宁夏石嘴山市2021届数学八年级上学期期末学业水平测试试题模拟卷三
- 格式:doc
- 大小:289.50 KB
- 文档页数:5
八年级上学期期末数学试卷一、选择题(每题只有一个答案正确)1.如图,在ABC 中,90C ∠=︒,DE AB ⊥于点E ,CD DE =,26CBD ∠=︒,则A ∠的度数为( )A .40︒B .34︒C .36︒D .38︒【答案】D 【分析】根据角平分线的判定可知,BD 平分∠ABC ,根据已知条件可求出∠A 的度数.【详解】解:∵90C ∠=︒,DE AB ⊥,且CD DE =∴BD 是ABC ∠的角平分线,∴26ABD CBD ∠=∠=︒,∴22652ABC ∠=⨯︒=︒,∴在Rt ABC 中,905238A ∠=︒-︒=︒,故答案选D .【点睛】本题主要考查角平分线的判定及三角形角度计算问题,理解角平分线的判定条件是解题的关键. 2.一次跳远比赛中,成绩在4.05米以上的有8人,频率为0.4,则参加比赛的共有( ) A .40人B .30人C .20人D .10人 【答案】C【分析】根据频率、频数的关系:频率=频数÷数据总和,可得数据总和=频数÷频率.【详解】∵成绩在4.05米以上的频数是8,频率是0.4,∴参加比赛的运动员=8÷0.4=20.故选C.【点睛】考查频数与频率,掌握数据总和=频数÷频率是解题的关键.3()()222112a a -+- ) A .0B .42a -C .24a -D .24a -或42a - 【答案】D 2a a =的性质进行化简.原式=2112a a -+-,当1a -1≥0时,原式=1a -1+1a -1=4a -1;当1a -1≤0时,原式=1-1a+1-1a=1-4a .综合以上情况可得:原式=1-4a 或4a -1. 考点:二次根式的性质4.下表记录了甲、乙、丙、丁四名同学最近几次数学考试成绩的平均数与方差:甲乙丙丁平均数(分)92 95 95 92方差 3.6 3.6 7.4 8.1要选择一名成绩好且发挥稳定的同学参加数学比赛,应该选择()A.甲B.乙C.丙D.丁【答案】B【分析】方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好,选出方差最小,而且平均数较大的同学参加数学比赛.【详解】解:∵3.6<7.4<8.1,∴甲和乙的最近几次数学考试成绩的方差最小,发挥稳定,∵95>92,∴乙同学最近几次数学考试成绩的平均数高,∴要选择一名成绩好且发挥稳定的同学参加数学比赛,应该选择乙.故选B.【点睛】此题主要考查了方差的含义和求法,要熟练掌握,解答此题的关键是要明确:方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.5.下面四个手机应用图标中是轴对称图形的是( )A.B.C.D.【答案】D【分析】分别根据轴对称图形与中心对称图形的性质对各选项进行逐一分析即可.【详解】A、既不是轴对称图形,也不是中心对称图形,故本选项错误;B、是中心对称图形,故本选项错误;C、既不是轴对称图形,也不是中心对称图形,故本选项错误;D、是轴对称图形,故本选项正确.故选D.【点睛】本题考查的是轴对称图形,熟知轴对称图形是针对一个图形而言的,是一种具有特殊性质的图形,被一条直线分割成的两部分沿着对称轴折叠时,互相重合是解答此题的关键.6.如图将直尺与含30°角的三角尺摆放在一起,若120∠=︒,则2∠的度数是( )A .30B .40︒C .50︒D .60︒【答案】C 【分析】先根据三角形外角的性质求出∠BEF 的度数,再根据平行线的性质得到∠2的度数.【详解】如图,∵∠BEF 是△AEF 的外角,∠1=20︒,∠F=30︒,∴∠BEF=∠1+∠F=50︒,∵AB ∥CD ,∴∠2=∠BEF=50︒,故选:C .【点睛】本题主要考查了平行线的性质,解题的关键是掌握三角形外角的性质.7.下列图形中AD 是三角形ABC 的高线的是( )A .B .C .D .【答案】D【分析】根据三角形某一边上高的概念,逐一判断选项,即可得到答案.【详解】∵过三角形ABC 的顶点A 作AD ⊥BC 于点D ,点A 与点D 之间的线段叫做三角形的高线, ∴D 符合题意,故选D .【点睛】本题主要考查三角形的高的概念,掌握“从三角形的一个顶点向它的对边所在直线作垂线,顶点到垂足之间的线段叫作三角形的高”,是解题的关键.8.已知M =m ﹣4,N =m 2﹣3m ,则M 与N 的大小关系为( )A .M >NB .M =NC .M≤ND .M <N【答案】C【分析】利用完全平方公式把N ﹣M 变形,根据偶次方的非负性解答.【详解】解:N ﹣M =(m 2﹣3m )﹣(m ﹣4)=m 2﹣3m ﹣m+4=m 2﹣4m+4=(m ﹣2)2≥0, ∴N ﹣M≥0,即M≤N ,故选:C .【点睛】本题考查的是因式分解的应用,掌握完全平方公式、偶次方的非负性是解题的关键.9.如图所示,在下列条件中,不能判断ABD △≌BAC 的条件是( )A .D C ∠=∠,BAD ABC ∠=∠B .BD AC =,BAD ABC ∠=∠ C .BAD ABC ∠=∠,ABD BAC ∠=∠D .AD BC =,BD AC =【答案】B 【分析】已知条件是两个三角形有一公共边,只要再加另外两边对应相等或有两角对应相等即可,如果所加条件是一边和一角对应相等,则所加角必须是所加边和公共边的夹角对应相等才能判定两个三角形全等.【详解】A 、符合AAS ,能判断两个三角形全等,故该选项不符合题意;B 、符合SSA ,∠BAD 和∠ABC 不是两条边的夹角,不能判断两个三角形全等,故该选项符合题意; C 、符合AAS ,能判断两个三角形全等,故该选项不符合题意;D 、符合SSS ,能判断两个三角形全等,故该选项不符合题意;故选择:B .【点睛】本题考查了全等三角形的判定方法,三角形判定定理中,最容易出错的是“边角边”定理,这里强调的是夹角,不是任意角.10.已知一组数据为2,3,5,7,8,则这组数据的方差为( )A .3B .4.5C .5.2D .6 【答案】C【分析】先求出这组数据的平均数,再根据方差公式分别进行计算即可.【详解】解:这组数据的平均数是:(1+3+5+7+8)÷5=5, 则方差=15[(1﹣5)1+(3﹣5)1+(5﹣5)1+(7﹣5)1+(8﹣5)1]=5.1.故选C .【点睛】此题考查方差,掌握方差公式是解题关键.二、填空题11.如图,ABC ∆中,AD 平分BAC ∠,3ACB B ∠=∠,CE AD ⊥,8AC =,74BC BD =,则CE =__________.【答案】43【分析】根据题意延长CE 交AB 于K ,由 CE AD ⊥,AD 平分BAC ∠,由等腰三角形的性质,三线合一得8AK AC ==,利用角平分线性质定理,分对边的比等于邻边的比,结合外角平分性质和二倍角关系可得.【详解】如图,延长CE 交AB 于K ,CE AD ⊥,AD 平分BAC ∠,等腰三角形三线合一的判定得8AC AK ∴==,ACK AKC ∠=∠,AC CD AB DB ∴=, 74BC BD =, 34CD BD ∴=, 323AB ∴=, 83KB ∴=, 3ACB B ∠=∠,KCB B ∴∠=∠,83KC KB ==, 1423CE KC ==, 故答案为:43.【点睛】考查了三线合一判定等腰三角形,等腰三角形的性质,角平分线定理,外角的性质,以及二倍角的角度关系代换,熟记几何图形的性质,定理,判定是解题的关键.12.已知一次函数y=(-1-a2)x+1的图象过点(x1,2),(x2-1),则x1与x2的大小关系为______.【答案】x1<x1【解析】由k=-1-a1,可得y随着x的增大而减小,由于1>-1,所以x1<x1.【详解】∵y=(-1-a1)x+1,k=-1-a1<0,∴y随着x的增大而减小,∵1>-1,∴x1<x1.故答案为:x1<x1【点睛】本题考查的是一次函数,熟练掌握一次函数的性质是解题的关键.13.点P在第四象限内,点P到x轴的距离是1,到y轴的距离是2,那么点P的坐标为_______.【答案】(2,−1).【解析】根据点P在第四象限可知其横坐标为正,纵坐标为负即可确定P点坐标.【详解】∵点P在第四象限,∴其横、纵坐标分别为正数、负数,又∵点P到x轴的距离为1,到y轴的距离为2,∴点P的横坐标为2,纵坐标为−1.故点P的坐标为(2,−1).故答案为:(2,−1).【点睛】此题考查点的坐标,解题关键在于掌握第四象限内点的坐标特征.14.直线y=x+1与x轴交于点D,与y轴交于点A1,把正方形A1B1C1O1、A2B2C2C1和A3B3C3C2按如图所示方式放置,点A2、A3在直线y=x+1上,点C1、C2、C3在x轴上,按照这样的规律,则正方形A2020B2020C2020C2019中的点B2020的坐标为_____.【答案】(22020﹣1,22019)【分析】求出直线y =x+1与x 轴、y 轴的交点坐标,进而确定第1个正方形的边长,再根据等腰直角三角形的性质,得出第2个、第3个……正方形的边长,进而得出B 1、B 2、B 3……的坐标,根据规律得到答案.【详解】解:直线y =x+1与x 轴,y 轴交点坐标为:A 1(0,1),即正方形OA 1B 1C 1的边长为1, ∵△A 1B 1A 2、△A 2B 2A 3,都是等腰直角三角形,边长依次为1,2,4,8,16,∴B 1(1,1),B 2(3,2),B 3(7,4),B 4(15,8),即:B 1(21﹣1,20),B 2(22﹣1,21),B 3(23﹣1,22),B 4(24﹣1,23),故答案为:B 2020(22020﹣1,22019).【点睛】考查一次函数的图象和性质,正方形的性质、等腰直角三角形的性质以及找规律等知识,探索和发现点B 的坐标的概率是得出答案的关键.15.若(m+1)0=1,则实数m 应满足的条件_____.【答案】m≠﹣1【分析】根据非零数的零指数幂求解可得.【详解】解:若(m+1)0=1有意义,则m+1≠0,解得:m≠﹣1,故答案为:m≠﹣1.【点睛】本题考查了零指数幂的意义,非零数的零次幂等于1,零的零次幂没有意义.16.点P (3,﹣5)关于x 轴对称的点的坐标为______.【答案】(3,5)【解析】试题解析:点()3,5P -关于x 轴对称的点的坐标为()3,5.故答案为()3,5.点睛:关于x 轴对称的点的坐标特征:横坐标不变,纵坐标互为相反数.17.如图,在□ABCD 中,AC 与BD 交于点M ,点F 在AD 上,AF =6cm ,BF =12cm ,∠FBM =∠CBM ,点E 是BC 的中点,若点P 以1cm/秒的速度从点A 出发,沿AD 向点F 运动;点Q 同时以2cm/秒的速度从点C 出发,沿CB 向点B 运动.点P 运动到F 点时停止运动,点Q 也同时停止运动.当点P 运动_____秒时,以点P 、Q 、E 、F 为顶点的四边形是平行四边形.【答案】3或1【分析】由四边形ABCD是平行四边形得出:AD∥BC,AD=BC,∠ADB=∠CBD,又由∠FBM=∠CBM,即可证得FB=FD,求出AD的长,得出CE的长,设当点P运动t秒时,点P、Q、E、F为顶点的四边形是平行四边形,根据题意列出方程并解方程即可得出结果.【详解】解:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∴∠ADB=∠CBD,∵∠FBM=∠CBM,∴∠FBD=∠FDB,∴FB=FD=12cm,∵AF=6cm,∴AD=18cm,∵点E是BC的中点,∴CE=12BC=12AD=9cm,要使点P、Q、E、F为顶点的四边形是平行四边形,则PF=EQ即可,设当点P运动t秒时,点P、Q、E、F为顶点的四边形是平行四边形,根据题意得:6-t=9-2t或6-t=2t-9,解得:t=3或t=1.故答案为3或1.【点睛】本题考查了平行四边形的判定与性质、等腰三角形的判定与性质以及一元一次方程的应用等知识.注意掌握分类讨论思想的应用是解此题的关键.三、解答题18.如图,在ΔABC中,AB>AC,∠1=∠2,P为AD上任意一点.求证:AB-AC>PB-PC.【答案】答案见解析【解析】在AB 上取AE =AC ,然后证明△AEP 和△ACP 全等,根据全等三角形对应边相等得到PC =PE ,再根据三角形的任意两边之差小于第三边证明即可.【详解】如图,在AB 上截取AE ,使AE =AC ,连接PE .在△AEP 和△ACP 中,∵12AE AC AP AP =⎧⎪∠=∠⎨⎪=⎩,∴△AEP ≌△ACP (SAS ),∴PE =PC .在△PBE 中,BE >PB ﹣PE ,即AB ﹣AC >PB ﹣PC .【点睛】本题考查了全等三角形的判定与性质,涉及到全等三角形的判定与性质以及三角形的三边关系,作辅助线构造全等三角形是解题的关键.19.如图,在正方形网格中,每个小正方形的边长为1,格点三角形(顶点在网格线的交点的三角形)ABC 的顶点A ,C 坐标分别是(a ,5),(﹣1,b ).(1)求a ,b 的值;(2)在图中作出直角坐标系;(3)在图中作出△ABC 关于y 轴对称的图形△A'B'C'.【答案】(1)a=﹣4,b=3;(2)如图所示,见解析;(3)△A'B'C'如图所示,见解析.【分析】(1)根据点A 的纵坐标和点C 的横坐标即可画出直角坐标系,即可判定a ,b 的值; (2)根据点A 的纵坐标和点C 的横坐标即可画出直角坐标系;(3)根据轴对称的性质,先找出各点的对称点,然后连接即可.【详解】(1)由题意平面直角坐标系如图所示,可得:a=﹣4,b=3(2)如图所示:(3)△A'B'C'如图所示:【点睛】此题主要考查平面直角坐标系的确定以及轴对称图形的画法,熟练掌握,即可解题. 20.如图,AC=AE,∠C=∠E,∠1=∠1.求证:△ABC≌△ADE.【答案】证明见解析【解析】试题分析:由题目已知条件可得∠EAC+∠1=∠DAE 、∠1+∠EAC=∠BAC 、∠1=∠1,利用角的加减关系可得∠BAC=∠DAE ;结合AC=AE 、∠C=∠E ,利用两角及其夹边对应相等的两个三角形全等即可解答本题.试题解析:∵∠1+∠EAC=∠BAC ,∠EAC+∠1=∠DAE ,∠1=∠1,∴∠BAC=∠DAE.∵∠BAC=∠DAE ,AC=AE ,∠C=∠E ,∴△ABC ≌△ADE.21.如图,以ABC ∆的边AB 和AC 为边向外作等边ABD ∆和等边ACE ∆,连接BE 、CD .求证:BE CD =.【答案】见解析【分析】根据等边三角形的性质可得边长相等,角度为60°,由此得出∠EAB=∠CAD,即可证明△EAB ≌ △CAD,则BE=CD .【详解】证明:∵ △ACE 和△ABD 都是等边三角形∴ AC=AE ,AD=AB,∠EAC=∠DAB=60°∴∠EAC+∠BAC=∠DAB+∠BAC,即∠EAB=∠CAD .