精选新编部编版数学八年级上册人教版教学设计:14.3 因式分解
- 格式:doc
- 大小:107.50 KB
- 文档页数:4
人教版数学八年级上册教学设计《14-3因式分解》(第3课时)一. 教材分析因式分解是八年级数学的重要内容,是解决多项式问题的基本方法。
本节课的内容是因式分解的方法,包括提取公因式法、十字相乘法、分组分解法等。
这些方法对于解决实际问题有着重要的作用。
二. 学情分析学生在之前的学习中已经掌握了多项式的基本概念和运算方法,对于因式分解有一定的了解。
但是,对于因式分解的深入理解和灵活运用还不够熟练。
因此,在教学中需要通过例题和练习,让学生加深对因式分解的理解,并能够灵活运用。
三. 教学目标1.知识与技能目标:理解因式分解的概念,掌握因式分解的方法,能够运用因式分解解决实际问题。
2.过程与方法目标:通过小组合作、探究学习,培养学生的合作意识和问题解决能力。
3.情感态度与价值观目标:培养学生对数学的兴趣,提高学生学习数学的积极性。
四. 教学重难点1.重点:因式分解的方法。
2.难点:因式分解的灵活运用。
五. 教学方法采用问题驱动法、小组合作学习法、案例教学法等,引导学生主动探究,合作学习,提高学生的数学素养。
六. 教学准备1.教学课件:制作因式分解的教学课件,包括例题和练习题。
2.教学素材:准备相关的数学题目,用于巩固和拓展学生的知识。
七. 教学过程1.导入(5分钟)通过复习多项式的基本概念和运算方法,引导学生回顾已学知识,为新课的学习做好铺垫。
2.呈现(10分钟)介绍因式分解的概念,引导学生理解因式分解的意义。
通过示例,讲解因式分解的方法,包括提取公因式法、十字相乘法、分组分解法等。
3.操练(10分钟)让学生分组进行练习,运用因式分解的方法解决实际问题。
教师巡回指导,解答学生的疑问。
4.巩固(10分钟)对学生的练习进行点评,总结因式分解的方法和技巧。
通过一些典型题目,让学生加深对因式分解的理解。
5.拓展(10分钟)引导学生思考因式分解在实际问题中的应用,让学生举例说明因式分解在解决实际问题中的重要性。
6.小结(5分钟)对本节课的内容进行总结,强调因式分解的方法和运用。
第十四章整式的乘法与因式分解
第13课时因式分解-----提公因式法
【学习目标】
1、了解因式分解的意义,以及它与整式乘法的关系;
2、经历从分解因数到分解因式的类比过程,掌握因式分解的概念,感受因式分解在解决问题中的作用;
3、在探索因式分解的方法的活动中,培养学生有条理的思考、表达与交流的能力,培养积极的进取意识,体会数学知识的内在含义与价值。
【重点难点】
重点:会用提公因式法分解因式
难点:如何确定公因式以及提出公因式后的另外一个因式
【学法指导】采用“引导发现法”的教学方法。
课题:14.3.1提公因式法教学目标:了解因式分解、公因式的概念,会用提取公因式法分解因式.重点:会用提取公因式法分解因式.难点:如何确信公因式和提出公因式后的另外一个因式.教学流程:一、知识回忆1.说一说单项式乘以多项式的计算法那么?答案:单项式与多项式相乘,确实是用单项式去乘多项式的每一项,再把所得的积相加.2.填空(1)(1)______;(2)(1)(1)______.x x x x +=+-=答案:2x x +;21x -二、探讨 问题1:请把以下多项式写成整式的乘积的形式:22(1)________;(2)1___________.x x x +=-=答案:(1)x x +;(1)(1)x x +-归纳:把一个多项式化成几个整式的积的形式,像如此的式子变形叫做那个多项式的因式分解,也叫做把那个多项式分解因式.追问:因式分解与整式乘法有什么关系?答案:因式分解与整式乘法是互逆变形关系练习:以下变形中,属于因式分解的是:(1)+=+a b c ab ac ();(2)322+2-3=+2-3xx x x (); (3)22-=+-.a b a b a b ()() 答案:×;×;√问题2:观看下面多项式,各项之间有何一起特点?232;;2.x x a a c c y z m n c ++++答案:有公共的因式,即公因式练习:说一说以下各多项式的公因式.3222;22;36.ab ac x x ab a b +++ 答案:a ;2x 2;3ab归纳:找公因式的方式:一看系数(最大公约数);二看字母(相同字母);三看指数(最低指数) 问题3:你能试着将多项式 pa +pb +pc 因式分解吗?