15万吨合成氨毕业设计
- 格式:doc
- 大小:716.50 KB
- 文档页数:67
年产15万吨合成氨设备计算年产15万吨合成氨设备计算 1第三章设备计算 1 3.1.2 中变催化床层触媒用量 1 3.1.12 引出通道管8 3.3.3 传热系数计算13第四章汇总164.2 热量汇总表:174.3 主要设备一览表18 结论19 致谢20 参考文献21第三章 设备计算3.1 中变炉的计算3.1.1 触媒用量的计算根据文献《合成氨厂工艺和设备计算》可知: Vr=T 0·V 0 式中 Vr ——触媒体积,N m 3T 0 ——标准接触时间,h· m 3 / N m 3 V 0——通过触媒的气体体积,N m 3 标准接触时间的计算公式[13]如下:⎥⎦⎤⎢⎣⎡+----+---⋅=q u q u q u Wn q u W q k K n ln 22ln T p 0 式中:W=K p-1;U=K p (A+B)+(C+D); V=K P AB-CD; q=W V U 42- K p ——反应平衡常数; k ——反应速度常数;n ——变换的CO 的量,摩尔分率;其中A 、B 、C 、D 分别代表CO 、H 2O 、CO 2及H 2的起始浓度 3.1.2 中变催化床层触媒用量 计算基准:18.94T/h 已知条件:中变催化床层变换气进口温度为:315℃; 中变催化床层变换气出口温度为:380℃ 平均温度为:(315℃+380℃)/2=347.5℃进中变炉催化剂干气量:2870.5×18.94=54367.27N m 3/h 出中变炉催化剂湿气量:4116.267×18.94=77962.097N m 3/h由《合成氨厂工艺和设备计算》得到在347.5℃时反应速度常数k=3600,加压时取校正系数:2.8,则:k=3600×2.8=10080. 进中变炉变换气中N 2%=16.42%则:V 0=(18940÷17)×22.4/(0.1642×2)=75993.408 N m 3/h 出中温变换炉的变换气中CO %=2.28%出中变炉的变换气湿组分的含量(%):如表2.5所示。
年产20万吨合成氨厂工艺设计摘要氨的工业生产主要是利用氮气和氢气通过催化剂的催化而得到。
本设计是年产20万吨合成氨厂的工艺设计,但由于合成氨的整个生产工艺较长,细节问题较多,鉴于设计时间的紧迫,本设计主要对合成氨的主要工段——合成工段进行了工艺计算、设备选型,并绘制了全厂平面布置图、合成氨工艺流程示意图、合成工段带控制点工艺流程图、合成工段物料流程图、合成车间的立面图和平面图。
关键词:氨,催化剂,工艺,图Ammonia Plant Process of The Technological Designof 200,000 t Ammonia Per YearABSTRACTThe industrial production of ammonia is used mainly nitrogen and hydrogen through the catalyst to be obtained. The design of the annual output of 200,000 tons of synthetic ammonia plant process design, but because of the ammonia production process is longer, more details, in view of the urgency of the design time. The main design of the main section of ammonia-synthesis section of the technology, equipment selection, and the mapping of the entire plant layout map Ammonia Process Chart, Synthesis Process control point with the process flow chart Synthesis Process flowchart materials, synthetic workshop elevation and floor plans.KEY WORDS:ammonia ,catalyst ,technology ,chart目录摘要 (I)ABSTRACT (II)1 工程设计背景与发展状况 (1)1.1工程设计的背景 (1)1.2我国合成氨产业概况 (1)1.3我国合成氨需求现状及设计规模 (1)2 工程设计条件与总平面布置 (3)2.1工程设计条件 (3)2.1.1 原材料及辅助物料的资源条件 (3)2.1.2 公用工程概述 (3)2.1.3 劳动力资源条件 (3)2.2总平面布置 (3)2.2.1 总平面布置的基本原则 (3)2.2.2 总平面布置概述 (4)3 化工工艺设计 (7)3.1车间组成概述 (7)3.2车间生产综合叙述 (7)3.2.1 合成工段的概况及特点 (7)3.2.2 工作制度 (7)3.2.3 产品的主要技术规格及标准 (8)3.2.4 工艺流程叙述 (8)4 合成工段的工艺计算及设备选型 (10)4.1合成工段设计要求 (10)4.2合成工段物料衡算图 (10)4.3.1 物料衡算 (11)4.3.2 热量衡算 (24)4.3.3 主要设备的计算 (31)4.3.4 主要设备型号一览表 (45)5 安全生产及环境保护 (46)5.1环境保护与综合利用 (46)IV5.2劳动安全卫生 (46)致谢 (48)参考文献 (49)年产20万吨合成氨工厂工艺设计 11工程设计背景与发展状况1.1 工程设计的背景合成氨是化学工业中的一种重要的基础原料。