∴ △EAB ≌ △CAD(SAS)∴BE CD =【点睛】本题考查三角形全等的判定和性质、全等三角形的性质,关键在于结合图形利用性质得到所需条件. 22.(1)分解因式:m(x -y)-x +y(2)计算:5(1)(1)x x x +-【答案】(1)(x-y)(m-1);(2)5x 3-5x【分析】(1)根据提公因式进行因式分解即可;(2)根据平方差公式进行整式的乘法运算即可.【详解】解:(1)原式=()()()()1m x y x y x y m ---=--;(2)原式=()235155x x x x -=-.【点睛】本题主要考查整式的乘除与因式分解,熟练掌握平方差公式及因式分解的方法是解题的关键. 23.解方程:121x -=12-342x -. 【答案】3x =【分析】先确定最简公分母是42x -,将方程两边同时乘以最简公分母约去分母可得: 2213x =--,然后解一元一次方程,最后再代入最简公分母进行检验.【详解】去分母得:2213x =--,解得:3x =,经检验3x =是分式方程的解.【点睛】本题主要考查解分式方程的方法,解决本题的关键是要熟练掌握解分式方程的方法和步骤.24.如图,点C 在线段AB 上,//AD EB ,AC BE =,AD BC =.CF 平分DCE ∠.求证:(1)ACD BEC ≅;(2)CF DE ⊥ .【答案】 (1)见解析;(2)见解析【解析】试题分析:(1)根据平行线性质求出∠A=∠B ,根据SAS 推出即可.(2)根据全等三角形性质推出CD=CE ,根据等腰三角形性质求出即可.试题解析:()1∵//AD BE ,∴A B ∠=∠,在ACD 和BEC 中AD BC A B AC BE =⎧⎪∠=∠⎨⎪=⎩∴()ACD BEC SAS ≅,()2∵ACD BEC ≅,∴CD CE =,又∵CF 平分DCE ∠,∴CF DE ⊥.25.对x ,y 定义一种新运算T ,规定T (x ,y )=22ax by x y++(其中a ,b 是非零常数,且x+y≠0),这里等式右边是通常的四则运算.如:T (3,1)=22319314a b a b ⨯+⨯+=+,T (m ,﹣2)=242am b m +-. (1)填空:T (4,﹣1)= (用含a ,b 的代数式表示);(2)若T (﹣2,0)=﹣2且T (5,﹣1)=1.①求a 与b 的值;②若T (3m ﹣10,m )=T (m ,3m ﹣10),求m 的值.【答案】(1)163a b + ;(2)①a=1,b=-1,②m=2. 【分析】(1)根据题目中的新运算法则计算即可;(2)①根据题意列出方程组即可求出a,b 的值;②先分别算出T (3m ﹣3,m )与T (m ,3m ﹣3)的值,再根据求出的值列出等式即可得出结论.【详解】解:(1)T (4,﹣1)==;故答案为; (2)①∵T (﹣2,0)=﹣2且T (2,﹣1)=1,∴解得②解法一:∵a=1,b=﹣1,且x+y≠0,∴T(x,y)===x﹣y.∴T(3m﹣3,m)=3m﹣3﹣m=2m﹣3,T(m,3m﹣3)=m﹣3m+3=﹣2m+3.∵T(3m﹣3,m)=T(m,3m﹣3),∴2m﹣3=﹣2m+3,解得,m=2.解法二:由解法①可得T(x,y)=x﹣y,当T(x,y)=T(y,x)时,x﹣y=y﹣x,∴x=y.∵T(3m﹣3,m)=T(m,3m﹣3),∴3m﹣3=m,∴m=2.【点睛】本题关键是能够把新运算转化为我们学过的知识,并应用一元一次方程或二元一次方程进行解题..八年级上学期期末数学试卷一、选择题(每题只有一个答案正确)1.已知ABC ∆的外角125ACD ∠=︒中,若70B ∠=︒,则A ∠等于( )A .50°B .55°C .60°D .65°【答案】B【分析】三角形的一个外角等于和它不相邻的两个内角的和.根据三角形的外角的性质计算即可.【详解】解:∵∠ACD 是△ABC 的一个外角,∴∠ACD=∠B+∠A ,∵∠B=70°,∴∠A=∠ACD-∠B=125°-70°=55°,故选:B .【点睛】本题考查的是三角形的外角的性质,掌握三角形的一个外角等于和它不相邻的两个内角的和是解题的关键.2.如图,ABC ∆中,AB AC =,=90BAC ∠︒,P 为BC 中点,90EPF ∠=︒,给出四个结论:①B BAP ∠=∠;②AE CF =;③PE PF =;④12ABC AEPF S S ∆=四边形,其中成立的有( )A .4个B .3个C .2个D .1个【答案】A 【分析】根据等腰直角三角形的性质,得∠B=45°,∠BAP=45°,即可判断①;由∠BAP=∠C=45°,AP=CP ,∠EPA=∠FPC ,得∆EPA ≅∆FPC ,即可判断②;根据∆EPA ≅∆FPC ,即可判断③;由12EPA FPA FPC FPA CPA ABC AEPF S S S S S S S ∆=+=+==四边形,即可判断④. 【详解】∵ABC ∆中,AB AC =,=90BAC ∠︒,P 为BC 中点,∴∠B=45°,∠BAP=12∠BAC=12×90°=45°,即:B BAP ∠=∠, ∴①成立;∵AB AC =,=90BAC ∠︒, P 为BC 中点,∴∠BAP=∠C=45°,AP=CP=12BC ,AP ⊥BC , 又∵90EPF ∠=︒, ∴∠EPA+∠APF=∠FPC+∠APF=90°,∴∠EPA=∠FPC ,∴∆EPA ≅∆FPC (ASA ),∴AE CF =,②成立;∵∆EPA ≅∆FPC ,∴PE PF =∴③成立,∵∆EPA ≅∆FPC , ∴12EPA FPA FPC FPA CPA ABC AEPF S SS S S S S ∆=+=+==四边形, ∴④成立.故选A .【点睛】本题主要考查等腰直角三角形的性质以及三角形全等的判定和性质定理,掌握等腰直角三角形的性质,是解题的关键.3.将直线y=-2x 向上平移后得到直线AB ,直线AB 经过点(1,4),则直线AB 的函数表达式为( ) A .y=2x+2B .y=2x-6C .y=-2x+3D .y=-2x+6 【答案】D【分析】设直线AB 的解析式为y=kx+b ,根据平移时k 的值不变可得k=-2,把(1,4)代入即可求出b 的值,即可得答案.【详解】设直线AB 的解析式为y=kx+b ,∵将直线y=-2x 向上平移后得到直线AB ,∴k=-2,∵直线AB 经过点(1,4),∴-2+b=4,解得:b=6,∴直线AB 的解析式为:y=-2x+6,故选:D .【点睛】本题考查了一次函数图象与几何变换,求直线平移后的解析式时要注意平移k 值不变.4.如图,在平面直角坐标系中,点A坐标为(2,23),作AB⊥x轴于点B,连接AO,绕原点B将△AOB 逆时针旋转60°得到△CBD,则点C的坐标为()A.(﹣1,3)B.(﹣2,3)C.(﹣3,1)D.(﹣3,2)【答案】A【分析】首先证明∠AOB=60°,∠CBE=30°,求出CE,EB即可解决问题.【详解】解:过点C作CE⊥x轴于点E,∵A(2,3,∴OB=2,AB=3∴Rt△ABO中,tan∠AOB233,∴∠AOB=60°,又∵△CBD是由△ABO绕点B逆时针旋转60°得到,∴BC=AB=3∠CBE=30°,∴CE=12BC3BE3=3,∴OE=1,∴点C的坐标为(﹣13,故选:A.【点睛】此题主要考查旋转的性质,解题的关键是熟知正切的性质.5.实数a 、b 、c 、d 在数轴上的位置如图所示,下列关系式不正确的是( )A .a b >B .b d b d -=+C .a c c a -=-D .1d c a ->-【答案】D【分析】根据数轴上某个数与原点的距离叫做这个数的绝对值解题即可.【详解】如下图:A .∵OA >OB ,∴|a|>|b|,故A 正确;B .b d OB OD b d -=+=+,故B 正确;C..|a-c|=|a+(-c )|=-a+c=c-a ,故C 正确;D .|d-1|=OD-OE=DE ,|c-a|=|c+(-a )|=OC+OA ,故D 不正确.故答案为:D .【点睛】本题考查了实数与数轴,正确理解绝对值的意义是解题的关键.6.如图,在ABC ∆中,已知点D ,E ,F 分别为BC ,AD ,CE 的中点,且16ABC S ∆=,则BEF ∆的面积是( )A .3B .4C .5D .6【答案】B 【分析】因为点F 是CE 的中点,所以△BEF 的底是△BEC 的底的一半,△BEF 高等于△BEC 的高;同理,D 、E 、分别是BC 、AD 的中点,可得△EBC 的面积是△ABC 面积的一半;利用三角形的等积变换可解答.【详解】 点F 是CE 的中点,∴△BEF 的底是EF ,△BEC 的底是EC ,即EF=12EC,而高相等, E 是AD 的中点, 12BEF BEC S S ∴=△△, E 是AD 的中点,12BDE S S ∴=△△ABD , 12DE CD S S =△C △A 12C S S ∴=△EBC △AB 14BFE C S S ∴=△△AB ,且ABC S =16 S ∴△BEF =4故选B.【点睛】本题主要考察三角形的面积,解题关键是证明得出14BFE C S S =△△AB . 7.分式23y x -有意义的条件是( ) A .x ≠0B .y ≠0C .x ≠3D .x ≠﹣3 【答案】C【分析】根据分式的分母不为0可得关于x 的不等式,解不等式即得答案.【详解】解:要使分式23y x -有意义,则30x -≠,解得:x≠1. 故选:C .【点睛】本题考查了分式有意义的条件,属于应知应会题型,熟知分式的分母不为0是解题的关键. 8.下列图形中,∠1与∠2不是同位角的是( ) A . B . C . D .【答案】B【分析】同位角是“F ”形状的,利用这个判断即可.【详解】解:观察A 、B 、C 、D ,四个答案,A 、C 、D 都是“F”形状的,而B 不是. 故选:B【点睛】本题考查基本知识,同位角的判断,关键在于理解同位角的定义.9.王老师乘公共汽车从A 地到相距50千米的B 地办事,然后乘出租车返回,出租车的平均速度比公共汽车多20千米/时,回来时所花的时间比去时节省了14,设公共汽车的平均速度为x 千米/时,则下面列出的方程中正确的是( )A .50350204x x =⨯+B .50350420x x =⨯+C .50150204x x +=+D .50501204x x =-+ 【答案】A【分析】根据题意得到回来时的速度为(x+20)千米/时,根据时间等于路程除以速度即可列出方程.【详解】根据题意得到回来时的速度为(x+20)千米/时,去时的时间是50x 小时, 回来时的时间是5020x +, ∵回来时所花的时间比去时节省了14, ∴50350204x x=⨯+, 故选:A.【点睛】此题考查分式方程的实际应用,正确理解时间、速度、路程之间的数量关系是解题的关键.10.如图,已知,5,3AB AC AB BC ===,以AB 两点为圆心,大于12AB 的长为半径画圆,两弧相交于点,M N ,连接MN 与AC 相较于点D ,则BDC ∆的周长为( )A .8B .10C .11D .13【答案】A 【分析】利用基本作图得到MN 垂直平分AB ,利用线段垂直平分线的定义得到DA=DB ,然后利用等线段代换得到△BDC 的周长=AC+BC .【详解】由作法得MN 垂直平分AB ,∴DA=DB ,∴△BDC 的周长=DB+DC+BC=DA+DC+BC=AC+BC=5+3=1.故选A .【点睛】本题考查了作图-基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).也考查了线段垂直平分线的性质.二、填空题11.已知一个角的补角是它余角的3倍,则这个角的度数为_____.【答案】45°【分析】根据互为余角的和等于90°,互为补角的和等于180°用这个角表示出它的余角与补角,然后列方程求解即可.【详解】设这个角为α,则它的余角为90°﹣α,补角为180°﹣α,根据题意得,180°-α=3(90°-α),解得α=45°.故答案为:45°.【点睛】本题考查了余角与补角,能分别用这个角表示出它的余角与补角是解题的关键.12.如图,点 P 在∠AOB 的平分线上,若使△AOP ≌△BOP ,则需添加的一个条件是________(只写一个即可,不添加辅助线).【答案】∠APO=∠BPO (答案不唯一)【解析】OA=OB 结合已知条件可得△AOP=≌△BOP (ASA ),当∠OAP=∠OBP 或∠APO=∠BPO 时,利用全等三角形的判定(AAS )可得△AOP ≌△BOP .解:已知点P 在∠AOB 的平分线上∴∠AOP=∠BOP∵OP=OP ,OA=OB∴△AOP=≌△BOP .故填OA=OB .13.某会场座位号将“7排4号”记作(7,4),那么“3排5号”记作__________;【答案】(3,5 ).【分析】根据有序数对确定点的位置,可得答案.【详解】解:在电影院中,若将电影票上“7排4号”记作(7,4),,那么”3排5号”应记作(3,5), 故答案为:(3,5 ).【点睛】本题考查了坐标确定位置,利用有序数对确定位置注意排在前,号在后.14.如图,ABC ∆中,90BAC ∠=︒,AB AC =,把ABC ∆沿DE 翻折,使点A 落在BC 边上的点F 处,且15EFC ∠=︒,那么ADE ∠的度数为________.【答案】60︒【解析】根据等腰三角形的性质,求得∠C ,然后利用三角形内角和求得∠FEC ,再根据邻补角的定义求得∠AEF ,根据折叠的性质可得∠AED=∠FED=12∠AEF ,在△ADE 中利用三角形内角和定理即可求解. 【详解】解:∵ABC ∆中,90BAC ∠=︒,AB AC =,∴∠B=∠C=45°又∵15EFC ∠=︒∴∠FEC=180°-∠EFC-∠C=180°-15°-45°=120°,∴∠AEF=180°-∠FEC =60°又∵∠AED=∠FED=12∠AEF=30°,∠A=90°, ∴∠ADE=180°-∠AED-∠A=180°-30°-90°=60°.故答案为:60°.【点睛】本题考查了等腰三角形等边对等角,三角形内角和的应用,折叠的性质,找出图形中相等的角和相等的线段是关键.15.已知等腰△ABC 中,底边BC =20,D 为AB 上一点,且CD =16,BD =12,则△ABC 的周长为____.【答案】1603【分析】由BC=20,CD=16,BD=12,计算得出BD 2+DC 2=BC 2,根据勾股定理的逆定理即可证明CD ⊥AB ,设AD=x ,则AC=x+12,在Rt △ACD 中,利用勾股定理求出x ,得出AC ,继而可得出△ABC 的周长.【详解】解:在△BCD 中,BC=20,CD=16,BD=12,∵BD 2+DC 2=BC 2,∴△BCD 是直角三角形,∠BDC=90°,∴CD ⊥AB ,设AD=x ,则AC=x+12,在Rt △ADC 中,∵AC 2=AD 2+DC 2,∴x 2+162=(x+12)2,解得:x=143. ∴△ABC 的周长为:(143+12)×2+20=1603. 