答案:pa +pb +pc = p (a +b +c )归纳:一样地,若是多项式的各项有公因式,能够把那个公因式提掏出来,将多项式写成公因式与另一个因式的乘积的形式.这种分解因式的方式叫做提公因式法.练习:1.以下式子变形是因式分解的是( )A .x 2-5x +6=x (x -5)+6B .x 2-5x +6=(x -2)(x -3)C .(x -2)(x -3)=x 2-5x +6D .x 2-5x +6=(x +2)(x +3)答案:B2.多项式3a 2b -9a 3b 3-12a 2b 2c 各项的公因式是________.答案:3a 2b3.把以下各式分解因式. 323(1)8+12;a b ab c (2)2+-3+a b c b c ()(). 解:323(1)8+12a b ab c 222=2+434ab ab a bc ⋅⋅22=2+3 .4a b a c b ()(2)2+-3+a b c b c ()()=+2-3 .b c a ()()强调:公因式能够是单项式,也能够是多项式.三、应用提高利用因式分解计算:(1)67×15-17×15-127×15;(2)9992+999.6112(1)151515777611215()77715(1)15⨯-⨯-⨯=⨯--=⨯-=-解: 2(2)999999999(9991)9991000999000+=⨯+=⨯= 四、体验收成今天咱们学习了哪些知识?1.什么是因式分解?因式分解与整式乘法有什么区别和联系?2.如何确信公因式?提公因式法的一样步骤是什么?五、达标测评1.观看以下各组式子:①2a +b 和a +b ;②5m (a -b )和-a +b ;③3(a +b )和-a -b ;④x 2-y 2和x 2+y 2. 其中有公因式的是( )A.①②B.②③C.③④D.①④答案:B2.以下多项式分解因式,正确的选项是( )A .8abx -12a 2x 2=4abx (2-3ax )B .4x 2-6xy +2x =2x (2x -3y )C .-6x 3+6x 2-12x =-6x (x 2-x +2)D .-3a 2y +9ay -6y =-3y (a 2+3a -2)答案:C3.分解因式:(1)-7ab -14a 2bx +49ab 2y ;(2)6x (a -b )+4y (b -a ).解:(1)原式=-7ab (1+2ax -7by )(2)原式= 6x (a -b ) - 4y (a -b )=(a -b )(6x -4y )= 2(a -b )(3x -2y )强调:分解因式要分解到每一个因式不能分解为止.4.先分解因式,再求值. 24(7)3(7),5, 3.a x x a x +-+=-=其中2224(7)3(7)(7)(43)5,3(37)[4(5)3]10(1003)970a x x x a a x +-+=+-=-==+⨯--=⨯-=解:把代入原式得,原式 六、布置作业教材115页练习题第1题.。
人教版八年级数学上册教学设计14.3 因式分解一. 教材分析因式分解是八年级数学上册的教学内容,主要目的是让学生掌握因式分解的基本方法和技巧。
教材通过引入多项式的乘法,让学生理解因式分解的实质,进而学习提公因式法、公式法等因式分解方法。
本节课的内容在数学知识体系中具有重要的地位,为学生深入学习代数运算和方程求解打下基础。
二. 学情分析学生在学习本节课之前,已经掌握了整式的乘法运算,具备一定的代数基础。
但因式分解作为一种独立的解题方法,对学生来说较为抽象,需要通过实例分析、动手操作、小组讨论等方式,让学生逐步理解和掌握。
三. 教学目标1.知识与技能:使学生掌握因式分解的基本方法,能够运用提公因式法、公式法等进行因式分解。