目录1.前言 (4)2.工艺原理 (4)3.工艺条件 (5)4.工艺流程的确定 (6)5.主要设备的选择说明 (6)6.对本设计的综述 (6)第一章变换工段物料及热量衡算 (8)第一节中变物料及热量衡算 (8)1.确定转化气组成 (8)2.水汽比的确定 (8)3.中变炉一段催化床层的物料衡算 (9)4.中变炉一段催化床层的热量衡算 (11)5.中变炉催化剂平衡曲线 (13)6. 最佳温度曲线的计算 (14)7.操作线计算 (15)8.中间冷淋过程的物料和热量计算 (16)9.中变炉二段催化床层的物料衡算 (17)10.中变炉二段催化床层的热量衡算 (18)第二节低变炉的物料与热量计算 (19)第三节废热锅炉的热量和物料计算 (24)第四节主换热器的物料与热量的计算 (26)第五节调温水加热器的物料与热量计算 (28)第二章设备的计算 (29)1. 低温变换炉计算 (29)2. 中变废热锅炉 (31)参考文献及致谢 (35)前言氨是一种重要的化工产品,主要用于化学肥料的生产。
合成氨生产经过多年的发展,现已发展成为一种成熟的化工生产工艺。
合成氨的生产主要分为:原料气的制取;原料气的净化与合成。
粗原料气中常含有大量的C,由于CO是合成氨催化剂的毒物,所以必须进行净化处理,通常,先经过CO变换反应,使其转化为易于清除的CO2和氨合成所需要的H2。
因此,CO变换既是原料气的净化过程,又是原料气造气的继续。
最后,少量的CO用液氨洗涤法,或是低温变换串联甲烷化法加以脱除。
变换工段是指CO与水蒸气反应生成二氧化碳和氢气的过程。
在合成氨工艺流程中起着非常重要的作用。
目前,变换工段主要采用中变串低变的工艺流程,这是从80年代中期发展起来的。
所谓中变串低变流程,就是在B107等Fe-Cr系催化剂之后串入Co-Mo 系宽温变换催化剂。
在中变串低变流程中,由于宽变催化剂的串入,操作条件发生了较大的变化。
一方面入炉的蒸汽比有了较大幅度的降低;另一方面变换气中的CO含量也大幅度降低。
合成氨毕业设计论文【篇一:毕业论文合成氨】目录前言 (2)第一章总论 (3)1.1生产方法论述 (4)1.2氨合成催化剂的使用 (5)第二章氨合成工艺 (5)2.1氨合成工艺流程叙述 (5)2.2主要设备特点 (6)2.2.1氨合成塔(r1801) (7)第三章冷冻工艺流程说明 (8)3.1冷冻工艺流程叙述及简图 (9)第四章自动控制 (10)4.1控制原则 (10)4.2 仪表选型 (10)第五章安全技术与节能 (11)5.1 生产性质及消防措施 (11)5.1.1生产性质 (11)5.1.2消防措施 (11)5.2节能措施 (12)参考文献 (13)致谢 (14)前言在常温常压下,氨是有强烈刺激臭味的无色气体,氨有毒,且易燃易爆,空气中含氨0.5%,在很短时间内即能使人窒息而死,含氨0.2%,在几秒钟内灼烧皮肤起泡,含氨0.07%,即会损伤眼睛。
氨的燃点150℃,在空气中的爆炸范围为16%~25%(体积)。
在标准状态下氨的密度0.771克/升,沸点-33.35℃,熔点(三相点)-77.75℃,气态氨加热到132.4℃以上时,在任何压力下都不会变成液态,此温度称为氨的临界温度。
氨极易溶于水,在常温常压下1升水约可溶解700升氨,氨溶于水时放出大量的热氨易与许多物质发生反应,例如:在催化剂的作用下能与氧反应生成no与co2反应生成氨基甲酸铵,然后脱水生成尿素。
4nh3?5o2?4no?6h2o2nh3?co2?nh4coonh2 (氨基甲酸铵)nh4coonh2?co(nh2)2?h2o氨还可与一些无机酸(如硫酸、硝酸、磷酸)反应,生成硫酸铵、硝酸铵、磷酸铵等。
除了化肥工业以外,氨在工业上主要用来制造炸药和化学纤维及塑料。
氨还可以用作制冷剂,在冶金工业中用来提炼矿石中的铜、镍等金属,在医药工业中用做生产磺胺类药物、维生素、蛋氨酸和其他氨基酸等。
氨是在1754年由普利斯特里(priestly)加热氯化铵与石灰而制得。
文献综述毕业论文名称:年产25万吨合成氨精制工段工艺设计院系:化生系专业年级09化工班姓名:蒋晓霄指导教师:前言氨是重要的无机化工产品之一,在国民经济中占有重要地位,特别是对农业生产有重要意义。
除液氨可直接作为肥料外,农业上使用的氮肥,例如尿素、硝酸铵、磷酸铵、氯化铵以及各种含氮复合肥,都是以氨为原料的。
同时,氨也广泛用于化学纤维和塑料等工业中,亦常用作制冷剂。