故答案为:1603. 【点睛】 本题考查勾股定理及其逆定理的知识,解题的关键是利用勾股定理求出AD 的长度,得出腰的长度. 16.若数据的2, 3, 5, 8a ,方差是0.7,则数据12,13,15,10,18a 的方差是__________.【答案】0.7【分析】根据方差的意义与求法将第一组数据中的a 的值求出来,再代入第二组数据求方差即可.但仔细观察可以发现,第二组数据每一个数都是在第一组数据的基础上加10,其波动情况并没有发生变化,故方差没有变化,也是0.7.【详解】解:根据方差的意义,第二组数据每一个数都是在第一组数据基础上加了10,波动情况没有发生变化,故其方差也为0.7.故答案为:0.7.【点睛】本题主要考查了方差的意义,深刻理解其意义是解答关键.17.如图,在平面直角坐标系中,点A ,B 分别在y 轴和x 轴上,∠ABO=60°,在坐标轴上找一点P ,使得△PAB 是等腰三角形,则符合条件的点P 共有_____个.【答案】6【解析】如下图,符合条件的点P 共有6个.点睛:(1)分别以点A 、B 为圆心,AB 为半径画A 和B ,两圆和两坐标轴的交点为所求的P 点(与点A 、B 重合的除外);(2)作线段AB 的垂直平分线与两坐标轴的交点为所求的P 点(和(1)中重复的只算一次).三、解答题18.如图,在1010⨯网格中,每个小正方形的边长都为1.(1)建立如图所示的平面直角坐标系,若点()3,4A ,则点C 的坐标_______________;(2)将AOC ∆向左平移5个单位,向上平移2个单位,则点C 的坐标变为_____________;(3)若将AOC ∆的三个顶点的横纵坐标都乘以12-,请画出111AO C ∆; (4)图中格点AOC ∆的面积是_________________;(5)在x 轴上找一点P ,使得PA PC +最小,请画出点P 的位置,并直接写出PA PC +的最小值是______________.【答案】(1)()4,2;(2)()1,4-;(3)见解析;(4)5;(537【分析】(1)根据第一象限点的坐标特征写出C 点坐标;(2)利用点平移的坐标变换规律求解;(3)将△AOC 的三个顶点的横纵坐标都乘以- 12得到A 1、C 1的坐标,然后描点即可; (4)用一个矩形的面积分别减去三个三角形的面积去计算△AOC 的面积;(5)作C 点关于x 轴的对称点C′,然后计算AC′即可.【详解】解:(1)如图,点C 的坐标()4,2;(2)将AOC ∆向左平移5个单位,向上平移2个单位,则点C 的坐标变为()1,4-;(3)如图,11AOC ∆为所作;(4)图中格点AOC ∆的面积111442142435222=⨯-⨯⨯-⨯⨯-⨯⨯=; (5)如图,作C 关于x 轴的对待点C ’,连接C ’A 交x 轴于点P ,点P 即为所求作的点,PA PC +的最小值221637PA PC AC ''=+==+=.故答案为(1)()4,2;(2)()1,4-;(4)5;(5)37.【点睛】本题考查了作图-平移变换及轴对称变换:确定平移后图形的基本要素有两个:平移方向、平移距离.作图时要先找到图形的关键点,分别把这几个关键点按照平移的方向和距离确定对应点后,再顺次连接对应点即可得到平移后的图形.也考查了最短路径问题.19.如图,在正方形网格中,每个小正方形的边长都是1,每个小正方形的顶点叫做格点.网格中有一个格点ABC ∆(即三角形的顶点都在格点上).(1)在图中作出ABC ∆关于直线l 的对称图形111A B C ∆(要求点A 与1A ,B 与1B ,C 与1C 相对应). (2)在直线l 上找一点P ,使得PAC ∆的周长最小.【答案】见解析【分析】(1)直接利用关于直线对称点的性质得出对应点位置进而得出答案;(2)利用轴对称求最短路线的方法得出答案.【详解】(1)如图所示:111A B C ∆ 即为所求;(2)如图所示:点P 即为所求的点.【点睛】此题主要考查了轴对称变换以及三角形面积求法,正确得出对应点位置是解题关键.20.规定一种新的运算“x A JX B →+∞”,其中A 和B 是关于x 的多项式.当A 的次数小于B 的次数时,0x A JX B→+∞=;当A 的次数等于B 的次数时,x A JXB →+∞的值为A 、B 的最高次项的系数的商;当A 的次数大于B 的次数时,x A JX B →+∞不存在.例如:210x J x X →+∞-=,22223121x JX x x x →+∞++-= (1)求3232x x JX x x →+∞+-的值. (2)若223410(2)11A x xB x x -=-÷--,求:x A JX B →+∞的值. 【答案】(1)0;(2)12【分析】(1)由A 的次数小于B 的次数,可得答案;(2)根据已知条件,化简分式即可求出答案.【详解】(1)32A x =+,32B x x =-.∵A 的次数小于B 的次数, ∴32320x x JX x x →+∞+=-. (2)223410(2)11A x xB x x -=-÷-- 2232(25)()1(1)(1)x x x x x x ---=÷-+- 25(1)(1)12(25)x x x x x x -+-=⨯-- 12x x+=, ∵A 的次数等于B 的次数 ∴12x A JX B →+∞=【点睛】本题考查了分式的混合运算,熟练分解因式是解题的关键.21.先化简,再求值.2321222x x x x x ++⎛⎫-+÷ ⎪++⎝⎭,其中x =1. 【答案】11x x -+,13. 【分析】先化简分式,然后将x 的值代入计算. 【详解】解:原式()2243212x x x x +÷+-=++ ()()()211221x x x x x -++=⨯++11x x -=+ 当x =1时, 原式211213-==+ . 【点睛】本题考查了分式的计算,掌握分式化简得方法再代入求值是解题的关键.22.已知m n ==22m mn n ++的值.【答案】11【解析】先求出m+n 和mn 的值,再根据完全平方公式变形,代入求值即可.【详解】∵m n ==∴mn=1∴22m mn n ++=222()111m n mn +-=-=.【点睛】此题考查了二次根式的混合运算法则,完全平方公式的应用,主要考查了学生的计算能力,题目较好. 23.计算(1))(121123-⎛⨯-- ⎝⎭(2)已知:11,22x y ==,求22x xy y ++的值. 【答案】(1)28-;(2)1.【分析】(1)先利用完全平方公式和平方差公式计算二次根式的乘法、负指数幂运算,再计算二次根式的加减法即可得;(2)先求出x y +和xy 的值,再利用完全平方公式进行化简求值即可得.。
【八年级】2021 2021学年八年级数学上期末考试模拟试题(有答案)【八年级】2021-2021学年八年级数学上期末考试模拟试题(有答案)2022-2022学年最后一期八年级数学期末模拟试卷(考试时间:120分钟,满分:150分)一、多项选择题:(本大题共有12个子题,每个子题得4分,共计48分)1.下列大学的校徽图案中,是轴对称图形的是()a、不列颠哥伦比亚省。
2.下列长度的三条线段,能组成三角形的是()a、 3,4,8;b.5,6,11c.12,5,6;d.3,4,5.3.如果分数有意义,则X的值范围为()a.x≠-1;b.x≠1;c.x≥-1;d.x≥1.4.以下计算是正确的()a.3x2+2x3=5x5;b.;c、 3-2=-6;d.(x3)2=x6。
5.下列因式分解正确的是()a、 x2 xy+x=x(x-y);b.a3+2a2b+ab2=a(a+b)2c.x2-2x+4=(x-1)2+3;d.ax2-9=a(x+3)(x-3).6.简化:()a.1;b.0;c.x;d.x2。
7.如图所示,切割一个角度后得到一张等边三角形的纸四边形,则图中∠α+∠β的度数是()a、180°;b.220°;c.240°;d.300°。
8如图,在△abc中,d是bc边上一点,且ab=ad=dc,∠ 那么坏=40°∠ C是()a.25°;b.35°;c.40°;d.50°。
9.如图所示,CP的平分线∠ ACD位于△ ABC和BP的平分线∠ 基础知识交于点p,若∠bpc=40°,则∠cap的度数是()a、30°;b.40°;c.50°;d.60°10.若分式,则分式的值等于()a、;b;c;d。
11.关于x的方程无解,则m的值为()a、 -8;b-5;c-2;d.5。
12.在△abc中,∠acb=90°,ac=bc=4,点d为ab的中点,m,n分别在bc,ac上,且bm=cn现有以下四个结论:①dn=dm②∠ndm=90°③ 四边形cmdn的面积为4;④△cmn的面积最大为2.其中正确的结论有()A.①②④;B①②③;C②③④;D①②③④.二、填空题:(本大题6个小题,每小题4分,共24分)13.如果已知多边形的内角之和等于1260°,则该多边形为多边形14.因式分解:2a2-2=.15.解方程:,然后是x=16.如图,∠abf=∠dce,be=cf,请补充一个条件:,可以使用“AAS”方法获得△ Abf≌ △ DCE17.若,则的值是.18.在锐角△ ABC,BC=8,∠ ABC=30°,BD平分∠ ABC、m和N分别是BD和BC上的移动点,则CM+Mn的最小值为。
八年级第一学期期末测试一、单选题(每小题3分,共24分)1.在ABC ∆中,若,B C ∠∠都是锐角,则ABC ∆是( ) A .锐角三角形B .直角三角形C .钝角三角形D .以上都有可能2.如图,将三角形纸板的直角顶点放在直尺的一边上,∠1=30°,∠2=70°,则∠3等于( )A .40°B .30°C .20°D .15°3.已知一个正方形的边长为a ,将该正方形的边长增加1,则得到的新正方形的面积为( ) A .a 2+2a+1B .a 2-2a+1C .a 2+1D .a -14.已知如图,AB=AE ,只需再加一个条件就能证明∠ABC∠∠AED ,下列选项是所加条件,请判断哪一个不能判断∠ABC∠∠AED ( )A .∠B=∠EB .AC=ADC .∠ADE=∠ACBD .BC=DE5.下列各式中,能用平方差公式计算的是( ) A .()()1221b b -- B .()()1212b b --+ C .()()1212b b ---+D .()()1212b a -+试卷第2页,总15页装…………○…………○………要※※在※※装※※订※※线※题※※装…………○…………○………6.如果把分式x yxy+中的x y 、都扩大2倍,那么分式的值( ) A .不变B .缩小2倍C .扩大2倍D .无法确定7.如图,已知AD 是△ABC 的边BC 上的中线,CE 是△ADC 的边AD 上的中线,若△ABD 的面积为16cm 2,则△CDE 的面积为( )A .32 cm 2B .16cm 2C .8cm 2D .4cm 28.对于一个图形,通过两种不同的方法计算它的面积,可以得到一个数学等式.例如利用图1可以得到2()a a b a ab +=+,那么利用图2所得到的数学等式是( )A .2222()a b c a b c ++=++B .2222()222a b c a b c ab ac bc ++=+++++C .2222()a b c a b c ab ac bc ++=+++++D .2()222a b c a b c ++=++二、填空题(每小题3分,共24分)9.计算:3212ab ⎛⎫ ⎪⎝⎭-=________________.10.如果一个多边形的内角和与它的外角和相等,那么这个多边形是_____边形. 11.点M(a ,5)与点N(-3,b)关于Y 轴对称,则a + b =______. 12.若21)30(x y ++-=,则y x =___.13.如图,在△ABC 中,点D 是BC 上的点,∠BAD =∠ABC =40°,将△ABD 沿着AD 翻折得到△AED ,则∠CDE =_____°.14.一项工程,甲乙合作b 天能完成,甲单独做需要a 天完成,则乙独做需_____天完成.15.把分式方程311xx x -=+化成整式方程,去分母后的方程为______________________.16.如图,在Rt ABC ∆中,90C ∠=︒,以顶点A 为圆心,适当长为半径画弧,分别交AC ,AB 于点M ,N ,再分别以M ,N 为圆心,大于12MN 的长为半径画弧,两弧交于点P ,作射线AP 交边BC 于点D ,若15AB =,ABD ∆的面积是30,则CD 的长为__________.三、解答题(本题共有6个小题,每题6分,共36分) 17.(6分)计算:()()()3352322x x x x -⋅⋅+试卷第4页,总15页…○…………外…○…………内18.(6分)分解因式:()()2797m m m -+-19.(6分)解方程:22311x x x++=--20.(6分)化简:221(1)211m m m m ÷+-+-.21.(6分)如图,△ABC 中,AD 是高,AE 、BF 是角平分线,它们相交于点O ,∠BAC=60°,∠C=50°,求∠EAD 及∠BOA 的度数.。
