3x 3,令f ′(x )=0,得x =-a .①当a ≤0时,f ′(x )>0,所以f (x )在区间(-∞,0)上单调递增. ②当a >0时,x ∈(-∞,-a ),f ′(x )>0,所以f (x )在区间(-∞, -a )上单调递增.x ∈(-a ,0),f ′(x )<0,所以f (x )在区间(-a ,0)上单调递减.综上所述,当a ≤0时,f (x )单调递增区间为(-∞,0),(0,+∞); 当a >0时,f (x )单调增区间为(-∞,-a ),(a ,+∞),单调减区间为(-a ,0),(0,a ).(2)因为f (x )为奇函数,所以当x >0时,f (x )=-f (-x )=-⎝ ⎛⎭⎪⎫-2x -a 3x 2+1 =2x +a 3x 2-1.①当a <0时,要使f (x )≥a -1对一切x >0成立,即2x +a 3x 2≥a 对一切x >0成立.而当x =-a 2>0时,有-a +4a ≥a ,所以a ≥0,则与a <0矛盾.所以a <0不成立.②当a =0时,f (x )=2x -1>-1=a -1对一切x >0成立,故a =0满足题设要求.③当a >0时,由(1)可知f (x )在(0,a )上是减函数,在(a ,+∞)上是增函数,所以f (x )min =f (a )=3a -1>a -1,所以a >0时也满足题设要求.综上所述,a 的取值范围是[0,+∞).专题过关·提升卷1.(1,1) [∵y ′|x =0=e x |x =0=1.设P (x 0,y 0),则y ′|x =x 0=⎪⎪⎪⎝ ⎛⎭⎪⎫1x ′x =x 0=-1x 20. 依题意,得1·⎝ ⎛⎭⎪⎫-1x 20=-1,且x 0>0,则x 0=1.因此切点P 为(1,1).] 2.-14 [根据对任意t ∈R 都有f (t )=f (1-t )可得f (-t )=f (1+t ),即f (t +1)=-f (t ),进而得到f (t +2)=-f (t +1)=-[-f (t )]=f (t ),得函数y =f (x )的一个周期为2,故f (3)=f (1)=f (0+1)=-f (0)=0, f ⎝ ⎛⎭⎪⎫-32=f ⎝ ⎛⎭⎪⎫12=-14.所以f (3)+f ⎝ ⎛⎭⎪⎫-32的值是0+⎝ ⎛⎭⎪⎫-14=-14.] 3.[1,+∞) [f ′(x )=mx +1x -2≥0对一切x >0恒成立,∴m ≥-⎝ ⎛⎭⎪⎫1x 2+2x . 令g (x )=-⎝ ⎛⎭⎪⎫1x 2+2x ,则当1x =1, 即x =1时,函数g (x )取最大值1.故m ≥1.]4.12或2 [(1)当x 0∈(0,1)时,1<2x 0<2.∴f [f (x 0)]=f (2x 0)=1-log 22x 0=x 0,则x 0=12.(2)当x 0∈(1,2)时,0<1-log 2x 0<1,∴f [f (x 0)]=f (1-log 2x 0)=21-log 2x 0=x 0,则x 0= 2.因此x 0的取值为12或 2.]5.-7 [不等式组⎩⎪⎨⎪⎧x +y ≥-1,2x -y ≤1,y ≤1表示的平面区域如图所示,平移直线y =3x -z ,过点M (-2,1)时,直线的截距最大,此时z 有最小值、∴z min =3×(-2)-1=-7.]6.⎝ ⎛⎭⎪⎫14,+∞ [若使函数f (x )=x 2+2ax +a 2无不动点,则方程x 2+2ax +a 2=x 无实数根,即方程x 2+(2a -1)x +a 2=0无实数根,所以Δ=(2a -1)2-4a 2<0,解得a >14.] 7.1b [∵将y =log a x 的图象向左平移b 个单位,得到函数y =log a (x +b )的图象,∴0<b <1,则y =b t 在R 上是减函数.又t =x 2-2x =(x -1)2-1,x ∈[0,3],∴-1≤t ≤3,因此y =b t的最大值为1b .] 8.b >a >c [因为函数f (x )=2|x -m |-1为偶函数可知,m =0, 所以f (x )=2|x |-1.当x >0时,f (x )为增函数,log 0.53=-log 23, ∴log 25>|-log 0.53|>0,∴b =f (log 25)>a =f (log 0.53)>c =f (2m )=f (0).]9.⎝⎛⎭⎪⎫0,12 [由f (x )=x 22+m x ,得f ′(x )=x -m x 2, 又x 0是f (x )的极值点,∴f ′(x 0)=0,解之得x 0=3m ,因此x 0f (x 0)-x 30=x 302+m -x 30=m 2, 所以m 2>m 2,解之得0<m <12.]10.⎝⎛⎭⎪⎫-1,-12 [在同一坐标系内作函数y =g (x )与y =φ(x )的图象,依题意知,两个函数的图象有两个交点.则直线φ(x )=kx 应介于两直线y =-x 与y =-x 2之间,应有-1<k <-12.]11.