世界每年合成氨产量已达到1亿吨以上,其中约有80%的氨用来生产化学肥料,20%作为其它化工产品的原料。
合成氨生产源于20世纪初德国等人的研究。
1912年在德国建成了日产30t的合成氨工厂。
我国合成氨生产始于20世纪30年代,新中国成立后,化肥工业得到迅速发展,70年代后,随着石油天然气工业的迅速发展和农业发展的需要,相继从外国引进大型合成氨装置,现在已形成大中小合成氨厂相结合的工艺布局。
从技术上讲,我国合成氨工业已迈进了世界先进行列,生产操作高度自动化,生产规模大型化,热能综合利用合理,技术经济指标先进。
在原料方面,已从单一煤炭发展到煤粉、天然气、轻油、重油多种原料。
我国自行研究和制造的各种催化剂,已具备良好的性能。
随着工业的发展,我国的合成氨将有更大的发展。
1 合成氨概述1.1 氨的性质1.1.1 氨的物理性质氨为无色气体,具特有的强烈刺激性气味。
密度0.771g/L(标准状况),比空气轻。
沸点-33.35℃,高于同族氢化物PH3、AsH3,易液化。
熔点-77.7℃。
液氨密度0.7253g/cm3,气化热大,达23.35kJ/mol,是常用的致冷剂。
极易溶于水,20℃时1体积水能溶解702体积NH3。
充满NH3的烧瓶做喷泉实验后得到的稀氨水约为0.045mol/L。
用水吸收NH3时要用“倒放漏斗”装置以防倒吸。
液氨是极性分子,似水,可发生电离。
也能溶解一些无机盐如NH4NO3、AgI。
空气中允许NH3最高含量规定为0.02mg/L,若达0.5%则强烈刺激粘膜,引起眼睛和呼吸器官的症状。
第一章总论一、指导思想化工设计是政治、经济和技术紧密结合的一门科学技术。
化工设计在新厂建设,老厂改造挖潜中具有极其重要的作用,也可以说设计是生产的先导,是科研成果转化为工业化大生产的必经途径。
因此,设计质量的好坏,对化工行业的发展影响极大,一定要在思想上充分的重视。
有关化工设计方面的知识和技能,不仅对专门从事化工设计的人员需要学习和掌握,而且对从事化工生产、科学实验和技术管理方面的人员,也同样需要具备。
因此,化工工艺专业的学员一定要掌握化工设计方面的基础知识。
从教学出发对学生进行化工设计方面的基本训练,有助于培养学生综合运用理论知识,联系生产实际,提高分析和解决问题的能力,有助于提高学生的运算技巧和设计绘图的能力,当然设计能力的培养和深化,有赖于更多的实践,只有通过实践,积累经验,才能培养思维、想象和创造的能力,才能促进设计能力的不断提高。
总之,经过初步训练,具有一定的化工工艺设计能力后,在生产、基建、科研和管理等方面,一定会发挥出重要的作用。
二、设计依据1、毕业设计是以设计者深入现场收集的数据,掌握所设计项目的生产程序。
2、以毕业设计任务书和化工工艺专业课本及参考书为依据。
三、设计规模及操作制度1、设计规模:年产15万吨合成氨装置。
2、操作制度:根据化工生产的特点,采用四班三倒轮换操作。
3、生产制度:根据设备的大、中、小修及偶然事故的发生,年生产日一般为330天左右。
大修:20天 3年|次(一般)中修:7天 1年|次小修:1~5天(经常)4、发展规划:向年产30万吨合成氨发展。
四、主要原料来源、数量及组成主要原料气为新鲜气:1、生产原料:合成氨用的氢氮混合气规格:压力为320大气压(表压)成份:按气体体积百分数H2=74.63% N2=24.87% (CH4+A r)=0.5%2、消耗定额氢氮混合气:2800m3∕吨氨河水: 62吨∕吨氨锅炉用化学净水:7.5吨∕吨氨电:130千瓦∕小时吨氨五、辅助原料来源、组成及数量来源:来自水、气及其它副产品。
十五万吨合成氨工艺初步设计说明书项目名称:二十万吨合成氨工艺设计2013.01目录前言 (4)第一章总论 (5)1.1项目建设依据 (5)1.2项目建设范围 (5)1.3主要设计原则 (5)1.4设计特点 (6)1.5设计标准 (6)第二章项目可行性论证 (7)2.1项目背景 (7)2.1.1研究背景 (7)2.1.2项目建设的意义 (7)2.2 市场预测 (7)2.2.1国内外市场现状与预测 (7)2.2.2价格分析 (8)2.3.原料路线 (8)2.3.1原料选择 (8)2.3.2原料来源 (9)2.4产品结构 (10)第三章工艺技术方案 (11)3.1工艺技术方案的选择 (11)3.2生产工艺简介 (11)3.2.1工艺简介 (11)3.3.2项目产品及建设规模 (11)第四章环境保护 (12)4.1环保治理措施 (12)4.1.1“三废”处理 (12)4.1.2噪声处理 (12)4.1.3绿化情况 (13)4.2环境可行性及评价结论 (13)第五章通风和空气调节 (14)5.1设计依据 (14)5.2设计范围 (14)5.3设计方案 (14)5.3.1通风要求 (14)5.3.2通风设计 (15)第六章电气 (16)6.1设计原则 (16)6.2防雷、防静电 (16)第七章消防 (17)7.1 消防系统 (17)7.2消防实施 (17)7.2.1室内消防设施 (17)7.2.2室外消防设施 (18)7.2.3管材及接口 (18)7.3消防排水 (18)7.3.1排水方式 (18)7.3.2管材及接口 (18)第八章劳动卫生安全 (19)8.1职业安全卫生事故分类 (19)8.1.1火灾、爆炸 (19)8.1.2噪声及振动 (19)8.1.3机械伤害 (19)8.1.4触电事故 (19)8.1.5高空坠落 (19)8.2职业安全卫生主要设施 (19)第九章储运与物流 (21)9.1原料仓储 (21)9.2产品仓储 (21)9.3包装及装卸搬运方案 (21)9.4运输过程注意事项 (21)9.4.1运输事故预防措施 (21)9.4.2 产品泄漏应急处理方案 (22)9.4.3 已造成损害的处理方案 (22)前言合成氨与硫酸和纯碱一样是世界上较为重要的基础化学品之一。
