相分离法处理攀钢高炉渣新工艺基础研究
- 格式:pdf
- 大小:233.89 KB
- 文档页数:7
高炉炼铁中渣铁分离技术研究减少渣铁中的杂质含量炼铁过程中,高炉炼铁技术一直是主要的铁矿石还原冶炼方法之一。
然而,高炉炼铁过程中,渣和铁的分离问题一直是一个挑战。
其中,渣铁中的杂质含量是一个严重影响炼铁品质的问题。
本文将探讨高炉炼铁中渣铁分离技术的研究,以减少渣铁中的杂质含量。
一、高炉炼铁过程中渣铁分离问题在高炉炼铁过程中,铁矿石和燃料经过还原反应生成金属铁。
同时,一些杂质元素也存在于铁矿石中,如硫、磷、锰等。
在冶炼过程中,这些杂质元素会被部分还原,并被固定在渣中。
因此,高炉炼铁过程中需要有效地分离渣和铁,减少渣中的杂质含量。
二、渣铁分离技术的研究现状目前,研究学者们一直在寻找各种方法来解决高炉炼铁中的渣铁分离问题。
以下是一些常见的渣铁分离技术:1. 磁选技术磁选技术通过利用渣铁中铁矿石的磁性差异,将铁与渣有效地分离。
这种技术需要使用磁铁或磁场来实现。
2. 重力分离技术重力分离技术利用不同物质的密度差异,通过采用物理或机械设备,使重物质下沉,从而分离渣和铁。
3. 浮选技术浮选技术通过利用物质的表面特性,使一种物质在浮液中浮起,而另一种物质下沉。
这种技术可以用于分离渣和铁。
4. 气浮分离技术气浮分离技术利用气泡在浮液中产生的浮力,将一种物质从另一种物质中分离出来。
这种技术可以用于渣铁分离。
5. 浸出技术浸出技术通过使用溶剂,将需要分离的物质从固体中溶解出来。
这种技术也可以应用于渣铁分离。
以上是一些常见的渣铁分离技术,每种技术都有其优点和局限性。
研究者们正在不断探索创新的渣铁分离技术,以进一步降低渣铁中的杂质含量。
三、减少渣铁中杂质含量的挑战在研究渣铁分离技术的同时,我们也需要面对一些挑战,以减少渣铁中的杂质含量。
1. 操作和成本渣铁分离技术的操作和设备成本是在实际应用中需要考虑的重要因素。
一些高效的技术可能需要更多的经济投入,对实际生产造成一定的影响。
2. 杂质再分布即使通过分离技术成功减少了渣铁中的杂质含量,但在高炉冶炼过程中,杂质的再分布也会产生。
攀枝花高钛型高炉渣综合利用现状攀西地区蕴藏着极其丰富的钒钛磁铁矿,其中含有钛、铁、钒、铬等10多种重要战略资源。
攀枝花长期以来致力于其有价元素的回收利用,由于钒钛磁铁矿的独特性,现有技术和生产工艺只能回收利用其中的铁、钒、钛资源,而钛资源的利用率只有近15%,原矿中大约50%的钛进入了铁精矿,在随后的高炉冶炼过程中流入高炉渣中,形成了攀枝花特有的高钛型高炉渣。
攀枝花市于2001年成立了专业处置高钛型高炉渣的攀枝花市环业冶金渣开发有限责任公司。
至今,产业化开发利用仅限于低附加值的建材产品,而高附加值的提钛综合开发由于技术、经济等原因,尚未实现产业化。
一、攀枝花高钛型高炉渣是放错位置的资源(一)攀枝花高钛型高炉渣资源特性攀枝花高钛型高炉渣化学成分复杂。
主要含有二氧化钛22~25%,二氧化硅22~26%,三氧化二铝16~19%,三氧化二铁0.22~0.44%,氧化钙22~29%和氧化镁7~9%。
影响高钛型高炉渣不能综合利用渣中钛资源的主要原因有两个:一是渣中的钛分散在钙钛矿、富钛透辉石、攀钛透辉石、尖晶石和碳氮化钛等多种含钛矿物相中,嵌布关系复杂,其中50%的钛集中在钙钛矿中;二是分散在高炉渣中的含钛矿物相晶粒非常细小,平均只有10微米左右,采用常规选矿技术分离回收钛非常困难。
(二)高钛型高炉渣开发利用经济效益巨大高炉渣因存量大、有益元素丰富、含钛量高等特点而极具开发利用价值。
攀枝花高炉渣已累计堆积了约5000万吨,目前每年仍以近400多万吨的速度递增。
按5000万吨高炉渣存量计算,其中积累的二氧化钛就高达1000万吨左右,而且每年还有约80多万吨的新增量。
如果能有效提取高炉渣中二氧化钛替代日益减少的金红石钛资源,将为我国钛工业的发展开辟新的原料来源。
高炉渣中还含有大量镓、铬、锰、钪、铝、铁等有价元素,这是一笔可观的二次资源。
(三)高钛型高炉渣开发利用环境效益良好长期堆放、存量巨大的高炉渣已经带来了严重的环境问题。