2.过程与方法:培养学生观察、分析、归纳的能力,提高学生解决问题的能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的合作意识,使学生感受到数学的内在美。
四. 教学重难点1.重点:因式分解的方法和技巧。
2.难点:如何引导学生发现和运用提公因式法、公式法等进行因式分解。
五. 教学方法采用问题驱动法、实例分析法、小组合作法、引导发现法等,以学生为主体,教师为主导,充分调动学生的积极性,提高学生的学习兴趣。
六. 教学准备1.准备相关教学PPT和教学素材。
2.设计好教学问题和练习题。
3.准备好黑板和粉笔。
七. 教学过程1.导入(5分钟)通过一个实际问题引出因式分解的必要性,激发学生的学习兴趣。
例如:已知二次函数的图像,求其解析式。
2.呈现(10分钟)呈现因式分解的定义和基本方法,引导学生观察、分析、归纳因式分解的规律。
通过PPT展示提公因式法、公式法等具体的因式分解方法。
3.操练(10分钟)让学生动手操作,尝试运用所学的因式分解方法解决实际问题。
教师巡回指导,解答学生遇到的问题。
4.巩固(10分钟)设计一些练习题,让学生运用所学的因式分解方法进行解答。
教师选取部分学生的答案进行讲解和评价,及时巩固所学知识。
14.3 因式分解教学目标1.知识与技能了解因式分解的意义,以及它与整式乘法的关系.2.过程与方法经历从分解因数到分解因式的类比过程,掌握因式分解的概念,感受因式分解在解决问题中的作用.3.情感、态度与价值观在探索因式分解的方法的活动中,培养学生有条理的思考、表达与交流的能力,培养积极的进取意识,体会数学知识的内在含义与价值.重点难点1.重点:了解因式分解的意义,感受其作用.2.难点:整式乘法与因式分解之间的关系.通过分解因数引入到分解因式,并进行类比,加深理解.教学方法采用“激趣导学”的教学方法.教学过程一、创设情境,激趣导入【问题牵引】请同学们探究下面的 2 个问题:问题 1: 720 能被哪些数整除?谈谈你的想法.问题 2:当 a=102, b=98 时,求 a2- b2的值.二、丰富联想,展示思维探索:你会做下面的填空吗?1. ma+mb+mc=()();2. x2- 4=()();3. x2- 2xy+y 2=()2.【师生共识】把一个多项式化成几个整式的积的形式,叫做把这个多项式因式分解,也叫做分解因式.三、小组活动,共同探究【问题牵引】(1)下列各式从左到右的变形是否为因式分解:①( x+1)( x- 1) =x2- 1;② a2- 1+b2=( a+1)( a- 1) +b2;③ 7x- 7=7( x- 1).(2)在下列括号里,填上适当的项,使等式成立.① 9x2( ______) +y2=( 3x+y )( _______);② x2- 4xy+( _______) =( x- _______)2.四、随堂练习,巩固深化补充练习.【探研时空】计算: 993- 99 能被 100 整除吗?五、课堂总结,发展潜能由学生自己进行小结,教师提出如下纲目:1.什么叫因式分解?2.因式分解与整式运算有何区别?六、布置作业,专题突破补充题.板书设计14.3因式分解1、因式分解例:练习:14.3.1提公因式法教学目标1.知识与技能能确定多项式各项的公因式,会用提公因式法把多项式分解因式.2.过程与方法使学生经历探索多项式各项公因式的过程,依据数学化归思想方法进行因式分解.3.情感、态度与价值观培养学生分析、类比以及化归的思想,增进学生的合作交流意识,主动积极地积累确定公因式的初步经验,体会其应用价值.重点难点1.重点:掌握用提公因式法把多项式分解因式.2.难点:正确地确定多项式的最大公因式.提公因式法关键是如何找公因式.方法是:一看系数、二看字母. ?公因式的系数取各项系数的最大公约数;字母取各项相同的字母,并且各字母的指数取最低次幂.教学方法采用“启发式”教学方法.教学过程一、回顾交流,导入新知【复习交流】下列从左到右的变形是否是因式分解,为什么?( 1) 2x2 +4=2( x2+2);(2)2t2-3t+1=(2t3-3t2+t);(3) x2+4xy - y2=x(x+4y )- y2;( 4) m( x+y)=mx+my;(5) x2- 2xy+y 2=( x- y)2.