年产8万吨合成氨合成工段的设计设计说明书1 总论氨是最为重要的基础化工产品之一,其产量居各种化工产品的首位。
同时也是能源消耗的大户,世界上大约有10 %的能源用于生产合成氨。
氨主要用于农业,合成氨是氮肥工业的基础,氨本身是重要的氮素肥料,其他氮素肥料也大多是先合成氨、再加工成尿素或各种铵盐肥料,这部分约占70 %的比例,称之为“化肥氨”;同时氨也是重要的无机化学和有机化学工业基础原料,用于生产铵、胺、染料、炸药、制药、合成纤维、合成树脂的原料,这部分约占30 %的比例,称之为“工业氨”。
世界合成氨技术的发展经历了传统型蒸汽转化制氨工艺、低能耗制氨工艺、装置单系列产量最大化三个阶段。
根据合成氨技术发展的情况分析, 未来合成氨的基本生产原理将不会出现原则性的改变, 其技术发展将会继续紧密围绕“降低生产成本、提高运行周期, 改善经济性”的基本目标, 进一步集中在“大型化、低能耗、结构调整、清洁生产、长周期运行”等方面进行技术的研究开发[1]。
(1> 大型化、集成化、自动化, 形成经济规模的生产中心、低能耗与环境更友好将是未来合成氨装置的主流发展方向。
以Uhde公司的“双压法氨合成工艺”和Kellogg 公司的“基于钌基催化剂KAAP 工艺”,将会在氨合成工艺的大型化方面发挥重要的作用。
氨合成工艺单元主要以增加氨合成转化率(提高氨净值> ,降低合成压力、减小合成回路压降、合理利用能量为主,开发气体分布更加均匀、阻力更小、结构更加合理的合成塔及其内件。
开发低压、高活性合成催化剂, 实现“等压合成”。
(2> 以“油改气”和“油改煤”为核心的原料结构调整和以“多联产和再加工”为核心的产品结构调整,是合成氨装置“改善经济性、增强竞争力”的有效途径。
实施与环境友好的清洁生产是未来合成氨装置的必然和惟一的选择。
生产过程中不生成或很少生成副产物、废物,实现或接近“零排放”的清洁生产技术将日趋成熟和不断完善。
合成氨过程的集散控制系统设计摘要本设计——“合成氨过程的集散控制系统设计”是针对目前合成氨生产的具体要求及集散控制系统(DCS)发展的现状,进行研究与设计,以实现合成氨生产过程自动控制与管理,最终提高企业经济效益为目的。
本文是以我国中大中型氮肥生产企业为背景,天然气为原料气,在分析了合成氨生产过程基本工艺的基础上,主要对合成氨过程中的合成工段进行研究。
此次设计详细介绍了此工段中的氢氮比控制,几乎所有的合成氨装置对氢氮比的控制都存在一定的问题。
氢氮比系统是一个超大时滞系统,大时滞系统的控制问题是过程控制中的难题,超大时滞系统的控制更为困难。
针对上述情况,本文设计了串级加前馈控制系统用于该过程氢氮比在线控制。
本文基于浙大中控的JX—300X系统进行系统组态、界面组态、操作组态。
在SCKey组态软件的环境下完成了系统组态,并对其控制功能进行分析。
DCS组态试验结果表明对于氨合成工段的集散控制系统较常规(经典)控制有明显的优势,此次设计基本成功。
关键词集散控制系统;合成氨工段;氢氮比控制;Distributed Control System Design of SyntheticAmmonia ProcessAbstractThis design –“D istributed Control System Design of Synthetic Ammonia Process”aims at the present situation which the specific request of the present synthetic ammonia production and development of the distributed control system (DCS), conducts the research and the design, realizes the synthetic ammonia industrial automatic control and the management, finally enhances the enterprise economic efficiency is the goal.This article takes our country in the large and middle scale nitrogenous fertilizers production