专题与评论攀钢含钛高炉渣中钛组分的提取及综合利用进展李俊翰邱克辉龚银春(成都理工大学材料科学技术研究所,四川成都,610059)摘 要自20世纪70年代以来,攀钢炼铁产生了大量的含钛高炉渣,其T iO2含量达20%~29%,目前仍以每年300万吨的速度增加,是我国特有的二次钛资源。
长期以来,许多学者和工程技术人员对其中钛的提取及其综合利用进行了大量的探索研究,虽然取得了一些进展,但或由于技术困难、经济效益差,或造成二次污染等原因难以实现工业化利用。
这些宝贵资源不仅未得到利用,而且由于大量堆积还严重污染环境。
因此,研究含钛高炉渣的综合利用不仅具有极大的经济效益,而且对于循环经济、节约型社会、环境保护和可持续发展具有重大的社会效益。
本文总结分析了近年来攀钢含钛高炉渣综合利用研究方面取得的一些进展和存在的主要问题,提出了今后研究的主要方向,不断推动实现攀钢含钛高炉渣的真正利用。
关键词:资源 含钛高炉渣 综合利用1 引言我国攀西地区蕴藏着丰富的钒钛磁铁矿,其中的钛主要与铁密切共生而以钛铁矿的形式存在。
经选矿后,钒钛磁铁矿中约50%的钛随铁精矿进入高炉炼铁后,钛基本上进入高炉渣中形成含钛高炉渣。
自20世纪70年代以来,攀钢含钛高炉渣已达数千万吨,目前每年还在以300万吨的速度增加。
由于利用问题未得到解决,处置方式是将其堆置于专门的渣场中。
但大量堆积遇到场地和环境污染的问题,不得以将其用来铺路或当做建筑材料的掺合料使用,但仍未将其中宝贵的钛资源利用起来。
含钛高炉渣综合利用的前提,必须是首先将其中经济价值高的钛等重要成分提取利用基础上的综合利用。
近年来,许多科技工作者在这方面进行了大量的探索研究工作。
2 攀钢含钛高炉渣的来源和组成攀西钒钛磁铁矿经过选矿后成为炼铁原料钒钛磁铁精矿。
在高炉炼铁的生产中,向其中加入燃料(焦粉或无烟煤)和熔剂(石灰石或石灰),使铁钛氧化物在弱还原或近中性 氧化性气氛中,经过高温焙烧造块,形成高炉炼铁所必须的熟料! 钒钛烧结矿。
2008年东区储备项目—高钛型高炉渣钛资源回收及综合利用新技术目录一、项目背景 (2)二、项目可行性研究 (6)三、经济效益核算 (10)四、环境保护 (13)五、结论 (14)一、项目背景攀枝花是世界著名的钒钛之都,其钛储量占国内已探明的储量的90.54%,世界已探明的储量的35.17%,潜在经济价值达8万亿美元。
但是,由于现有钢铁生产工艺的因素,只能利用钒钛磁铁矿中钛含量的20%,铁精矿中的二氧化钛经高炉冶炼,基本进入高炉渣中,最后随渣一起弃为废物。
攀钢高炉渣中的二氧化钛含量达22~23%,以攀钢年产400万吨铁计,每年产出的高炉渣320万吨,其中约有90万吨的TiO2,按目前市场价算直接经济损失达50多亿元,攀钢至今已累计排放5000多万吨含钛高炉渣,除其中一小部分用于作建筑材料外,其余部分都堆积在两个渣场内,目前钛资源的综合利用率还不到15%,应该说,攀钢钛资源主要在高炉渣中,潜在经济价值就这么白白的流失掉了,大量的含钛高炉渣堆积成山,既浪费了资源又污染了环境。
因此,合理有效地利用攀钢含钛高炉渣,将具有重大的经济价值和社会效益。
国外高炉冶炼使用的钛铁矿石,含钛量均较低,一般含TiO2量不超过3%~4%,其高炉渣中所含的TiO2量,一般都低于10%,因此,国外含钛高炉渣类似于普通高炉渣,在使用上没有多大的困难,不需要特殊的加工和处理,完全按普通的高炉渣加以利用。
国外没有类似攀钢含二氧化钛如此高的高炉渣,仅苏联卡契卡纳尔的高炉渣含TiO2达17%,但其对从高炉渣中提取二氧化钛的方法也没作过多研究。
德、美、日等国的一些专家曾对从攀钢高炉渣提钛进行过研究,结果几乎一致认为难度大,未形成有效的解决方案。
因此,从攀钢高炉渣中分离钛属世界性难题。
国家对攀枝花资源开发利用的最大期望是实现钛的提取和利用,对于提取二氧化钛国内作了大量的研究,开辟了一系列新方法。
1、用攀钢熔融状态的高炉渣加碳粉将渣中的二氧化钛(22%左右)还原碳化成碳化钛、碳氧化钛,冷却,破碎后,在氯化炉进行选择氯化,得到四氯化钛。