问题:1.多项式 mn+mb中各项含有相同因式吗?2.多项式 4x2- x 和 xy 2- yz -y 呢?请将上述多项式分别写成两个因式的乘积的形式,并说明理由.【教师归纳】我们把多项式中各项都有的公共的因式叫做这个多项式的公因式,如在mn+mb中的公因式是m,在 4x 2- x 中的公因式是x,在 xy 2- yz- y 中的公因式是y.概念:如果一个多项式的各项含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积形式,这种分解因式的方法叫做提公因式法.二、小组合作,探究方法【教师提问】多项式 4x 2- 8x6, 16a3b2- 4a3b2- 8ab4各项的公因式是什么?【师生共识】提公因式的方法是先确定各项的公因式再将多项式除以这个公因式得到另一个因式,找公因式一看系数、二看字母,公因式的系数取各项系数的最大公约数;字母取各项相同的字母,并且各字母的指数取最低次幂.三、范例学习,应用所学【例 1】把- 4x2yz -12xy 2z+4xyz 分解因式.解:- 4x2yz - 12xy2z+4xyz= -( 4x2 yz+12xy 2z-4xyz )= - 4xyz ( x+3y -1)【例 2】分解因式, 3a2( x-y)3- 4b2( y- x)2【思路点拨】观察所给多项式可以找出公因式(y- x)2或( x- y)2,于是有两种变形,(x-y)3=-( y- x)3和( x- y)2=( y- x)2,从而得到下面两种分解方法.解法 1:3a2( x- y)3- 4b2( y- x)2=- 3a2( y- x)3- 4b2(y- x)2=- [ ( y- x)2· 3a2(y- x) +4b2( y- x)2]=-( y-x)2 [3a 2(y- x) +4b2]=-( y-x)2( 3a2y-3a2x+4b2)解法 2:3a2( x- y)3- 4b2( y- x)2=( x- y)2· 3a2( x-y)- 4b2(x- y)2=( x- y)2 [3a 2( x-y)- 4b2 ]=( x- y)2( 3a2x- 3a2y- 4b2)【例 3】用简便的方法计算:0.84 × 12+12× 0.6 - 0.44 ×12.【教师活动】引导学生观察并分析怎样计算更为简便.解: 0.84 × 12+12× 0.6 - 0.44 × 12=12 ×( 0.84+0.6 -0.44 )=12 × 1=12.【教师活动】在学生完全例 3 之后,指出例 3 是因式分解在计算中的应用,提出比较例1,例2,例 3 的公因式有什么不同?四、随堂练习,巩固深化【探研时空】利用提公因式法计算:0.582×8.69+1.236× 8.69+2.478× 8.69+5.704× 8.69五、课堂总结,发展潜能1 .利用提公因式法因式分解,关键是找准最大公因式.?在找最大公因式时应注意:(1)系数要找最大公约数;(2)字母要找各项都有的;(3)指数要找最低次幂.2.因式分解应注意分解彻底,也就是说,分解到不能再分解为止.六、布置作业,专题突破课本 P119 习题 14. 3 第 1、 4( 1)、 6 题.练习:板书设计14.3.1提公因式法1、提公因式法例:14.3.2公式法(一)教学目标1.知识与技能会应用平方差公式进行因式分解,发展学生推理能力.2.过程与方法经历探索利用平方差公式进行因式分解的过程,发展学生的逆向思维,感受数学知识的完整性.3.情感、态度与价值观培养学生良好的互动交流的习惯,体会数学在实际问题中的应用价值.重点难点1.重点:利用平方差公式分解因式.2.难点:领会因式分解的解题步骤和分解因式的彻底性.应用逆向思维的方向,演绎出平方差公式, ?对公式的应用首先要注意其特征,其次要做好式的变形,把问题转化成能够应用公式的方面上来.教学方法采用“问题解决”的教学方法,让学生在问题的牵引下,推进自己的思维.教学过程一、观察探讨,体验新知【问题牵引】请同学们计算下列各式.(1)( a+5)( a- 5);(2)( 4m+3n)( 4m- 3n).