enterprise as a background, and takes the natural gas as the feed gas, based on analyzing in the synthetic ammonia production process basic craft, mainly conducts the research to synthesis construction section of the synthetic ammonia process. The control scheme of H-N ratio in synthesis construction section is in detail presented in this paper. Some problems of controlling the H-N ratio exist in almost all devices of synthetic ammonia production. The system of H-N ratio is a very-large-scale-time delay system. It is a difficult problem to control a large-scale-time delay system in the field of control process and much more difficult to control a very-large-scale-time delay system. In this paper, one method to resolve this tough problem is obtained by Model-Free Control Method (MFC) with a pre-feed. The practice shows that this method works well. In view of the above situation, this article designs the cascade with a feed-forward control system to use H-N ratio to the on-line control.This article which based on “Zhe Da Zhong kong JX-300X” system carries on the system configuration, the interface configuration and the operation configuration. After accomplishing the system configuration in the SCKey configuration software environment, carries on the analysis to its control function.The DCS configuration test result indicates: Distributed control system of the ammonia synthesis construction section is more obvious superiority than the convention (classics) control system , and this design is basically success.目录摘要................................................................ⅠAbstract..............................................................Ⅱ第1章前言..........................................................1 1.1问题的提出及研究目的..........................................1 1.2 合成氨过程发展概况............................................1 1.3 存在的问题及最新发展..........................................2 第2章合成氨生产过程简述及控制需求分析..............................3 2.1合成氨生产过程简述............................................3 2.2合成氨工段的工艺流程..........................................4 2.3控制需求分析...................................................4 