一、选择题1.下列命题中,真命题的是( )A .同旁内角互补,两直线平行B .相等的角是对顶角C .同位角相等D .直角三角形两个锐角互补2.下列命题中的假命题是( )A .三角形的一个外角大于内角B .同旁内角互补,两直线平行C .21x y =-⎧⎨=⎩是二元一次方程231x y +=-的一个解 D .方差是刻画数据离散程度的量3.下列命题中,是真命题的是( )A .若,αβ∠∠同位角,则αβ∠=∠B .若1290∠+∠=︒,则1,2∠∠互余C .两条边和一个角分别相等的两个三角形全等D .一个事件发生的概率为0,则这个事件是不确定事件4.小亮用28元钱买了甲、乙两种水果,甲种水果每千克4元,乙种水果每千克6元,且乙种水果比甲种水果少买了2千克,求小亮两种水果各买了多少千克?设小亮买了甲种水果x 千克,乙种水果y 千克,则可列方程组为( )A .46282x y x y +=⎧⎨=+⎩B .46282y x x y +=⎧⎨=+⎩C .46282x y x y +=⎧⎨=-⎩D .46282y x x y +=⎧⎨=-⎩5.在平面直角坐标系中,解析式为31y x =+的直线a ,解析式为33y x =的直线b ,如图所示,直线a 交y 轴于点A ,以OA 为边作一个等边三角形OAB ∆,过点B 作y 轴的平行线交直线a 于点1A ,以1A B 为第二个等边三角形11A BB ∆,…顺次这样做下去,第2020个等边三角形的边长是( )A .20192B .20202C .4038D .40406.张师傅驾车从甲地到乙地、两地距500千米,汽车出发前油箱有25升,途中加油若干升,加油前、后汽车都以100千米/小时的速度匀速行驶.已知油箱中剩余油量y (升)与行驶时间t (小时)之间的关系如图,以下四种说法:①加油前油箱中剩余油量y(升)与行驶时间t (小时)的外函数关系是825y t =-+;②途中加油21升;③汽车加油后还可行驶4小时;④汽车到达乙地时油箱中还余油6升.其中正确的个数是( )A .1个B .2个C .3个D .4个 7.雪橇手从斜坡顶部滑了下来,下图中可以大致刻画出雪橇手下滑过程中速度—时间变化情况的是( ) A . B .C .D .8.将一张面值100元的人民币,兑换成10元或20元的零钱,兑换方案有( ) A .6种 B .7种 C .8种 D .9种9.《九章算术》中记载:“今有共买鸡,人出八,盈三;人出七,不足四.问人数、鸡价各几何?”译文:“今天有几个人共同买鸡,每人出8钱,多余3钱,每人出7钱,还缺4钱.问人数和鸡的价钱各是多少?”设人数有x 人,鸡的价钱是y 钱,可列方程组为( ).A .7384x y x y -=⎧⎨+=⎩B .7384x y x y +=⎧⎨-=⎩C .8374x y x y -=⎧⎨+=⎩D .8374x y x y +=⎧⎨-=⎩ 10.关于点P (-2,0)在直角坐标平面中所在的象限说法正确的是( )A .点P 在第二象限B .点P 在第三象限C .点P 既在第二象限又在第三象限D .点P 不在任何象限11.下列叙述中,①1的立方根为±1;②4的平方根为±2;③-8立方根是-2;④116的算术平方根为14.正确的是( ) A .①②③ B .①②④ C .①③④ D .②③④ 12.如图,在Rt ABC ∆中,90,45,2B BCA AC ︒︒∠=∠==D 在BC 边上,将ABD ∆沿直线AD 翻折,点B 恰好落在AC 边上的点E 处,若点P 是直线AD 上的动点,连接,PE PC ,则PEC ∆的周长的最小值为( )A .22-B .2C .21+D .1二、填空题 13.如图,AE ∥CF ,∠ACF 的平分线交AE 于点B ,G 是CF 上的一点,∠GBE 的平分线交CF 于点D ,且BD ⊥BC ,下列结论:①BC 平分∠ABG ;②AC ∥BG ;③与∠DBE 互余的角有2个;④若∠A =α,则∠BDF =1802α︒-.其中正确的有_____.(把你认为正确结论的序号都填上)14.如图,已知AD ∥BC ,∠1=∠2,∠A=112°,且BD ⊥CD ,则∠C=_____.15.已知方程组278ax by cx y +=⎧⎨-=⎩,甲解对了,得32x y =⎧⎨=-⎩.乙看错了c ,得22x y =-⎧⎨=⎩.则abc 的值为_______. 16.某风景区有4个相同的出口、4个相同的入口,假设在任何情况下每个入口的人数均是匀速出入,每个出口的人数均是匀速出入,当风景区人数已达到可容纳人数的20%时,若同时开放4个入口和2个出口,则1.6小时刚好达到可容纳人数;若同时开放2个入口和2个出口,则8小时刚好达到可容纳人数.受疫情影响,2020年五一期间,该风景区游览人数只允许达到平时可容纳人数的60%,当风景区人数已达到平时可容纳人数的10%时,若同时开放3个入口和2个出口,则经过__________小时刚好达到平时可容纳人数的60%.17.甲、乙两名运动员在笔直的公路上进行骑自行车训练.如图所示,反映了甲、乙两名运动员在公路上进行训练时的行驶路程S (千米)与行驶时间t (小时)之间的关系,在两人行驶过程中,当t =__________小时时,甲、乙两名运动员相距12千米.18.点M 在第四象限,距离x 轴5个单位长度,距离y 轴3个单位长度,则M 点的坐标为_____.19.对于实数a 、b 作新定义:@a b ab =,b a b a =※,在此定义下,计算:43@1232⎛⎫-- ⎪ ⎪⎝⎭(7543)2-=※________. 20.如图,它是四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形,如果大正方形的面积为13,小正方形的面积为1,直角三角形的较短的直角边长为a ,较长的直角边为b ,那么+a b 的值为__________.三、解答题21.已知,如图,ADE B ∠=∠,12∠=∠,GF AB ⊥.求证:CD AB ⊥;下面是证明过,请你将它补充完整证明:∵ADE B ∠=∠∴ // ( )∴13∠=∠又∵12∠=∠∴23∠∠=∴ // ( )∴FGB ∠=∵FG AB ⊥∴FGB ∠=∴CDB ∠=∴CD AB ⊥22.小明的妈妈今天在菜市场买回2斤萝卜、1斤排骨共花了43.8元,而两个月前买同重量的这两样菜只要37元,与两个月前相比,这次萝卜的单价下降了10%,但排骨单价却上涨了20%,求:两个月前买的萝卜和排骨的单价分别为多少元?23.如图,在平面直角坐标系中,()1,4A -,()3,3B -,()2,1C -.(1)已知111A B C △与ABC 关于x 轴对称,画出111A B C △(请用2B 铅笔将111A B C △描深);(2)在y 轴上找一点P ,使得PBC 的周长最小,试求点P 的坐标.24.如图所示的正方形网格中,每个小正方形的边长都是1,△ABC 顶点都在网格线的交点上,点B 坐标为(﹣3,0),点C 坐标为(﹣2,﹣2);(1)根据上述条件,在网格中建立平面直角坐标系xOy ;(2)画出△ABC 分别关于x 轴的对称图形△A 1B 1C 1;(3)写出点A 关于y 轴对称点的坐标.25.25(326)(326)+-.26.如图为一个广告牌支架的示意图,其中AB=13m ,AD=12m ,BD=5m ,AC=15m ,求图中△ABC 面积.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】利用平行线的判定、对顶角的定义及互补的定义分别判断后即可确定正确的选项.【详解】解:A 、同旁内角互补,两直线平行,正确,是真命题;B 、对顶角相等,但相等的角不一定是对顶角,故错误,是假命题;C 、只有当两直线平行时,同位角才会相等;两直线不平行时,同位角不会相等,故错误,是假命题;D 、直角三角形两锐角互余,不会互补,故错误,是假命题.故选:A .【点睛】本题考查了命题与定理的知识,解题的关键是了解平行线的判定、对顶角的定义及互补的定义,难度不大.2.A解析:A【分析】根据三角形的外角、平行线的判断、二元一次方程的解以及方差即可判断出结果.【详解】解:在三角形内角中大于90°角的外角是一个锐角,故A 选项符合题目要求;同旁内角互补,两直线平行,故B 选项不符合题目要求;21x y =-⎧⎨=⎩是二元一次方程231x y +=-的一个解,故C 选项不符合题目要求; 方差是刻画数据离散程度的量,故D 选项不符合题目要求.故选:A【点睛】本题主要考查的是命题与定理的知识,正确的掌握这些知识点是解题的关键.3.B解析:B【分析】根据同位角的定义、角互余的定义、三角形全等的判定定理、事件的确定性逐项判断即可得.【详解】A 、若,αβ∠∠同位角,则α∠与β∠不一定相等,此项是假命题;B 、若1290∠+∠=︒,则1,2∠∠互余,此项是真命题;C 、两条边和它们的夹角分别对应相等的两个三角形全等,此项是假命题;D 、一个事件发生的概率为0,则这个事件是不可能事件,此项是假命题;故选:B .【点睛】本题考查了同位角的定义、角互余的定义、三角形全等的判定定理、事件的可能性等知识点,熟练掌握各定义与判定定理是解题关键.4.A解析:A【分析】设小亮买了甲种水果x 千克,乙种水果y 千克,根据两种水果共花去28元,乙种水果比甲种水果少买了2千克,据此列方程组.【详解】设小亮买了甲种水果x 千克,乙种水果y 千克,由题意得:46282x y x y +=⎧⎨=+⎩. 故选:A .【点睛】本题考查了由实际问题抽象出二元一次方程组,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程组.5.A解析:A【分析】延长A 1B 交x 轴于D ,A 2B 1交x 轴于E ,根据等边三角形的性质得OA=OD ,A 1B=BB 1,A 2B 1=B 2B 1,直线OB 的解析式为3y x =,得出∠BOD=30°,由直线a :1y =+得出第一个等边三角形边长为1,由30°角的性质得BD=12,由勾股定理得OD=2,把x=2代入y=3x+1求得A1的纵坐标,即可求得第二个等边三角形的边长,…,按照此规律得到第三个、第四个等边三角形的边长,从而求得第2020个等边三角形的边长.【详解】解:延长A1B交x轴于D,A2B1交x轴于E,如图,∵△OAB、△BA1B1、△B1A2B2均为等边三角形,∴OA=OD,A1B=BB1,A2B1=B2B1,∵直线OB的解析式为3,∴∠BOD=30°,由直线a:3可知OA=1,∴OB=1,∴BD=12,∴22112⎛⎫- ⎪⎝⎭3把33得y=52,∴A1D=52,∴A1B=2,∴BB1=A1B=2,∴OB1=3,∴B1E=32,∴22332⎛⎫- ⎪⎝⎭332,把333得y=112,∴A2E=112,∴A2B1=4,同理得到A3B2=23,…,按照此规律得到第2020个等边三角形的边长为22019,故选A.【点睛】本题考查了图形类规律探究、一次函数图象上点的坐标特征、等边三角形的性质,含30°角的直角三角形的性质,以及勾股定理等知识,找出第n个等边三角形的边长为2n-1是解题的关键.6.C解析:C【分析】根据题意首先利用待定系数法求出函数解析式,进而利用图象求出耗油量以及行驶时间进行分析判断即可.【详解】解:①由题意得,图象过(0,25)(2,9),设加油前油箱中剩余油量y(升)与行驶时间t(小时)的函数关系是:y=kt+b,∴2529bk b⎧⎨⎩+==,解得825kb⎧⎨⎩-==,∴加油前油箱中剩余油量y(升)与行驶时间t(小时)的函数关系是:y=-8t+25,故①正确;②途中加油30-9=21(升),故②正确;③∵汽车耗油量为:(25-9)÷2=8升/小时,∴30÷8=3.75,∴汽车加油后还可行驶3.75小时,故③错误;④∵从甲地到乙地,两地相距500千米,加油前、后汽车都以100千米/小时的速度匀速行驶,∴需要:500÷100=5(小时)到达,∴汽车到达乙地时油箱中还余油30-8×(5-2)=6(升),故④正确;综上①②④正确.故选:C.【点睛】本题主要考查一函数应用以及待定系数法求一次函数解析式等知识,根据已知图象获取正确信息是解题的关键.7.A解析:A【分析】从下滑过程中速度与时间变化情况来看,速度随时间的增大而增大,不会保持不变,更不会减少,从而可得出结果.【详解】解:雪撬手从斜坡顶部滑下来,速度越来越快即速度随时间的增大而增大.符合条件的只有A .故选:A .【点睛】本题考查函数图象的判断,根据速度随时间的增大而增大确定函数图象是解题的关键. 8.A解析:A【解析】试题设兑换成10元x 张,20元的零钱y 元,由题意得:10x+20y=100,整理得:x+2y=10,方程的整数解为:24x y =⎧⎨=⎩,43x y =⎧⎨=⎩,62x y =⎧⎨=⎩,81x y =⎧⎨=⎩,10{0x y ==,05x y =⎧⎨=⎩. 因此兑换方案有6种,故选A .考点:二元一次方程的应用.9.C解析:C【分析】设人数有x 人,鸡的价钱是y 钱,依据题意列方程组,即可完成求解.【详解】设人数有x 人,鸡的价钱是y 钱依据题意得:8374x y x y-=⎧⎨+=⎩ 即8374x y x y -=⎧⎨+=⎩故选:C .【点睛】本题考查了二元一次方程组的知识;解题的关键是熟练掌握二元一次方程组的性质,从而完成求解.10.D解析:D【分析】根据点的坐标特征:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-)求解即可.【详解】解:点P (-2,0)不在任何象限,故选:D .【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).11.D解析:D【分析】分别求出每个数的立方根、平方根和算术平方根,再判断即可.【详解】∵1的立方根为1,∴①错误;∵4的平方根为±2,∴②正确;∵−8的立方根是−2,∴③正确; ∵116的算术平方根是14,∴④正确; 正确的是②③④,故选:D .【点睛】 本题考查了平方根、算术平方根和立方根.解题的关键是掌握平方根、算术平方根和立方根的定义.第II 卷(非选择题)请点击修改第II 卷的文字说明12.B解析:B【分析】连接BP ,根据已知条件求出AB=BC=1,由翻折得:BD=DE ,∠BDA=∠EDA ,AE=AB=1,1,证明△BDP ≌△EDP ,推出BP=EP ,当点P 与点D 重合时,即可求出PEC ∆的周长的最小值.【详解】连接BP ,在Rt ABC ∆中,90,45B BCA ︒∠=∠=︒,∴∠BAC=45BCA ∠=︒,AB=BC ,∴22222AB AC ===,∴AB=BC=1,由翻折得:BD=DE ,∠BDA=∠EDA ,AE=AB=1,∴1,在△BDP 和△EDP 中,BD ED BDP EDP DP DP =⎧⎪∠=∠⎨⎪=⎩,∴△BDP ≌△EDP ,∴BP=EP ,∴当点P 与点D 重合时,PE+PC=PB+PC=BC 的值最小,此时PEC ∆的周长最小, PEC ∆的周长的最小值为BC+CE=1+21-=2,故选:B ..【点睛】此题考查翻折的性质,勾股定理,全等三角形的判定及性质,解题的关键是根据翻折的性质证得△BDP ≌△EDP ,由此推出当点P 与点D 重合时PEC ∆的周长最小,合情推理科学论证.二、填空题13.①②④【分析】求出∠EBD +∠ABC =90°∠DBG +∠CBG =90°求出∠ABC =∠GBC 根据角平分线的定义即可判断①;根据平行线的性质得出∠ABC =∠BCG 求出∠ACB =∠GBC 根据平行线的判定解析:①②④.【分析】求出∠EBD +∠ABC =90°,∠DBG +∠CBG =90°,求出∠ABC =∠GBC ,根据角平分线的定义即可判断①;根据平行线的性质得出∠ABC =∠BCG ,求出∠ACB =∠GBC ,根据平行线的判定即可判断②;根据余角的定义即可判断③;根据平行线的性质得出∠EBG =∠A =α,求出∠EBD =12∠EBG =12α,根据平行线的性质得出∠EBD +∠BDF =180°,即可判断④.【详解】∵BD ⊥BC ,∴∠DBC =90°,∴∠EBD +∠ABC =180°﹣90°=90°,∠DBG +∠CBG =90°,∵BD平分∠EBG,∴∠EBD=∠DBG,∴∠ABC=∠GBC,即BC平分∠ABG,故①正确;∵AE∥CF,∴∠ABC=∠BCG,∵CB平分∠ACF,∴∠ACB=∠BCG,∵∠ABC=∠GBC,∴∠ACB=∠GBC,∴AC∥BG,故②正确;与∠DBE互余的角有∠ABC,∠CBG,∠ACB,∠BCG,共4个,故③错误;∵AC∥BG,∠A=α,∴∠EBG=∠A=α,∵∠EBD=∠DBG,∴∠EBD=12∠EBG=12α,∵AB∥CF,∴∠EBD+∠BDF=180°,∴∠BDF=180°﹣∠EBD=180°﹣12α,故④正确;故答案为:①②④.