【学生活动】动笔计算出上面的两道题,并踊跃上台板演.(1)( a+5)( a- 5) =a2- 52=a2- 25;2222( 2)( 4m+3n)( 4m- 3n)=( 4m)-( 3n) =16m- 9n.【教师活动】引导学生完成下面的两道题目,并运用数学“互逆”的思想,寻找因式分解的规律.1.分解因式:a2- 25; 2 .分解因式16m2- 9n.【学生活动】从逆向思维入手,很快得到下面答案:(1) a2- 25=a2- 52=( a+5)( a-5).2222( 2) 16m- 9n =( 4m)-( 3n)=(4m+3n)( 4m- 3n).【教师活动】引导学生完成a2- b2=( a+b)( a- b)的同时,导出课题:用平方差公式因式分解.平方差公式:a2- b2=( a+b)( a- b).评析:平方差公式中的字母 a 、 b,教学中还要强调一下,可以表示数、含字母的代数式(单项式、多项式).二、范例学习,应用所学【例 1】把下列各式分解因式:(投影显示或板书)( 1) x2- 9y2;(2)16x4-y4;( 3) 12a2x2- 27b2y2;(4)(x+2y)2-(x-3y)2;(5) m2( 16x- y) +n2( y- 16x).【思路点拨】在观察中发现 1 ~ 5 题均满足平方差公式的特征,可以使用平方差公式因式分解.【学生活动】分四人小组,合作探究.解:( 1) x2- 9y2=(x+3y )( x- 3y);(2) 16x4- y4=( 4x2+y2)( 4x2- y2) =( 4x2+y2)( 2x+y)( 2x- y);2 2 2 2 2 222(3) 12a x - 27b y =3( 4a x - 9b y ) =3( 2ax+3by )( 2ax- 3by );(4)( x+2y )2-( x- 3y)2=[ ( x+2y ) +( x-3y) ][ ( x+2y)-( x- 3y) ] =5y ( 2x- y);(5) m2( 16x- y) +n2( y- 16x)=( 16x -y)( m2- n2) =( 16x- y)( m+n)( m-n).三、随堂练习,巩固深化课本 P117 练习第 1、 2 题.【探研时空】1 .求证:当n 是正整数时, n3- n 的值一定是 6 的倍数.2.试证两个连续偶数的平方差能被一个奇数整除.连续偶数的平方差能被一个奇数整除.四、课堂总结,发展潜能运用平方差公式因式分解,首先应注意每个公式的特征.分析多项式的次数和项数,然后再确定公式.如果多项式是二项式,通常考虑应用平方差公式;如果多项式中有公因式可提,应先提取公因式,而且还要“提”得彻底,最后应注意两点:一是每个因式要化简,二是分解因式时,每个因式都要分解彻底.五、布置作业,专题突破课本 P119 习题 14. 3 第 2、 4( 2)、 11 题.板书设计14.3 .2公式法(一)1、平方差公式:例:a 2- b2=( a+b)( a- b)练习:14.3.2公式法(二)教学目标1.知识与技能领会运用完全平方公式进行因式分解的方法,发展推理能力.2.过程与方法经历探索利用完全平方公式进行因式分解的过程,感受逆向思维的意义,掌握因式分解的基本步骤.3.情感、态度与价值观培养良好的推理能力,体会“化归”与“换元”的思想方法,形成灵活的应用能力.重点难点1.重点:理解完全平方公式因式分解,并学会应用.2.难点:灵活地应用公式法进行因式分解.应用“化归”、“换元”的思想方法,把问题进行形式上的转化,?达到能应用公式法分解因式的目的.教学方法采用“自主探究”教学方法,在教师适当指导下完成本节课内容.教学过程一、回顾交流,导入新知【问题牵引】1.分解因式:(1)- 9x2+4y2;(2)( x+3y)2-( x-3y)2;( 3)x2- 0.01y 2.【知识迁移】2.计算下列各式:( 1)( m- 4n)2;(2)(m+4n)2;( 3)( a+b)2;(4)(a-b)2.【教师活动】引导学生完成下面两道题,并运用数学“互逆”的思想,寻找因式分解的规律.3.