第3章控制方案设计及论证.............................................6 3.1氢氮比控制.....................................................6 3.1.1控制对象特性分析..........................................6 3.1.2工艺对氢氮比的控制要求...................................7 3.1.3控制方案设计.............................................8 3.2惰性气体含量控制系统..........................................10 3.3合成塔触媒层温度控制..........................................11 3.4循环气氨冷器出口温度和液位控制.................................12 3.5氨分离器及冷交换器液位控制.....................................13 第4章控制系统总体设计...............................................154.1 JX—300X控制系统简介..........................................15 4.1.1 JX—300X系统结构..........................................15 4.1.2 系统的主要特点............................................16 4.2仪表设备选型.................................................17 4.2.1选择原则...................................................17 4.2.2仪表的选型.................................................20 4.3系统硬件构成...................................................30 4.3.1 控制站的配置.............................................31 4.3.2 I/O卡的配置..............................................31 4.3.3 操作站的配置..............................................32 4.3.4 工程师站配置..............................................32 4.4 系统软件构成..................................................33 第5章系统组态及控制功能的实现....................................35 5.1SCKey组态软件简介...........................................35 5.1.1 集散控制系统组态的定义 (35)5.1.2 SCKey组态软件特点 (35)5.2 总体信息组态 (35)5.2.1 主机设置 (35)5.3 控制站组态.....................................................365.3.1系统I/O组态.............................................37 5.3.2 自定义变量...............................................405.3.3系统控制方案组态...........................................41 5.4 操作站组态...................................................45 5.4.1 系统标准画面组态.........................................45 5.5 控制功能分析..................................................48 第6章结论..........................................................49参考文献............................................................50 谢辞................................................................51第1章前言1.1 问题的提出及研究目的在合成氨工业中,特别是近代大型合成厂的出现,生产技术和工艺过程日趋复杂,对过程自动化提出了更高的要求。