⎩⎨⎧⎭⎬⎫x ⎪⎪⎪0<x <14 [易知(ax -1)(x -b )>0的解集为(-1,1), ∴a <0,且1a =-1,b =1,则φ(x )=-1+log 12x ,由φ(x )>1,得log 12x >2,解之得0<x <14.]12.12 [∵m +n =1,且m >0,n >0,∴1m +16n =(m +n )⎝ ⎛⎭⎪⎫1m +16n =17+n m +16m n ≥17+2n m ·16m n =25. 当且仅当n m =16m n ,即n =4m 时,等号成立.故1m +16n 取得最小值时,应有n =4m ,从而m =15,n =45,又y =x α过点P ⎝ ⎛⎭⎪⎫m ,54n , ∴54n =m α,即5m =m α,则51-α=5,故α=12.]13.(-∞,0) [令F (x )=g (x )e x-1,则F ′(x )=g ′(x )e x -e x g (x )(e x )2=[g ′(x )-g (x )]·1e x . ∵g ′(x )-g (x )<0,∴F ′(x )<0,则函数F (x )在(-∞,+∞)上是减函数.又函数y =g (x )的图象关于直线x =2对称,∴g (0)=g (4)=1,从而F (0)=g (0)e 0-1=0.故F (x )>0⎝ ⎛⎭⎪⎫即g (x )e x >1的解集为(-∞,0).] 14.⎝ ⎛⎭⎪⎫0,12 [作出函数y =f (x )在[-3,4]上的图象,f (-3)=f (-2)=f (-1)=f (0)=f (1)=f (2)=f (3)=f (4)=12,观察图象可得0<a <12.]15.解 (1)f (x )的定义域为(0,+∞),f ′(x )=1x -a .若a ≤0,则f ′(x )>0,所以f (x )在(0,+∞)上单调递增.若a >0,则当x ∈⎝ ⎛⎭⎪⎫0,1a 时,f ′(x )>0;当x ∈⎝ ⎛⎭⎪⎫1a ,+∞时, f ′(x )<0.所以f (x )在⎝ ⎛⎭⎪⎫0,1a 上单调递增,在⎝ ⎛⎭⎪⎫1a ,+∞上单调递减. 综上,当a ≤0时,f (x )在(0,+∞)上单调递增;当a >0时,f (x )在⎝ ⎛⎭⎪⎫0,1a 上单调递增,在⎝ ⎛⎭⎪⎫1a ,+∞上单调递减. (2)由(1)知,当a ≤0时,f (x )在(0,+∞)上无最大值;当a >0时,f (x )在x =1a 处取得最大值,最大值为f ⎝ ⎛⎭⎪⎫1a =ln ⎝ ⎛⎭⎪⎫1a +a ⎝ ⎛⎭⎪⎫1-1a =-ln a +a -1. 因此f ⎝ ⎛⎭⎪⎫1a >2a -2等价于ln a +a -1<0. 令g (a )=ln a +a -1,则g (a )在(0,+∞)上单调递增,g (1)=0.于是,当0<a <1时,g (a )<0;当a >1时,g (a )>0.因此,a 的取值范围是(0,1).16.解 (1)令y =0,得kx -120(1+k 2)x 2=0,由实际意义和题设条件知x >0,k >0,故x =20k 1+k 2=20k +1k≤202=10, 当且仅当k =1时取等号.所以炮的最大射程为10千米.(2)因为a >0,所以炮弹可击中目标⇔存在k >0,使3.2=ka -120(1+k 2)a 2成立⇔关于k 的方程a 2k 2-20ak +a 2+64=0有正根⇔判别式Δ=(-20a )2-4a 2(a 2+64)≥0⇔a ≤6.所以当a 不超过6千米时,可击中目标.17.(1)解 ∵f (x )=x 22-k ln x ,定义域为(0,+∞),且k >0.∴f ′(x )=x -k x =x 2-k x .令f ′(x )=0,得x =k (负值舍去).f (x )与f ′(x )在区间(0,+∞)上的变化情况如下表:所以,f (x )的单调递减区间是(0,k ),单调递增区间是(k ,+∞),f (x )在x =k 处取得极小值f (k )=k (1-ln k )2. (2)证明 由(1)知,f (x )在区间(0,+∞)上的最小值为f (k )=k (1-ln k )2. 因为f (x )存在零点,所以k (1-ln k )2≤0,从而k ≥e , 当k =e 时,f (x )在区间(1,e)上单调递减,且f (e)=0,所以x =e 是f (x )在区间(1,e]上的唯一零点.当k >e 时,f (x )在区间(0,e)上单调递减,且f (1)=12>0,f (e)=e -k 2<0,所以f (x )在区间(1,e]上仅有一个零点.综上可知,若f (x )存在零点,则f (x )在区间(1,e]上仅有一个零点.18.解 (1)在Rt △AMN 中,依题意,得9x =MK MN ,3AM =NK MN ,所以9x +3AM =1,则AM =3x x -9. 