【点睛】本题考查了平行线的性质和判定,角平分线的定义等知识点,能灵活运用定理进行推理是解此题的关键.14.56°【解析】解:∵AD∥BC∴∠2=∠ADB又∵AD∥BC∠A=112°∴∠ABC=180°-∠A=68°∵∠1=∠2∴∠1=∠2=∠ADB=34°∵BD⊥CD∴∠2+∠C=90°∴∠C=90°﹣解析:56°【解析】解:∵AD∥BC,∴∠2=∠ADB.又∵AD∥BC,∠A=112°,∴∠ABC=180°-∠A=68°,∵∠1=∠2,∴∠1=∠2=∠ADB=34°,∵BD⊥CD,∴∠2+∠C=90°,∴∠C=90°﹣34°=56°,故答案为56°.点睛:此题综合运用了三角形的内角和定理、平行线的性质.三角形的内角和是180°;两条直线平行,则同位角相等,内错角相等,同旁内角互补.15.-40【分析】把甲的结果代入方程组求出c的值得到关于a与b的方程将乙结果代入第一个方程得到a与b的方程联立求出a与b的值在计算abc的值即可【详解】解:由甲运算结果得解得由乙运算结果得得解得=故答案解析:-40【分析】把甲的结果代入方程组求出c 的值,得到关于a 与b 的方程,将乙结果代入第一个方程得到a 与b 的方程,联立求出a 与b 的值,在计算abc 的值即可.【详解】解:由甲运算结果得322a b -=,3148c +=,解得2c =-,由乙运算结果得222a b -+=,得322222a b a b -=⎧⎨-+=⎩, 解得45a b =⎧⎨=⎩. ∴ abc =45(2)40⨯⨯-=-故答案为:-40【点睛】本题考查了解二元一次方程组,熟练掌握运算法则是解本题的关键.16.【分析】设每个入口每小时可进可容纳人数的每个出口每小时可出可容纳人数的根据当风景区人数已达到可容纳人数的20时若同时开放4个入口和2个出口则16小时刚好达到可容纳人数;若同时开放2个入口和2个出口则 解析:53【分析】设每个入口每小时可进可容纳人数的%x ,每个出口每小时可出可容纳人数的%y ,根据“当风景区人数已达到可容纳人数的20%时,若同时开放4个入口和2个出口,则1.6小时刚好达到可容纳人数;若同时开放2个入口和2个出口,则8小时刚好达到可容纳人数”,即可得出关于,x y 的二元一次方程组,解之即可得出,x y 的值,再将其代入60%10%3%2%x y --即可求出结论.【详解】解:设每个入口每小时可进可容纳人数的%x ,每个出口每小时可出可容纳人数的%y , 依题意,得: 1.64 1.62100208282=10020x y x y ⨯-⨯=-⎧⎨⨯-⨯-⎩, 解得:2015x y =⎧⎨=⎩, ∴60%10%50%53%2%320%215%3x y -==-⨯-⨯.故答案为:53. 【点睛】 本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.17.【分析】根据一次函数图象求出甲和乙的解析式然后先考虑两者相遇之前是否有可能相距12千米再考虑相遇之后相距12千米的情况【详解】解:根据函数图象设甲的解析式为乙的解析式为用待定系数法求解析式将代入解得 解析:5.4【分析】根据一次函数图象求出甲和乙的解析式,然后先考虑两者相遇之前是否有可能相距12千米,再考虑相遇之后相距12千米的情况.【详解】解:根据函数图象,设甲的解析式为11y k x =,乙的解析式为()()22311k x x y k x b x ⎧≤⎪=⎨+>⎪⎩, 用待定系数法求解析式,将()3,120代入11y k x =,解得140k =,则140y x =,将()1,50和()3,120代入()()22311k x x y k x b x ⎧≤⎪=⎨+>⎪⎩,解得23503515k k b =⎧⎪=⎨⎪=⎩,则()()250135151x x y x x ⎧≤⎪=⎨+>⎪⎩, 当1x =时,2150401012y y -=-=<,∴甲和乙在相遇之前不可能相距12千米,当3x >时,()1240351512y y x x -=-+=,解得 5.4x =.故答案是:5.4.【点睛】本题考查一次函数的实际应用,解题的关键是能够看懂函数图象,把图象和实际含义联系起来,通过求解析式来解决实际问题.18.(3﹣5)【分析】首先根据点到xy 轴的距离求出M 点的横纵坐标 然后根据第四象限内点的坐标的特点可确定M 点的坐标【详解】∵点M 在第四象限距离x 轴5个单位长度距离y 轴3个单位长度∴点M 的纵坐标为﹣5横坐 解析:(3,﹣5).【分析】首先根据点到x,y 轴的距离求出M 点的横纵坐标 ,然后根据第四象限内点的坐标的特点可确定M 点的坐标.【详解】∵点M在第四象限,距离x轴5个单位长度,距离y轴3个单位长度,∴点M的纵坐标为﹣5,横坐标为3,即点P的坐标为(3,﹣5),故答案为:(3,﹣5).【点睛】本题主要考查点到x,y轴的距离及每个象限内点的坐标的特点,掌握每个象限内点的坐标的特点是解题的关键.19.【分析】先将新定义的运算化为一般运算再计算二次根式的混合运算即可【详解】解:=====故答案为:【点睛】本题考查新定义的实数运算二次根式的混合运算能根据题意将新定义运算化为一般运算是解题关键解析:1-【分析】先将新定义的运算化为一般运算,再计算二次根式的混合运算即可.【详解】解:2-※=2=2-=2=43-=1-故答案为:1-【点睛】本题考查新定义的实数运算,二次根式的混合运算.能根据题意将新定义运算化为一般运算是解题关键.20.5【分析】根据题意结合图形求出ab与a2+b2的值原式利用完全平方公式化简后代入计算即可求出值【详解】解:根据题意得:c2=a2+b2=134×ab=13-1=12即2ab=12则(a+b)2=a2解析:5【分析】根据题意,结合图形求出ab与a2+b2的值,原式利用完全平方公式化简后代入计算即可求出值.【详解】解:根据题意得:c2=a2+b2=13,4×12ab=13-1=12,即2ab=12,则(a+b)2=a2+2ab+b2=13+12=25,则a+b=5故答案为:5.【点睛】本题考查了勾股定理的证明,利用了数形结合的思想,熟练掌握勾股定理是解题的关键.三、解答题21.DE ,BC ,同位角相等,两直线平行 ;GF ,CD ,同位角相等,两直线平行;CDB ∠,90,90【分析】根据平行线、垂线的性质分析,即可将证明过程补充完整.【详解】证明:∵ADE B ∠=∠∴//DE BC (同位角相等,两直线平行)∴13∠=∠(两直线平行 ,内错角相等)又∵12∠=∠∴23∠∠=∴//GF CD (同位角相等,两直线平行)∴FGB CDB ∠=∠∵FG AB ⊥∴ 90FGB ∠=∴90CDB =∠∴CD AB ⊥故答案为:DE ,BC ,同位角相等,两直线平行 ;GF ,CD ,同位角相等,两直线平行;CDB ∠,90,90.【点睛】本题考查了平行线、垂线的知识;解题的关键是熟练掌握平行线的判定和性质定理,从而完成求解.22.小明妈妈两个月前买的萝卜的单价为1元,排骨的单价为35元.【分析】设小明妈妈两个月前买的萝卜的单价为x 元,排骨的单价为y 元,根据总价=单价×数量结合妈妈今天和两个月前买2斤萝卜、1斤排骨所花钱数,即可得出关于x ,y 的二元一次方程组,解之即可得出结论.【详解】解:设小明妈妈两个月前买的萝卜的单价为x 元,排骨的单价为y 元,根据题意,得2372(110%)(120%)43.8x y x y +=⎧⎨-++=⎩, 化简,得2371.8 1.243.8x y x y +=⎧⎨+=⎩,解这个方程组,得135 xy=⎧⎨=⎩.所以小明妈妈两个月前买的萝卜的单价为1元,排骨的单价为35元.【点睛】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.23.(1)答案见解析;(2)(0,95 ).【分析】(1)分别作出ABC三个顶点关于x轴的对称点,再首尾顺次连接即可;(2)作点C关于y轴的对称点C',再利用待定系数法求出BC'所在直线解析式,再令x=0,求出y,即可求出P点坐标.【详解】(1)如图所示111A B C△即为所求.(2)如图所示P点即为所求,由对称可知,点C关于y轴的对称点C'的坐标为(2,1),设BC'所在直线解析式为y kx b=+,则3312k bk b=-+⎧⎨=+⎩,解得2595kb⎧=-⎪⎪⎨⎪=⎪⎩,即BC'所在直线解析式为2955y x=-+.当0x=时,95y=,即P点坐标为(0,95).【点睛】本题考查作图-轴对称变换以及利用待定系数法求一次函数解析式,解题的关键是掌握轴对称的定义和性质.24.(1)见解析;(2)见解析;(3)(5,4)【分析】(1)根据B ,C 两点坐标,分别确定横轴与纵轴的位置,即可作出平面直角坐标系; (2)分别作出A ,B ,C 的对应点A 1,B 1,C 1,再依次连接即可得出图形;(3)根据轴对称与坐标变换的性质,由点A 的坐标即可得出结果.【详解】解:(1)如图,平面直角坐标系即为所求作.(2)如图,△A 1B 1C 1;即为所求作.(3)∵点A 的坐标为(-5,4),∴点A 关于y 轴对称点的坐标(5,4).【点睛】本题考查作图−轴对称变换,解题的关键是熟练掌握平面直角坐标系中的坐标特点及轴对称与坐标变换之间的规律.25.10-【分析】根据二次根式运算法则计算即可.【详解】 解:原式=2253(26)+-5924=+-1424=-10=-.【点睛】本题考查了二次根式的运算,解题关键是熟练运用二次根式运用算法则进行计算,注意:平方差公式的运用.26.84m 2【分析】由222AD BD AB +=可推导出△ABD 为直角三角形且90ADB ∠=;从而推导出△ADC 为直角三角形,再利用勾股定理计算得CD ,从而完成求解.【详解】∵AB=13m ,AD=12m ,BD=5m∴222AD BD AB +=∴△ABD 为直角三角形且90ADB ∠=∴18090ADC ADB ∠=-∠=∴△ADC 为直角三角形∴222AD CD AC += ∴9CD = ∴()1122ABC S AD BC AD BD CD =⨯=⨯+△ ∵5914BD CD +=+= ∴()11==1214=8422ABC S AD BD CD ⨯+⨯⨯△m 2. 【点睛】本题考察了勾股定理和勾股定理的逆定理.求解的关键是熟练掌握勾股定理的性质,完成求解.。
宁夏2021-2022学年度八年级上学期数学期末考试试卷(I)卷姓名:________ 班级:________ 成绩:________一、单选题 (共8题;共16分)1. (2分) (2018九上·秦淮月考) 如图图形既是轴对称图形又是中心对称图形的是()A .B .C .D .2. (2分) (2020七下·恩施期末) 在下列说法中:① 是10的平方根:②实数的平方根为;③ 的平方根是;④0.01的算术平方根是0.1;⑤64的立方根是,正确的有()A . 1个B . 2个C . 3个D . 4个3. (2分) (2020八上·湛江期中) 如图,已知,则∠α等于()A . 72°B . 60°C . 58°D . 50°4. (2分) (2021八上·滨海期末) 下列实数是无理数的是()A . 0.5B .C . 1D .5. (2分)在△ABC中,∠A,∠B,∠C的对边分别是a,b,c,满足下列条件的△ABC 不是直角三角形的是()A . ∠A∶∠B∶∠C = 1∶1∶2B . a∶b∶c =1∶1∶C .D . ∠A+∠B=2∠C6. (2分) (2016八上·大悟期中) 点M(1,2)关于x轴对称的点的坐标为()A . (﹣1,2)B . (﹣1,﹣2)C . (1,﹣2)D . (2,﹣1)7. (2分)下列一次函数中,y随着x增大而减小的是().A .B .C .D .8. (2分) (2016九上·苏州期末) 下列四个函数图象中,当时,随的增大而增大的是()A .B .C .D .二、填空题 (共10题;共10分)9. (1分)(2018·上海) 如果一次函数y=kx+3(k是常数,k≠0)的图象经过点(1,0),那么y的值随x 的增大而________.(填“增大”或“减小”)10. (1分) (2017八上·秀洲月考) 点P(2,3)向下平移2个单位,所得点的坐标是________。
宁夏石嘴山市2021届数学八年级上学期期末学业水平测试试题模拟卷二一、选择题1.石墨烯被认为是一种未来革命性的材料,它是一种由碳原子构成的纳米材料.其中每两个相邻碳原子之间的键长为0.000000000142米,将0.000000000142用科学计数法表示为( ) A .90.14210-⨯B .101.4210-⨯C .111.4210-⨯D .80.14210-⨯2.若分式()()2421x x x ---的值为零,则x 的值是( )A .2或-2B .2C .-2D .43.据测定,某种杨絮纤维的直径约为0.0000105m v ,该数值用科学记数法表示为( ) A .51.0510⨯B .51.0510-⨯C .41.0510-⨯D .710510-⨯4.已知a+b =m ,ab =n ,则(a ﹣b)2等于( ) A .m 2﹣n B .m 2+n C .m 2+4n D .m 2﹣4n 5.整式的乘法计算正确的是( ) A .()()2333x x x +-=+B .()222x y x y +=+C .2361632x x x ⋅= D .()()2222x y x y x xy y +-=--6.如图,从边长为a+2的正方形纸片中剪去一个边长为a ﹣2的正方形(a >2),剩余部分沿线剪开,再拼成一个长方形(不重叠无缝隙),则该长方形的面积是( )A .8aB .4aC .2aD .a 2﹣47.在△ABC 中,AB=AC=5,BC=8,AD ⊥BC ,垂足为D ,BE 是边AC 上的中线,AD 与BE 相交于点G ,那么AG 的长为 ( )A .1B .2C .3D .无法确定.8.如图,平行四边形ABCD 的对角线AC ,BD 交于点O ,AE 平分∠BAD 交BC 于点E ,且∠ADC =60°,AB =12BC ,连接OE ,下列结论:①∠CAD =30°;②S ABCD =AB •AC ;③OB =AB :④OE =14BC .其中成立的有( )A.①②③B.①②④C.①③④D.②③④9.如图,在Rt ABC 中,90C ∠=,AD 平分BAC ∠,交BC 于D ,若12CD BD =,点D 到边AB 的距离为6,则BC 的长是( )A.6B.12C.18D.2410.如图,已知的3条边和3个角,则能判断和全等的是()A.甲和乙B.乙和丙C.只有乙D.只有丙11.如图所示,在等边三角形ABC中,AD⊥BC,E为AD上一点,∠CED=50°,则∠ABE等于()A.10°B.15°C.20°D.25°12.