钒渣提取新技术(钒渣-五氧化二钒-三氧化二钒-金属钒-钒铁-钒铝合金-碳氮化钒-钒电池)原创邹建新崔旭梅教授等随着攀钢提钒炼钢厂为代表的钒渣提取技术不断得以提升,及时根据铁水条件变化调整供氧强度、吹炼时间、冷却强度等工艺参数,提高铁水中的钒氧化率,尽可能降低残钒含量。
另外,通过优化复吹提钒、出渣炉次添加无烟煤等技术措施,克服铁水成分波动对钒渣生产的影响;开展煤氧枪烧结补炉、提钒炉口防粘、4210镗孔机打炉口等技术研究,改善提钒转炉维护质量。
转炉提钒生产的主要国家是俄罗斯和我国,已经使用静态模型对提钒过程进行控制的国家是俄罗斯,俄罗斯对提钒控制模型开展了深入的研究,现在取得了不错的效果。
不过正在使用的模型一般是根据复杂的物理化学规律开发的机理模型,这对工艺要求非常高,需要有非常稳定的工艺条件和生产流程,因此不适用于铁水成分、生产设备等变化波动大的情况。
也就是说,这种模型系统不能很好地适应复杂生产过程和现代化柔性生产的需要,模型移植困难,模型价格昂贵。
在我国对转炉提钒的研究与发展比较缓慢,主要为人工操作模式,操作和控制基本上依赖于现场操作人员的经验和感觉进行操作,自动化水平低,存在着钒渣质量和半钢质量不稳定的问题。
因此利用人工智能技术研制具有高性价比的转炉提钒模型,建立具有自适应、自学习能力的控制模型是未来提钒控制的发展趋势。
目前,对提钒这样的复杂冶金工业过程建模的研究,也是国内外的研究热点之一。
近年钒渣提取领域的代表性新技术如下:①中国恩菲工程技术有限公司发明了一种从原料钒渣制备精细钒渣的方法。
包括:将原料钒渣进行破碎,然后进行磁选铁得到铁渣和选铁后的钒渣,将钒渣进行一次球磨,然后进行一次选粉得到一次粗粉和作为精细钒渣的一次细粉,然后进行筛分得到筛上粉和筛下粉,将筛下粉进行二次球磨和二次选粉得到二次粗粉和作为精细钒渣的二次细粉。
利用该方法能够降低精细钒渣中铁含量。
②攀钢集团公开了一种高品位钒渣富氧钙化焙烧的方法,包括如下步骤:将高品位钒渣与钙化剂混合形成混合料,将混合料在氧气体积含量为12-21%的气氛下进行焙烧。
攀钢2号高炉优化操作实践胡方友(攀枝花新钢钒股份有限公司)摘要攀钢2号高炉通过采取调整风口、改善入炉原料质量、优化高炉操作、处理炉前隐患等措施,使各项技术经济指标逐渐得到优化。
关键词高炉强化冶炼顺行攀钢2号高炉有效容积l 200 m3,设有18个风口,1个铁口,2个渣口,3座顶燃式热风炉,采用双钟式炉顶,马基式旋转布料器,2007年底大修后开始第四代炉役的生产。
本文着重分析了2号高炉在2008年期间炉况逐渐变差的原因,并重点总结了在2009年期间针对炉况差而采取的优化措施。
1 炉况差的原因2号高炉投产后,高炉不易接受风量,炉缸活跃度降低,炉内顺行变差,出现了长期、崩滑料的现象,加减风频繁,致使高炉冶炼强度逐渐降低、利用系数降低、焦比升高、铁损增加(见表1)。
究其原因,初步分析有如下几点。
1.1 开炉初期炉型变化不规则。
大修开炉初期,有1座热风炉检修未完工,长期是2 座热风炉送风。
2号高炉采用低风温、低负荷操作,疏松边缘的COCO+OO↓OCCC↓装料制度,风口设置为直径130mm的2个、140mm的16个。
2号高炉2008年上半年东南和东北炉喉煤气CO2分布如图l所示。
可见2号高炉顺行虽好,但是边缘气流并不稳定。
在3座热风炉送风后,逐渐把风温用到1 200℃。
负荷加重以后,多次采取加重边缘的装料制度如OCOC+COCO+OO↓OCCC↓2 OOOO+COCO+2OO↓OCCC↓等,批重从20.8t减到20.3 t,料线2.8 m降到3.0 m。
炉缸1、2、3段水温差和炉身下2层温度都很低,使曲线带变窄成一条直线。
时间从22 h逐渐缩短到19 h,焦炭反应性从33%左右增到38%左右,反应后强度从55%左右降到52%左右,M40从78%降低到76%;喷吹煤粉质量也差,较平时12%左右高,入炉粉末最高达13.12%。
1.3设备的影响高炉砂坝和下渣沟整体上抬,砂坝太高而使砂坝和下渣沟常常糊死,同时后渣带铁多,经常坏渣口,最多的一个月坏了13个,最少的一个月也坏了4个,导致高炉经常因渣铁出不净而带来其他事故和频繁大减风。