所以MN =AM 2+AN 2=x 2+9x 2(x -9)2. 当点N 与点B 重合时,AM 取最小值307;当点M 与点D 重合时,AN取最小值10.∴307≤AM ≤30,且10≤AN ≤30,因此307≤3x x -9≤30且10≤x ≤30,解之得10≤x ≤30. 所以S =916⎣⎢⎡⎦⎥⎤x 2+9x 2(x -9)2,其定义域为[10,30]. (2)根据题设条件,要使液晶广告屏的造价最低,只需广告屏的面积S 最小.设S =f (x )=916⎣⎢⎡⎦⎥⎤x 2+9x 2(x -9)2(10≤x ≤30),则 f ′(x )=916⎣⎢⎡⎦⎥⎤2x +18x (x -9)2-2(x -9)·9x 2(x -9)4 =9x [(x -9)3-81]8(x -9)3. 令f ′(x )=0,得x =9+333,当10≤x <9+333时,f ′(x )<0;当9+333<x ≤30时,f ′(x )>0,∴当x =9+333时,S 取得最小值,即液晶广告屏幕面积最小.故当x =9+333时,液晶广告屏幕的造价最低.19.(1)解 f ′(x )=2x e x +(1+x 2)e x =(x 2+2x +1)e x =(x +1)2e x , ∀x ∈R ,f ′(x )≥0恒成立,∴f (x )的单调增区间为(-∞,+∞),无单调递减区间.(2)证明 ∵f (0)=1-a ,f (a )=(1+a 2)e a -a ,∵a >1,∴f (0)<0,f (a )>2a e a -a >2a -a =a >0,∴f (0)·f (a )<0,∴f (x )在(0,a )上有一零点,又函数f (x )在(-∞,+∞)上是增函数.∴f (x )在(0,a )上仅有一个零点,∴f (x )在(-∞,+∞)上仅有一个零点,(3)证明 f ′(x )=(x +1)2e x ,设P (x 0,y 0),则f ′(x 0)=e x 0(x 0+1)2=0, ∴x 0=-1,把x 0=-1,代入y =f (x )得y 0=2e -a ,∴k OP =a -2e .f ′(m )=e m (m +1)2=a -2e , 令g (m )=e m -(m +1),g ′(m )=e m -1.令g ′(x )>0,则m >0,∴g (m )在(0,+∞)上增.令g ′(x )<0,则m <0,∴g (m )在(-∞,0)上减.∴g (m )min =g (0)=0.∴e m -(m +1)≥0,即e m ≥m +1.∴e m (m +1)2≥(m +1)3,即a -2e ≥(m +1)3.∴m +1≤3a -2e ,即m ≤3a -2e -1.20.解 (1)依题意,f (1)=1-(a +2)=-2,得a =1,此时f ′(x )=2x -3+1x =(x -1)(2x -1)x(x >0). 令f ′(x )=0,得x =1或x =12, 当0<x <12或x >1时,f ′(x )>0;当12<x <1时,f ′(x )<0.所以f (x )在⎝ ⎛⎭⎪⎫0,12与(1,+∞)上单调递增, 在⎝ ⎛⎭⎪⎫12,1上单调递减,因此,当x =12时,f (x )有极大值-54+ln 12.(2)由f (x )=x 2-(a +2)x +a ln x (x >0),得f ′(x )=2x -(a +2)+a x =(2x -a )(x -1)x ,∴f ′(1)=0,且f (1)=-a -1.所以f (x )在点(1,f (1))处的切线方程为g (x )=-a -1.∵点(1,f (1))是函数f (x )在(0,+∞)内的“类优点”,令F (x )=f (x )-g (x )=x 2-(a +2)x +a ln x +a +1,常数a >0, 则当x ∈(0,1)∪(1,+∞)时,恒有F (x )x -1>0(*)又F (1)=0,且F ′(x )=2x -(a +2)+a x =(2x -a )(x -1)x (x >0).令F ′(x )=0,得x =1或x =a 2(a >0).①当a =2时,F ′(x )≥0,F (x )在(0,+∞)上是增函数. ∴0<x <1时,F (x )<F (1)=0;当x >1时,F (x )>F (1)=0. 从而当x ≠1时,恒有F (x )x -1>0成立.②当a >2时,由F ′(x )<0,得1<x <a 2,∴函数F (x )在⎝ ⎛⎭⎪⎫1,a 2上是减函数,F (x )<F (1)=0,∴1<x <a 2时,F (x )x -1>0不成立.③当0<a <2时,由F ′(x )<0,得a 2<x <1,∴函数F (x )在⎝ ⎛⎭⎪⎫a 2,1上是减函数,31 ∴x ∈⎝ ⎛⎭⎪⎫a 2,1时,F (x )>F (1)=0,F (x )x -1>0不成立. 综上可知,若点(1,f (1))是函数f (x )的“类优点”,则实数a =2.。