如图1,已知AB=AC,D为∠BAC的角平分线上面一点,连接BD,CD;如图2,已知AB=AC,D、E为∠BAC的角平分线上面两点,连接BD,CD,BE,CE;如图3,已知AB=AC,D、E、F为∠BAC的角平分线上面三点,连接BD,CD,BE,CE,BF,CF;…,依次规律,第12个图形中有全等三角形的对数是( )A.80对B.78对C.76对D.以上都不对13.若一个多边形的内角和是1080°,则此多边形的边数是()A.十二 B.十 C.八 D.十四△的边BC上的高,下列三角板的摆放位置正确的是14.用三角板作ABCA.B.C.D.15.一副三角板有两个直角三角形,如图叠放在一起,则∠α的度数是()A.165°B.120°C.150°D.135°二、填空题16.当x =2018时,分式293x x -+的值为_____.17.当k =_____时,100x 2﹣kxy+49y 2是一个完全平方式. 【答案】±140.18.如图,D 为等边△ABC 的边AB 上一点,且DE ⊥BC ,EF ⊥AC ,FD ⊥AB ,垂足分别为点E 、F 、D .若AB=6,则BE=_____.19.如图,直线12l l ,143=∠,272=∠,则3∠的度数是__________度.20.已知等腰三角形一腰的垂直平分线与另一腰所在直线的夹角为50°,则此等腰三角形的顶角为_____. 三、解答题21.(1)因式分解:(x ²+4)²-16x ²;(2)先化简221214211x x x x x x -+⋅÷--+-.再从-1,1,2选取一个合适的数代入求值.22.化简:2(2)(2)2(3)(1)x x x x x +---+- 23.完成下面的证明:如图,∠C=50°,E 是BA 延长线上的一点,过点A 作//BC ﹒若AD 平分∠CAE ,求∠B 的度数.解:∵//BC ,∠C=50°( 已知 ),∴∠2= = °( ). 又∵AD 平分∠CAE ( 已知 ), ∴ =∠2=50°( ).又∵//BC(已知),∴∠B= = °().24.问题背景:某数学兴趣小组把两个等腰直角三角形的直角顶点重合,发现了一些有趣的结论.结论一:(1)如图1,在△ABC、△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,连接BD,CE,试说明△ADB ≌△AEC;结论二:(2)如图2,在(1)的条件下,若点E在BC边上,试说明DB⊥BC;应用:(3)如图3,在四边形ABCD中,∠ABC=∠ADC=90°,AB=CB,∠BAD+∠BCD=180°,连接BD,BD=7cm,求四边形ABCD的面积.25.在中,,点,分别是边,上的点,点是一动点.记为,为,为.(1)若点在线段上,且,如图1,则_____________;(2)若点在边上运动,如图2所示,请猜想,,之间的关系,并说明理由;(3)若点运动到边的延长线上,如图3所示,则,,之间又有何关系?请直接写出结论,不用说明理由.【参考答案】***一、选择题16.201517.无18.219.6520.40°或140°三、解答题21.(1)22(2)(2)x x +-;(2)13- . 22.43x -23.∠C ,50,两直线平行,内错角相等,∠1,角平分线的意义,∠1,50 ,两直线平行,同位角相等 【解析】 【分析】根据平行线的性质,角平分线的意义,即可解答. 【详解】 解:∵//BC ,∠C=50°,(已知)∴∠2= ∠C = 50 °(两直线平行,内错角相等) 又∵AD 平分∠CAE ,(已知)∴ ∠1 =∠2=50°(角平分线的意义) ∵//BC ,(已知)∴∠B= ∠1 = 50 °(两直线平行,同位角相等)【点睛】此题考查平行线的性质,角平分线的意义,解题关键在于掌握其定义性质. 24.(1)见解析;(2)见解析;(3)S 四边形ABCD =24.5(cm 2). 【解析】 【分析】(1)根据全等三角形的判定SAS 进行证明即可得到答案;(2)根据全等三角形的性质和三角形内角和定理进行计算,即可得到答案;(3)作BE ⊥BD ,交DC 的延长线于点E ,根据三角形内角和和全等三角形的判定定理(ASA ),即可得到答案. 【详解】(1)∵∠BAC =∠DAE =90°, ∴∠BAE+∠CAE =∠BAE+∠BAD , ∴∠CAE =∠BAD , 又∵AB =AC ,AD =AE , ∴△ADB ≌△AEC (SAS ); (2)由(1)得△ADB ≌△AEC , ∴∠C =∠ABD , 又∵∠ABC+∠C =90°, ∴∠ABC+∠ABD =90°, ∴DB ⊥BC ;(3)作BE ⊥BD ,交DC 的延长线于点E ,∵BE⊥BD,∴∠CBE+∠DBC=90°,又∵∠ABD+∠DBC=90°,∴∠ABD=∠EBC,∵∠BAD+∠BCD=180°,∠BCE+∠BCD=180°,∴∠BAD=∠BCE,又∵BA=BC,∴△BAD≌△BCE(ASA),∴BD=BE,且S△BAD=S△BCE,∴S四边形ABCD=S△ABD+S△DBC=S△BCE+S△BCD=S△BDE=×7×7=24.5(cm2).【点睛】本题考查全等三角形的判定(SAS、ASA)和性质、三角形内角和定理,解题的关键是掌握全等三角形的判定(SAS、ASA)和性质、三角形内角和定理.25.(1);(2);(3)。
宁夏石嘴山市八年级上学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共10分)1. (1分) (2019七上·柯桥期中) 下列数中π、,﹣,,3.1416,3.2121121112…(每两个2之间多一个1),中,无理数的个数是()A . 1个B . 2个C . 3个D . 4个2. (1分)如图,七年级(下)教材第6页给出了利用三角尺和直尺画平行线的一种方法,能说明AB∥DE 的条件是()A . ∠CAB=∠FDEB . ∠ACB=∠DFEC . ∠ABC=∠DEFD . ∠BCD=∠EFG3. (1分) (2018八上·确山期末) 下列根式是最简二次根式的是()A .B .C .D .4. (1分) (2017七下·海安期中) 在平面直角坐标系中,点(-1,m2+1)一定在()A . 第一象限B . 第二象限C . 第三象限D . 第四象限5. (1分) (2017七下·马山期中) 以下命题中是真命题的是()A . 内错角相等B . 相等的角是对顶角C . 两个角的和等于平角时,这两个角互为补角D . 两个锐角的和是锐角6. (1分)(2019·扬州) 一组数据3、2、4、5、2,则这组数据的众数是()A . 2B . 3C . 3.2D . 47. (1分)直线y=3x+m与直线y=﹣x的交点在第二象限,则m的取值范围为()A . m>0B . m≥0C . m<0D . m≤08. (1分)小华参加了n次考式,其考试成绩满足:若最后一次考试得97分,则平均分为90分;若最后一次考试得73分,则平均分87分.则小华参加的考试次数n 是()A . 8B . 9C . 10D . 119. (1分)(2018·广安) 已知点P为某个封闭图形边界上的一定点,动点M从点P出发,沿其边界顺时针匀速运动一周,设点M的运动时间为x,线段PM的长度为y,表示y与x的函数图象大致如图所示,则该封闭图形可能是()A .B .C .D .10. (1分) (2017八上·阳江期中) 如图为某楼梯,测得楼梯的长为5米,高3米,计划在楼梯表面铺地毯,地毯的长度至少需要()米.A . 5B . 7C . 8D . 12二、填空题 (共4题;共4分)11. (1分)(2019·长春模拟) 比较大小: ________ (填“>”、“=”或“<”).12. (1分)如图,已知函数y=ax+b和y=cx+d的图象交于点M,则根据图象可知,关于x,y的二元一次方程组的解为________.13. (1分)已知点A(2m+n,2)与点B(1,n﹣m)关于x轴对称,则m+n=________.14. (1分)(2018·河东模拟) 如图,在矩形纸片ABCD中,AB=6,BC=10,点E在CD上,将△BCE沿BE折叠,点C恰落在边AD上的点F处;点G在AF上,将△ABG沿BG折叠,点A恰落在线段BF上的点H处,有下列结论:①∠EBG=45°;②△DEF∽△ABG;③S△ABG= S△FGH;④AG+DF=FG.其中正确的是________.(把所有正确结论的序号都选上)三、解答题 (共7题;共13分)15. (2分)阅读下面材料:点A、B在数轴上分别表示实数a、b,A、B两点之间的距离表示为|AB|.当A、B两点中有一点在原点时,不妨设点A在原点,如图1,|AB|=|OB|=|b|=|a﹣b|;当A、B两点都不在原点时,如图2,点A、B都在原点的右边|AB|=|OB|﹣|OA|=|b|﹣|a|=b﹣a=|a﹣b|;如图3,点A、B都在原点的左边,|AB|=|OB|﹣|OA|=|b|﹣|a|=﹣b﹣(﹣a)=|a﹣b|;如图4,点A、B在原点的两边,|AB|=|OB|+|OA|=|a|+|b|=a+(﹣b)=|a﹣b|;回答下列问题:(1)数轴上表示3和7的两点之间的距离是________,数轴上表示﹣1和﹣3的两点之间的距离是________,数轴上表示1和﹣2的两点之间的距离是________.(2)数轴上表示x和﹣2的两点A和B之间的距离是________,如果|AB|=2,那么x为________;(3)当代数式|x|+|x﹣1|取最小值时,最小值是________.16. (2分)如图,已知△ABC和直线MN,画出△ABC以直线MN为对称轴的图形△A′B′C′.17. (1分) (2018八上·栾城期末) 如图,一架2.5米长的梯子AB ,斜靠在一竖直的墙AC上,这时梯足B到墙底端C的距离为0.7米,如果梯子的顶端沿墙下滑0.4米,那么梯足将向外移多少米?18. (3分) (2020八上·辽阳期末) 某学校八年级共有三个班,都参加了学校举行的书法绘画大赛,三个班根据初赛成绩分别选出了10名同学参加决赛,这些选手的决赛成绩(满分100分)如下表所示:决赛成绩(单位:分)八年1班80 86 88 80 88 99 80 74 91 89八年2班85 85 87 97 85 76 88 77 87 88八年3班82 80 78 78 81 96 97 87 92 84解答下列问题:(1)请填写下表:平均数(分)众数(分)中位数(分)八年1班85.5________87八年2班85.585________八年3班________7883(2)请从以下两个不同的角度对三个班级的决赛成绩进行分析:①从平均数和众数相结合看(分析哪个班级成绩好些).②从平均数和中位数相结合看(分析哪个班级成绩好些).(3)如果在每个班级参加决赛的选手中分别选出3人参加总决赛,你认为哪个班级的实力更强一些?请简要说明理由.19. (1分) (2019七下·宜昌期中) 如图,AB∥CD,BN,DN分别平分∠ABM,∠MDC,试问∠M与∠N之间的数量关系如何?请说明理由.20. (2分) (2019八上·简阳期末) 已知两直线l1:y1=5-x与l2:y2=2x-1(1)在同一平面直角坐标系中作出两直线的图象;(2)求出两直线的交点;(3)根据图象指出x为何值时,y1>y2;(4)求这两条直线与x轴围成的三角形面积.21. (2分)(2018·天津) 某游泳馆每年夏季推出两种游泳付费方式.方式一:先购买会员证,每张会员证100元,只限本人当年使用,凭证游泳每次再付费5元;方式二:不购买会员证,每次游泳付费9元.设小明计划今年夏季游泳次数为(为正整数).(1)根据题意,填写下表:游泳次数101520…方式一的总费用(元)150175________…________方式二的总费用(元)90135________…________(2)若小明计划今年夏季游泳的总费用为270元,选择哪种付费方式,他游泳的次数比较多?(3)当时,小明选择哪种付费方式更合算?并说明理由.参考答案一、单选题 (共10题;共10分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共4题;共4分)11-1、12-1、13-1、14-1、三、解答题 (共7题;共13分)15-1、15-2、15-3、16-1、17-1、18-1、18-2、18-3、19-1、20-1、20-2、20-3、20-4、21-1、21-2、21-3、。
一、选择题1.下列命题为真命题的是( ) A .内错角相等,两直线平行 B .面积相等的两个三角形全等C .若a b >,则22a b ->-D .一般而言,一组数据的方差越大,这组数据就越稳定2.下列命题中,属于假命题的是( )A .如果三角形三个内角的度数比是1:2:3,那么这个三角形是直角三角形B .内错角不一定相等C .平行于同一直线的两条直线平行D .若数a 使得a a >-,则a 一定小于0 3.下列命题是真命题的是( ) A .两直线平行,同位角相等 B .面积相等的两个三角形全等 C .同旁内角互补D .相等的两个角是对顶角 4.若关于x ,y 的二元一次方程组259x y kx y k+=⎧⎨-=⎩的解也是二元一次方程24x y +=的解,则k 的值为( ) A .1B .-1C .2D .-25.长方形ABCD 可以分割成如图所示的七个正方形.若10AB =,则AD 等于( )A .252B .353C .14011D .150116.若函数y =kx (k ≠0)的值随自变量的增大而增大,则函数y =x +2k 的图象大致是( )A .B .C .D .7.如图①,点P 为矩形ABCD 边上一个动点,运动路线是A →B →C →D →A ,设点P 运动的路径长为x ,S △ABP =y ,图②是y 随x 变化的函数图象,则矩形对角线AC 的长是( )A .25B .6C .12D .248.若某正比例函数过(2,3)-,则关于此函数的叙述不.正确的是( ). A .函数值随自变量x 的增大而增大 B .函数值随自变量x 的增大而减小 C .函数图象关于原点对称 D .函数图象过二、四象限9.若关于x y ,的二元一次方程组232320x y kx y k +=⎧⎨-=⎩的解也是二元一次方程236x y +=的解,则k 的值为( ) A .34-B .34C .43D .43-10.在平面直角坐标系中,点P(-5,0)在( ) A .第二象限 B .x 轴上 C .第四象限D .y 轴上11.下列各计算正确的是( ) A .382-=B .84= C .235+= D .236⨯=12.如图,在Rt △ABC 中,∠BAC =90°,以Rt △ABC 各边为斜边分别向外作等腰Rt △ADB 、等腰Rt △AFC 、等腰Rt △BEC ,然后将等腰Rt △ADB 和等腰Rt △AFC 按如图方式叠放到等腰Rt △BEC 中,其中BH =BA ,CI =CA ,已知,S 四边形GKJE =1,S 四边形KHCJ =8,则AC 的长为( )A .2B .52C .4D .6二、填空题13.