摘要本文主要是合成氨合成工段的设计,主要包括物料计算、热量计算以及设备的选型,生产产品为液氨,生产能力为15万吨液氨/年。
与传统流程相比较,具有节能低耗的特点,通过设计两个串联的氨冷器,在低压下,既减少了动力消耗,又保证了合成塔入口氨含量的要求。
合成塔出口气体经废热锅炉、水冷器冷却至常温,进入氨分离器后部分氨被冷凝并被分离出来,再进入冷凝塔上部的冷交换器冷却后与新鲜气混合,进入氨冷器1冷却至0摄氏度,为降低其负荷进入氨冷器2继续冷却至-15摄氏度使绝大部分氨冷凝下来,并在冷凝塔下部使液氨分离出来,循环气经冷凝塔上的换热器加热至22摄氏度后经循环压缩机补充压力至15MPa后进入合成塔,开始下一个循环。
关键词:合成氨;合成工段;节能低耗AbstractThis article is mainly ammonia synthesis section design, including the calculation of material, heat calculation and equip ment selection, for the production of liquid a mmonia, liquid a mmonia production capacity of 150000 tons / year.Co mpared with the traditional proCess co mpared with energy saving, low consu mption, through the design of the two series of the a mmonia cooler, under low pressure, which reduces power consu mption, and ensures that the synthetic tower entrance a mmonia content require ment.Synthesis tower outlet gas waste heat boiler, water cooler cooling to room temperature, ammonia into ammonia separator after being condensed and separated out again into the condensing tower, the upper part of the cold heat exchanger cooling and fresh gas mixture, into the ammonia cooler 1 is cooled to 0 degrees Celsius, to reduce the load into the ammonia cooler 2 continued cooling to -15 degrees C make most ammonia condensed, and the condensing tower bottom so that the liquid ammonia is separated, circulating gas by condensation tower heat exchanger heating to 22 degrees C after circulating compressor added pressure to 15MPa after entering synthetic tower, the start of the next cycle.Key words: ammonia synthesis; synthesis process; Low energy consumption目录前言 (1)第1章说明书 (2)1.1合成氨的原料组成 (2)1.2合成氨的方法 (2)1.3合成氨的工艺流程 (2)1.3合成氨的机理和反应条件的确定 (4)1.4合成氨的催化剂 (5)第2章原材料及产品主要技术规格 (7)2.1原材料技术规格 (7)2.2氨水产品技术规格 (7)2.3液氨产品技术规格 (7)第3章工艺流程简述 (9)3.1工艺流程图 (9)3.2流程简述 (9)3.3设计规模及特点 (10)第4章物料计算 (11)4.1设计要求 (11)4.2带工作点的工艺流程简图 (11)4.3物料计算 (11)第5章热量衡算 (28)5.1冷交换器热量计算 (28)5.2氨冷凝器热量计算 (30)5.3循环机热量计算 (32)5.4合成塔热量衡算 (33)5.5沸热锅炉热量计算 (34)5.6热交换器热量计算 (35)5.7水冷器热量衡算 (36)5.8氨分离器热量衡算 (37)第6章设备的选型与计算 (38)6.1合成塔催化剂层设计 (38)6.2热锅炉设备工艺计算 (42)6.3热交换器设备工艺计算 (45)6.4水冷器设备工艺计算 (50)6.5冷交换器设备工艺计算 (52)参考文献 (58)致谢 (59)前言氨在国民经济中占有重要地位。