分解因式:2222( 1) m- 8mn+16n( 2) m+8mn+16n;( 3) a2+2ab+b2;( 4) a2-2ab+b2.【学生活动】从逆向思维的角度入手,很快得到下面答案:222222解:( 1) m- 8mn+16n=( m-4n);( 2) m+8mn+16n=( m+4n);222222 ( 3) a +2ab+b =( a+b);( 4) a - 2ab+b =( a- b).【归纳公式】完全平方公式a2± 2ab+b2=(a± b)2.二、范例学习,应用所学【例 1】把下列各式分解因式:223(2-4;( 1)- 4a b+12ab-9b;2)8a- 4a( 3)( x+y )2- 14( x+y ) +49;(4)+n4.【例 2】如果 x2+axy+16y 2是完全平方,求 a 的值.【思路点拨】根据完全平方式的定义,解此题时应分两种情况,即两数和的平方或者两数差的平方,由此相应求出 a 的值,即可求出 a3.三、随堂练习,巩固深化课本 P119 练习第 1、 2 题.【探研时空】1.已知 x+y=7 , xy=10 ,求下列各式的值.(1) x2+y2;( 2)( x- y)22 .已知 x+ =- 3,求 x4+的值.四、课堂总结,发展潜能由于多项式的因式分解与整式乘法正好相反,因此把整式乘法公式反过来写,就得到多项式因式分解的公式,主要的有以下三个:a 2- b2=( a+b)( a-b);a 2± ab+b2=(a± b)2.在运用公式因式分解时,要注意:( 1)每个公式的形式与特点,通过对多项式的项数、?次数等的总体分析来确定,是否可以用公式分解以及用哪个公式分解,通常是,当多项式是二项式时,考虑用平方差公式分解;当多项式是三项时,应考虑用完全平方公式分解;(2) ?在有些情况下,多项式不一定能直接用公式,需要进行适当的组合、变形、代换后,再使用公式法分解;(3)当多项式各项有公因式时,应该首先考虑提公因式,?然后再运用公式分解.五、布置作业,专题突破课本 P119 习题 14. 3 第 3、 5、 7、 8 题.板书设计14.3.2公式法(二)1、完全平方公式:例:a2± 2ab+b2=( a± b)2练习:。
八年级数学上册 14.3 因式分解 14.3.1 提公因式法教学设计(新版)新人教版一. 教材分析《新人教版八年级数学上册》第14.3节讲述了因式分解中的提公因式法。
这一节内容是在学生已经掌握了多项式的基本概念、多项式的乘法以及十字相乘法的基础上进行学习的。
提公因式法是因式分解的一种常用方法,它可以帮助学生更好地理解多项式的结构,提高解题效率。
本节内容的学习,既是对前面知识的巩固,也是为后面学习更复杂的因式分解方法打下基础。
二. 学情分析八年级的学生已经具备了一定的逻辑思维能力和抽象思维能力,对多项式的基本概念和运算已经有了一定的了解。
但是,学生在学习因式分解时,可能会对提公因式法的应用范围和选择公因式的方法感到困惑。
因此,在教学过程中,需要引导学生积极参与,通过实例分析和练习,让学生掌握提公因式法的应用技巧。
三. 教学目标1.知识与技能:使学生掌握提公因式法,能够运用提公因式法进行因式分解。
2.过程与方法:通过实例分析,引导学生学会如何选择公因式,如何进行因式分解。
3.情感态度与价值观:培养学生对数学的兴趣,提高学生解决问题的能力。
四. 教学重难点1.重点:提公因式法的应用。
2.难点:如何选择合适的公因式,以及如何进行因式分解。
五. 教学方法采用讲授法、引导法、实例分析法、练习法等方法,通过讲解、提问、讨论、练习等形式,引导学生积极参与,提高学生的学习兴趣和主动性。
六. 教学准备1.准备相关的教学PPT,包括提公因式法的定义、应用范围、选择公因式的方法等。
2.准备一些练习题,包括简单的和复杂的题目,以便在课堂上进行练习和巩固。
七. 教学过程1.导入(5分钟)通过一个简单的多项式乘法例子,引导学生思考如何将乘法转化为因式分解,从而引出提公因式法。
2.呈现(10分钟)讲解提公因式法的定义、应用范围、选择公因式的方法等,通过PPT的形式,让学生清晰地了解提公因式法的相关知识。
3.操练(10分钟)给出一些简单的题目,让学生运用提公因式法进行因式分解。