如图,12∠=∠,4120︒∠=,则3∠=____.14.数学课上,同学提出如下问题:老师说这个证明可以用反证法完成,思路及过程如下: 如图1,我们想要证明“如果直线AB ,CD 被直线所截EF ,AB ∥CD ,那么∠EOB=EO D '∠.” 如图2,假设∠EOB≠EO D '∠,过点O 作直线A'B',使EOB '∠=EO D '∠,可得A B ''∥CD .这样过点O 就有两条直线AB ,A B ''都平行于直线CD ,这与基本事实_________矛盾,说明∠EOB≠EO D '∠的假设是不对的,于是有∠EOB=∠EO D '∠.小贴士反证法不是直接从命题的已知得出结论,而是假设命题的结论不成立,由此经过推理得出矛盾,由矛盾断定所作假设不正确,从而得到原命题成立.在某些情形下,反证法是很有效的证明方法.请补充上述证明过程中的基本事实:_________________________ 15.已知24x y -=,用含x 的代数式表示y 为:y =____________. 16.已知434m n m x y -与5n x y 是同类项,则m n +的值是_______.17.若一次函数(1)2=-+-y m x m 的图象经过第二、三、四象限,则m 的取值范围是_______.18.直角坐标系内,一动点按图中箭头所示方向依次运动,第1次从点(-1,0)运动到点(0,1),第2次运动到点(1,0),第3次运动到点(2,-2),……,按这样的运动规律,动点第2021次运动到的点的坐标为____________.19.已知3x -+|2x ﹣y |=0,那么x ﹣y =_____.20.如图所示,在△ABC 中,∠B =90°,AB =3,AC =5,将△ABC 折叠,使点C 与点A 重合,折痕为DE ,则△ABE 的周长为 .三、解答题21.如图,在ABC ∆中,48,A CE ∠=︒是ACB ∠的平分线, B C D 、、在同一直线上,,40.BEC BFD D ∠=∠∠=︒(1)求BCE ∠的度数; (2)求B 的度数.22.(1)()03122731π 3.14-+-(2)解方程组:27?320?x y x y -=⎧⎨+=⎩23.如图,直线l 与x 轴交于点A ,与y 轴交于点B (0,2).已知点C (﹣1,3)在直线l 上,连接OC . (1)求直线l 的解析式;(2)点P 为x 轴上一动点,若△ACP 的面积与△AOB 的面积相等,求点P 的坐标.24.如图1,在平面内取一个定点O ,自O 引一条射线O x ,设M 是平面内一点,点O 与点M 的距离为m (m >0), 以射线O x 为始边,射线OM 为终边的∠x OM 的度数为x °(x≥0).那么我们规定用有序数对(m ,x °)表示点M 在平面内的位置,并记为M (m ,x °).例如,在如图2中,如果OG=4,∠x OG=120°,那么点G 在平面内的位置记为G (4,120°).(1)如图3,如果点N 在平面内的位置记为N (6,35°),那么ON= ;xON ∠= °;(2)如图4,点A ,点B 在射线O x 上,点A ,B 在平面内的位置分别记为(a ,0°), (2a ,0°)点A ,E ,C 在同一条直线上. 且OE=BC .用等式表示∠OEA 与∠ACB 之间的数量关系,并证明.25.(1()03853 3.14π-+-; (2)解方程:()321160x --=.26.在△ABC 中,AB=8,AC=5,若BC 边上的高等于4,求BC 的长.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】根据平行线的判定和性质、三角形全等的判定、不等式的性质、方差的性质逐一判断即可.【详解】A 、内错角相等,两直线平行,是真命题,符合题意;B 、面积相等的两个三角形不一定全等,原命题是假命题,不符合题意;C 、若a b >,则22a b -<-,原命题是假命题,不符合题意;D 、一般而言,一组数据的方差越大,这组数据就越不稳定,原命题是假命题,不符合题意; 故选:A . 【点睛】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.2.D解析:D 【分析】利用三角形内角和对A 进行判断;根据内错角的定义对B 进行判断;根据平行线的判定方法对C 进行判断;根据绝对值的意义对D 进行判断. 【详解】解:A 、如果三角形三个内角的度数比是1:2:3,则三个角的度数分别为30°,60°,90°,所以这个三角形是直角三角形,所以A 选项为真命题; B 、内错角不一定相等,所以B 选项为真命题;C 、平行于同一直线的两条直线平行,所以C 选项为真命题;D 、若数a 使得|a|>-a ,则a 为不等于0的实数,所以D 选项为假命题. 故选:D . 【点睛】本题考查了命题与定理:命题的“真”“假”是就命题的内容而言.任何一个命题非真即假.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.3.A解析:A 【分析】根据平行线的性质,全等三角形的性质,对顶角的性质等逐一对选项进行分析即可. 【详解】A 选项中,两直线平行,同位角相等,说法正确,是真命题;B 选项中,一个三角形底为3,高为4,另一个三角形底为6,高为2,面积相等但不全等,是假命题;C 选项中,只有两直线平行时,同旁内角才互补,是假命题;D 选项中,相等的两个角不一定是对顶角,也可能是同位角,内错角等,是假命题. 故选:A. 【点睛】本题主要考查真命题,会判断命题的真假是解题的关键.4.B解析:B 【分析】据题意得知,二元一次方程组的解也是二元一次方程x+2y=4的解,也就是说,它们有共同的解,及它们是同一方程组的解,故将其列出方程组解答即可. 【详解】 解:由方程组259x y k x y k +=⎧⎨-=⎩,得143133x k y k ⎧=⎪⎪⎨⎪=-⎪⎩, 把x 、y 的值代入24x y +=中,得14132433k k -⨯=, 解得k=-1. 故选:B . 【点睛】本题考查了二元一次方程组的解,解二元一次方程.会将二元一次方程组的解,代入二元一次方程x+2y=4是解题的关键.5.D解析:D 【分析】根据题意,设DE=x ,EF=y ,然后由边长的数量关系列出方程组,解方程组求出x 、y ,即可得到答案. 【详解】 解:如图:设DE=x ,EF=y ,根据题意,则32()10y x y x y =⎧⎨++=⎩,解得:10113011x y ⎧=⎪⎪⎨⎪=⎪⎩,∴103015010111111AD =++=; 故选:D . 【点睛】本题考查了二元一次方程组的应用,解二元一次方程组,解题的关键是熟练掌握题意,正确列出方程组进行解题.6.A解析:A 【分析】先根据正比例函数的性质判断出k 的符号,再根据一次函数的图象和性质选出对应的答案. 【详解】解:∵函数y kx =的值随自变量的增大而增大 ∴0k >,∵ 在函数2y x k =+中,10>,20k > ∴函数2y x k =+的图象经过一、二、三象限. 故选:A . 【点睛】本题主要考查一次函数的图象和性质,牢记比例系数k 和常数b 的值所对应的一次函数图象是解题的关键.7.A解析:A 【分析】根据题意易得AB+BC=6,当点P 运动到C 点时三角形ABP 的面积为4,故而可求出AB 、BC 的长,进而求出AC . 【详解】解:由图像及题意可得:AB+BC=6,当点P 运动到C 点时三角形ABP 的面积为4,即1=42ABPSAB BC ⋅=, ∴AB=2,BC=4,在Rt ABC中,AC ==;故选A . 【点睛】本题主要考查函数与几何,关键是根据图像得到动点的运动路程,然后利用勾股定理求解线段的长即可.8.A解析:A 【详解】解:设正比例函数解析式(0)y kx k =≠, ∵正比例函数过(2,3)-, ∴32k -=, ∴32k =-, ∴正比例函数解析式为32y x =-, ∵302k =-<, ∴图象过二、四象限,函数值随自变量x 增大而减小,图象关于原点对称, ∴四个选项中,只有A 选项中的不正确,其余三个选项中的结论都是正确的. 故选A .9.B解析:B 【分析】首先解关于x 的方程组,求得x ,y 的值,然后代入方程2x +3y =6,即可得到一个关于k 的方程,从而求解. 【详解】 解232320x y k x y k +=⎧⎨-=⎩得72x ky k=⎧⎨=-⎩,由题意知2×7k +3×(−2k )=6, 解得k =34. 故选:B 【点睛】此题考查了解二元一次方程组,二元一次方程组的解,能使方程组中每个方程的左右两边相等的未知数的值即是方程组的解.解题的关键是要知道两个方程组之间解的关系.10.B解析:B 【分析】根据点的坐标特点判断即可. 【详解】在平面直角坐标系中,点P (-5,0)在x 轴上, 故选B . 【点睛】此题考查了点的坐标,熟练掌握平面直角坐标系中点的特征是解本题的关键.11.D解析:D【分析】分别计算即可.【详解】=-,原式错误,不符合题意;解:2=≠D. =故选:D.【点睛】本题考查了二次根式和立方根的运算,解题关键是熟练掌握二次根式和立方根的运算法则,准确进行计算.12.D解析:D【分析】设AD=DB=a,AF=CF=b,BE=CE=c,由勾股定理可求a2+b2=c2,由S四边形GHCE=S四边形GKJE+S四边形KHCJ=9,可求b=,即可求解.【详解】解:设AD=DB=a,AF=CF=b,BE=CE=c,∴AB=,AC=,BC=,∵∠BAC=90°,∴AB2+AC2=BC2,∴2a2+2b2=2c2,∴a2+b2=c2,∵将等腰Rt△ADB和等腰Rt△AFC按如图方式叠放到等腰Rt△BEC,∴BG=GH=a,∵S四边形GHCE=S四边形GKJE+S四边形KHCJ=9,∴1(a+c)(c﹣a)=9,2∴c2﹣a2=18,∴b2=18,∴b=∴AC==6,故选:D.【点睛】本题考查了勾股定理,折叠的性质,利用整体思想解决问题是本题的关键.二、填空题13.60°【分析】本题首先利用证明直线与平行继而利用对顶角性质以及两直线平行同旁内角互补求解【详解】如下图所示:∵∠1=∠5∠2=∠6又∵∠1=∠2∴∠5=∠6∴∥∵∠4=120°∴∠7=∠4=120°解析:60°【分析】本题首先利用12∠=∠证明直线1l 与2l 平行,继而利用对顶角性质以及两直线平行,同旁内角互补求解3∠.【详解】如下图所示:∵∠1=∠5,∠2=∠6,又∵∠1=∠2,∴∠5=∠6,∴1l ∥2l .∵∠4=120°,∴∠7=∠4=120°,又∵∠3+∠7=180°,∴∠3=60°.故填:60°.【点睛】本题考查平行线的判定与性质,需要灵活运用两直线平行,内错角、同位角相等、同旁内角互补.14.经过直线外一点有且只有一条直线与已知直线平行经过直线外一点有且只有一条直线与已知直线平行【分析】直接利用反证法的基本步骤以及结合平行线的性质分析得出答案【详解】解:假设∠EOB≠∠EOD过点O作直线解析:经过直线外一点,有且只有一条直线与已知直线平行,经过直线外一点,有且只有一条直线与已知直线平行.【分析】直接利用反证法的基本步骤以及结合平行线的性质分析得出答案.【详解】解:假设∠EOB≠∠EO'D,过点O作直线A'B',使∠EOB'=∠EO'D,依据基本事实同位角相等,两直线平行,可得A'B'∥CD.这样过点O就有两条直线AB,A′B′都平行于直线CD,这与基本事实:经过直线外一点,有且只有一条直线与已知直线平行矛盾,说明∠EOB≠∠EO'D的假设是不对的,于是有∠EOB=∠EO'D.故答案为:经过直线外一点,有且只有一条直线与已知直线平行;经过直线外一点,有且只有一条直线与已知直线平行.【点睛】本题考查了反证法,正确掌握反证法的基本步骤是解题的关键.15.2x-4【分析】【详解】由2x-y=4得:-y=4-2x∴y=2x-4故答案为:2x-4解析:2x-4【分析】【详解】由2x-y=4得:-y=4-2x,∴ y=2x-4,故答案为:2x-416.5【分析】由同类项的定义可得关于mn的方程组解方程组即可求出mn的值然后把mn的值代入所求式子计算即可【详解】解:由题意得:解得:∴故答案为:5【点睛】本题考查了同类项的定义和二元一次方程组的解法属解析:5【分析】由同类项的定义可得关于m、n的方程组,解方程组即可求出m、n的值,然后把m、n的值代入所求式子计算即可.【详解】解:由题意得:431m nn m=⎧⎨-=⎩,解得:14mn=⎧⎨=⎩,∴145m n+=+=.故答案为:5.【点睛】本题考查了同类项的定义和二元一次方程组的解法,属于常考题型,熟练掌握基本知识是解题的关键.17.【分析】由一次函数经过第二三四象限可得:m-1<0m-2<0将两个不等式联立解不等式组即可【详解】由题意得:解得:m<1故答案为:m<1【点睛】本题主要考查不等式组的求解以及一次函数图像与系数的关系解析:1m <【分析】由一次函数经过第二、三、四象限可得:m -1<0,m -2<0,将两个不等式联立,解不等式组即可.【详解】由题意得:1020m m -<⎧⎨-<⎩, 解得:m <1.故答案为:m <1.【点睛】本题主要考查不等式组的求解以及一次函数图像与系数的关系,掌握不等式组的解法,熟记一次函数图像与系数的关系是解题关键.18.(20201)【分析】由图中点的坐标可得:每4次运动为一个循环组循环并且每一个循环组向右运动4个单位用2021除以4再由商和余数的情况确定运动后点的坐标【详解】∵2021÷4=505余1∴第2021解析:(2020,1)【分析】由图中点的坐标可得:每4次运动为一个循环组循环,并且每一个循环组向右运动4个单位,用2021除以4,再由商和余数的情况确定运动后点的坐标.【详解】∵2021÷4=505余1,∴第2021次运动为第505循环组的第1次运动,横坐标为505×4=2020,纵坐标为1,∴点的坐标为(2020,1).故答案为:(2020,1).【点睛】考查了点的坐标规律,解题关键是观察点的坐标变化,并寻找规律.19.﹣3【分析】先根据非负数的性质列出方程组求出xy 的值进而可求出x ﹣y 的值【详解】解:∵+|2x ﹣y|=0∴解得所以x ﹣y =3﹣6=﹣3故答案为:-3【点睛】本题考查了二次根式的非负性绝对值的非负性根解析:﹣3【分析】先根据非负数的性质列出方程组,求出x 、y 的值,进而可求出x ﹣y 的值.【详解】解:∵+|2x ﹣y |=0,∴3020x x y -=⎧⎨-=⎩, 解得36x y =⎧⎨=⎩. 所以x ﹣y =3﹣6=﹣3.