人教版数学八年级上册教学设计《14-3因式分解》(第1课时)一. 教材分析《14-3因式分解》是人教版数学八年级上册的教学内容,本节课主要让学生掌握因式分解的方法和技巧,并能应用于实际问题中。
教材通过引入实例和问题,引导学生探究因式分解的规律,从而达到理解并掌握因式分解的目的。
二. 学情分析学生在学习本节课之前,已经掌握了整式的乘法、平方差公式等基础知识,具备了一定的数学思维能力。
但因式分解较为抽象,需要学生通过实例和问题去理解和掌握。
因此,在教学过程中,需要关注学生的学习兴趣,激发他们的探究欲望,帮助他们建立因式分解的知识体系。
三. 教学目标1.知识与技能:让学生掌握因式分解的方法和技巧,能够独立完成因式分解的题目。
2.过程与方法:通过实例和问题,引导学生探究因式分解的规律,培养学生的逻辑思维能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养他们独立思考和解决问题的能力。
四. 教学重难点1.重点:因式分解的方法和技巧。
2.难点:如何引导学生发现并总结因式分解的规律。
五. 教学方法采用问题驱动法、案例教学法和小组合作法。
通过提出问题,引导学生思考和探究;通过案例分析,让学生理解并掌握因式分解的方法;通过小组合作,培养学生的团队协作能力。
六. 教学准备1.准备相关的实例和问题,用于引导学生探究因式分解的规律。
2.准备PPT,用于展示和讲解因式分解的方法和技巧。
七. 教学过程1.导入(5分钟)通过提出一个实际问题,引导学生思考如何将问题转化为数学问题。
例如:已知一家电器商店举行优惠活动,购买一台电视需要支付1200元,同时赠送一个价值300元的音响。
请问,购买一台电视和一台音响需要支付多少钱?2.呈现(10分钟)展示PPT,呈现因式分解的定义和基本方法。
解释因式分解的意义,以及如何将一个多项式转化为几个整式的乘积。
3.操练(10分钟)让学生独立完成一些因式分解的题目,教师巡回指导。
题目难度可以适当调整,以满足不同学生的需求。
2018-2019学年度第一学期教学设计
年级八科目数学任课教师授课时间11. 28 课题14.3 因式分解授课类型新授课标依据了解因式分解的意义,以及它与整式乘法的关系。
教学目标知识与
技能
了解因式分解的意义,以及它与整式乘法的关系。
过程与
方法
通过从分解因数到分解因式的类比过程,掌握因式分解的概念,感受因式分解在解决问题中的作用。
情感态
度与价
值观
在探索因式分解的方法的活动中,培养学生有条理的思考、表达与交流的能力,培养积极的进取意识,体会数学知识的内在
含义与价值。
教学重点难点教学
重点了解因式分解的意义,感受其作用。
教学
难点整式乘法与因式分解之间的关系。
教学过程设计师生活动
设计意图
编号:33
一、创设情境,激趣导入
【问题牵引】
请同学们探究下面的2个问题:
问题1:72能被哪些数整除?谈谈你的想法.问题2:当a=102,b=98时,求a2-b2的值.
二、丰富联想,展示思维
探索:你会做下面的填空吗?
1.ma+mb+mc=()();
2.x2-4=()();
3.x2-2xy+y2=()2.
【师生共识】把一个多项式化成几个整式的积的形式,叫做把这个多项式因式分解,也叫做分解因式.
三、小组活动,共同探究
【问题牵引】
(1)下列各式从左到右的变形是否为因式分解:
①(x+1)(x-1)=x2-1;
②a2-1+b2=(a+1)(a-1)+b2;
③7x-7=7(x-1).
(2)在下列括号里,填上适当的项,使等式成立.从两个问题入手,让学生初步感受到分解因式的意义。
通过逆运算填空,总结归纳分解因式的含义。
通过练习进一步理解分解因式的含义。
①9x2(______)+y2=(3x+y)(_______);
②x2-4xy+(_______)=(x-_______)2.
四、随堂练习,巩固深化
课本练习.
【探研时空】计算:993-99能被100整除吗?
五、课堂总结,发展潜能由学生自己进行小结,教师提出如下纲目:
1.什么叫因式分解?
2.因式分解与整式运算有何区别?。