故答案为:-3【点睛】本题考查了二次根式的非负性,绝对值的非负性,根据题意得到关于x 、y 的二元一次方程组,求出x 、y 的值是解题关键.20.7【解析】∵在△ABC 中∠B=90°AB=3AC=5∴BC=∵△ADE 是△CDE 翻折而成∴AE=CE ∴AE+BE=BC=4∴△ABE 的周长=AB+BC=3+4=7故答案是:7解析:7【解析】∵在△ABC 中,∠B=90°,AB=3,AC=5,∴4==.∵△ADE 是△CDE 翻折而成,∴AE=CE ,∴AE+BE=BC=4,∴△ABE 的周长=AB+BC=3+4=7.故答案是:7.三、解答题21.(1)40∠=︒ECB ;(2)52B ︒∠=【分析】(1)根据同位角相等,两直线平行判定//DF CE ,然后再根据平行线的性质求解; (2)根据角平分线的定义求得80ACB ︒∠=,然后利用三角形内角和求解.【详解】解:(1)BEC BFD ∠=∠,//DF CE ∴,ECB D ∴∠=∠. 40D ︒∠=,40ECB ∴∠=︒.(2)CE 是ACB ∠的平分线.40ECB ACE ︒∴∠=∠=,80ACB ︒∴∠=.180A B ACB ︒∠+∠+∠=,180180488052B A ACB ︒︒︒︒︒∴∠=-∠-∠=--=.【点睛】本题考查平行线的判定和性质以及三角形内角和,掌握相关性质定理正确推理计算是解题关键.22.(1)-3;(2)23x y =⎧⎨=-⎩【分析】(1)先计算算术平方根、立方根、绝对值、零指数幂,再计算加减可得;(2)利用加减消元法求解可得.【详解】解:(1()01π 3.14+-;(2)27320x y x y -=⎧⎨+=⎩①② ①×2得:4x -2y =14 ③②+③得:7x =14,解得x =2,将x =2代入①中可得y =-3∴方程组的解为23x y =⎧⎨=-⎩ 【点睛】本题考查的是解二元一次方程组及实数的运用,熟知实数的运算和解二元一次方程组的基本步骤是解答此题的关键.23.(1)y =﹣x+2;(2)P (103,0)或(23,0). 【分析】(1)利用待定系数法求函数解析式;(2)先求出直线BC 与x 轴的交点坐标,然后设P (t ,0),根据三角形面积公式列方程求解.【详解】解:(1)设直线l 的解析式y =kx+b ,把点C (﹣1,3),B (0,2)代入解析式得, 23b k b =⎧⎨-+=⎩,解得12k b =-⎧⎨=⎩, ∴直线l 的解析式:y =﹣x+2;(2)把 y =0代入y =﹣x+2得﹣x+2=0,解得:x =2,则点A 的坐标为(2,0),∵S △AOB =12×2×2=2, ∴S △ACP =S △AOB =2,设P (t ,0),则AP =|t ﹣2|,∵12•|t ﹣2|×3=2,解得t =103或t =23, ∴P (103,0)或(23,0).【点睛】本题考查一次函数与几何图形,掌握一次函数的性质利用数形结合思想解题是关键. 24.(1)6;35;(2)用等式表示OEA ∠与ACB ∠之间的数量关系是OEA ∠=ACB ∠.证明见解析.【分析】(1)根据示例可求出结果;(2)过点O 作BC 的平行线交CA 的延长线于点F .证明△AOF ≌△ABC 可得OF=BC ,即可得OE=OF ,所以∠OEF=∠OFE ,进一步可得结论. 【详解】解:(1)∵在如图2中,如果OG=4,∠x OG=120°,那么点G 在平面内的位置记为G (4,120°)∴如果点N 在平面内的位置记为N (6,35°),那么ON=6;xON ∠=35°;故答案为:6;35;(2)用等式表示OEA ∠与ACB ∠之间的数量关系是:OEA ∠=ACB ∠.证明:过点O 作BC 的平行线交CA 的延长线于点F .ACB F ∴∠=∠.∵点A , B 在平面内的位置分别记为(,0)a ︒,(2,0)a ︒,2OB OA ∴=OA AB ∴=在△AOF 和△ABC 中,,,,ACB F OAF BAC OA AB ∠=∠⎧⎪∠=∠⎨⎪=⎩∴ △AOF ≌△ABC .∴OF =BC .∵OE =BC .∴OE =OF .∴F OEA ∠=∠.又∵ACB F ∠=∠,∴OEA ACB ∠=∠.【点睛】本题考查了坐标与图形性质,三角形全等的判定与性质,证明△AOF ≌△ABC 是解答本题的关键.25.(1)4-;(2)3x =【分析】(1)根据立方根,绝对值,零指数幂分别计算,然后在相加减即可(2)先变形得()318x -=,再利用立方根的定义得到12x -=,解方程即可【详解】(1)原式(231=--+231=--+4=(2)()32116x -=则()318x -=故12x -=解得3x =【点睛】本题考查了实数的混合运算,以及立方根解方程,掌握立方根的定义,零指数幂的性质是解题关键.26.或-3【分析】作AD ⊥BC 于D ,分点D 在线段BC 上和BC 的延长线上两种情况,根据勾股定理计算即可.【详解】解:作AD⊥BC于D,分两种情况:①高BD在线段BC上,如图1所示:在Rt△ABD中,BD=22228443-=-=,AB AD在Rt△ACD中,CD=2222-=-=3,AC AD54∴BC=BD+CD=43+3;②高AD在CB的延长线上,如图2所示:3;综上所述,BC的长为3+3或3.【点睛】本题考查了勾股定理,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2.。
2020-2021学年宁夏石嘴山市大武口区八年级(上)期末数学试卷一、选择题(本题共8小题,每小题3分,共24分,在每小题给出的四个选项中只有一个是符合题目要求的)1. 下列运算正确的是()A (a2)3=a5B (ab)2=ab2C a6÷a3=a2D a2⋅a3=a52. 在平面直角坐标系中,点M(3, −2)与点N关于x轴对称,则点N的坐标是()A (−3, −2)B (−3, 2)C (3, 2)D (2, −3)3. 一个多边形的内角和是外角和的2倍,这个多边形是()A 四边形B 五边形C 六边形D 八边形4. 如果把分式中的x,y都乘以3,那么分式的值()A 变成3倍B 不变C 变成原来的D 变成9倍5. 如图,△ACB≅△A′CB,点A和点A′,点B和点B′是对应点,∠BCB′=30∘,则∠ACA′的度数为()A 20∘B 30∘C 35∘D 40∘6. 如果等腰三角形一腰上的高与另一腰的夹角为45∘,那么这个等腰三角形的底角为()A 22.5∘B 67.5∘C 67∘ 50′D 22.5∘或67.5∘7. 随着生活水平的提高,小林家购置了私家车,这样他乘坐私家车上学比乘坐公交车上学所需的时间少用了20分钟,现已知小林家距学校8千米,乘私家车平均速度是乘公交车平均速度的3倍,若设乘公交车平均每小时走X千米,根据题意可列方程为()A +20=B =+C =+20D +=8. 如图,已知△ABC中,AB=3,AC=5,BC=7,在△ABC所在平面内一条直线,将△ABC分割成两个三角形,使其中有一个边长为3的等腰三角形,则这样的直线最多可画()A 2条B 3条C 4条D 5条二、填空题(本题共8小题,每小题3分,共24分)9. 因式分解:3xy3−27x3y=________.10. 当a________时,分式a2−1有意义.a+111. 等腰三角形的周长为20cm,一边长为6cm,则底边长为________cm.12. 如图,BD平分∠ABC交AC于点D,DE⊥BC于点E,若DE=2,BC=7,S△ABC=12,则AB的长为________.13. 如图两幅图中,阴影部分的面积相等,则该图可验证的一个初中数学公式为________.14. 如图所示,AB=AC,AD=AE,∠BAC=∠DAE,∠1=28∘,∠2=30∘,则∠3=________.15. 如图,点P是∠AOB外一点,点M,N分别是∠AOB两边上的点,点P关于OA的对称点Q恰好落在线段MN上,点P关于OB的对称点R落在线段MN的延长线上.若PM=2.5cm,PN=3cm,MN=4cm,则线段QR的长为________.16. 数学家发明了一个魔术盒,当任意数列(a, b)进入其中时,会得到一个新的数:(a+1)(b−2).现将数对(m, 3)放入其中得到数n,再将数对(n, m)放入其中后,最后得到的数是________.(结果要化简)三、解答题(本题共有6道小题,每小题6分,共36分)17. 计算:(1)x2y3⋅2x2(y2)2+(−3xy2)⋅xy;(2)(2x−1)(2x+1)−2(x−1)2.18. 解分式方程:(1)+=;(2)-=.19. 先化简,再求值:(a2a−2−1a−2)÷a2−2a+1a−2,其中a=3.20. 在图中所示的平面直角坐标系中,(1)已知△ABC各顶点坐标,A(−2, 4),B(−4, 0),C(−1, −3),画出△ABC;(2)画出△ABC关于y轴对称的图形△A′B′C′,并写出A′,B′,C′的坐标;(3)在y轴上求作一点P,使PA+PC最小(不写作法,保留作图痕迹).21. 如图,已知AB // DE,∠B=∠E,D、C在AF上,且AD=CF.求证:AB=DE.22. 今年新冠肺炎疫情在全球肆虐,为降低病亡率,某工厂平均每天比原计划多生产5台呼吸机,现在生产60台呼吸机的时间与原计划生产45台呼吸机所需时间相同.求该工厂原来平均每天生产多少台呼吸机?四、解答题(本题共4道题,其中23、24题每题8分,25、26题每题10分,共36分)23. 如图所示,已知△ABC中,点D为BC边上一点,∠1=∠2=∠3,AC=AE,(1)求证:△ABC≅△ADE;∠CAD,求∠C的度数.(2)若AE // BC,且∠E=1324. 如果一个多边形的各边都相等且各角也都相等,那么这样的多边形叫做正多边形,如正三角形就是等边三角形,正四边形就是正方形,如下图,就是一组正多边形,如果一个多边形的各边都相等且各角也都相等,那么这样的多边形叫做正多边形,如正三角形就是等边三角形,正四边形就是正方形,如下图,就是一组正多边形,(1)观察上面每个正多边形中的∠α,填写下表:(3)是否存在正n边形使得∠α=21∘?若存在,请求出n的值,若不存在,请说明理由.25. 甲乙两名工人各承包了一段500米的道路施工工程,已知甲每天可完成的工程比乙多5米.两人同时开始施工,当乙还有100米没有完成时,甲已经完成全部工程.(1)求甲、乙每天各可完成多少米道路施工工程?(2)后来两人又承包了新的道路施工工程,施工速度均不变,乙承包了500米,甲比乙多承包了100米,乙想:这次我们一定能同时完工了!请通过计算说明乙的想法正确吗?若正确,求出两人的施工时间;若不正确,则应该如何调整其中一人的施工速度才能使两人同时完工,请通过计算给出调整方案.26. 如图所示,已知△ABC中,AB=AC=BC=10厘米,M、N分别从点A、点B同时出发,沿三角形的边运动,已知点M的速度是1厘米/秒的速度,点N的速度是2厘米/秒,当点N第一次到达B点时,M、N同时停止运动.(1)M、N同时运动几秒后,M、N两点重合?(2)M、N同时运动几秒后,可得等边三角形△AMN?(3)M、N在BC边上运动时,能否得到以MN为底边的等腰△AMN,如果存在,请求出此时M、N运动的时间?2020-2021学年宁夏石嘴山市大武口区八年级(上)期末数学试卷答案1. D2. C3. C4. B5. B6. D7. B8. C9. 3xy(y+3x)(y−3x)10. ≠−111. 6或812. 513. a2−b2=(a+b)(a−b)14. 58∘15. 4.5cm16. m2−417. 原式=x2y3⋅2x2⋅y4+(−3xy2)⋅xy=x4y7−3x2y3;原式=4x2−1−2(x2−2x+1)=4x2−1−2x2+4x−2=2x2+4x−3.18. 去分母得:4+3(x+3)=7,解得:x=−2,经检验x=−2是分式方程的解;去分母得:2(x+2)−4=x−2,解得:x=−2,经检验x=−2是增根,则分式方程无解.19. 解:原式=(a+1)(a−1)a−2⋅a−2(a−1)2=a+1a−1,当a=3时,原式=3+13−1=2.20. 如图,△ABC即为所求作.如图,△A′B′C′即为所求作,A′(2, 4),B′(4, 0),C′(1, −3).如图,点P即为所求作.21. 证明:∵ AD=CF,∴ AD+DC=CF+DC,即AC=DF,∵ AB // DE,∴ ∠A=∠EDC,在△ABC与△DEF中,,∴ △ABC≅△DEF(AAS),∴ AB=DE.22. 该工厂原来平均每天生产15台呼吸机23. 解:(1)∵ ∠1=∠2=∠3,∴ ∠1+∠DAC=∠DAC+∠2,(三角形的一个外角等于与它不相邻的两个内角的和)即∠BAC=∠DAE,又∵ ∠1+∠B=∠ADE+∠3,则可得∠B=∠ADE,在△ABC和△ADE中{∠BAE=∠DAE ∠B=∠ADEAC=AE,∴ △ABC≅△ADE(AAS);(2)∵ AE // BC,∴ ∠E=∠3,∠DAE=∠ADB,∠2=∠C,又∵ ∠3=∠2=∠1,令∠E=x,则有:∠DAE=3x+x=4x=∠ADB,又∵ 由(1)得AD=AB,∠E=∠C,∴ ∠ABD=4x,∴ 在△ABD中有:x+4x+4x=180∘,∴ x=20∘,∴ ∠E=∠C=20∘.24. 60∘,45∘,36∘,30∘,(180n)∘25. 设乙每天施工x米,则甲每天施工(x+5)米,根据题意可得:解得:x=20,检验:当x=20时,x(x+5)≠0,∴ x=20是原方程的解,则x+5=25(米)答:甲、乙每天各可完成25米,20米道路施工;∵ 甲完成600米,需要天,乙完成500米,需要天,∴ 甲乙不能同时完工;方案一:将甲施工速度减少a千米/天,根据题意可得:解得:a=1,经检验:a=1是原方程的解,方案二:将乙施工速度增加b千米/天,根据题意可得:解得:b=,经检验:b=是原方程的解,综上所述:将甲施工速度减少1千米/天,将乙施工速度增加千米/天,26. 设点M、N运动x秒后,M、N两点重合,x×1+10=2x,解得:x=10;设点M、N运动t秒后,可得到等边三角形△AMN,如图①,AM=t×1=t,AN=AB−BN=10−2t,∵ 三角形△AMN是等边三角形,∴ t=10−2t,解得t=103,∴ 点M、N运动103秒后,可得到等边三角形△AMN.当点M、N在BC边上运动时,可以得到以MN为底边的等腰三角形,由(1)知10秒时M、N两点重合,恰好在C处,如图②,假设△AMN是等腰三角形,∴ AN=AM,∴ ∠AMN=∠ANM,∴ ∠AMC=∠ANB,∵ AB=BC=AC,∴ △ACB是等边三角形,∴ ∠C=∠B,在△ACM和△ABN中,∵ {AC=AB∠C=∠B∠AMC=∠ANB,∴ △ACM≅△ABN(AAS),∴ CM=BN,设当点M、N在BC边上运动时,M、N运动的时间y秒时,△AMN是等腰三角形,∴ CM=y−10,NB=30−2y,CM=NB,y−10=30−2y,解得:y=403.故假设成立.∴ 当点M、N在BC边上运动时,能得到以MN为底边的等腰△AMN,此时M、N运动的时间为403秒.。
宁夏石嘴山市2021届数学八上期末模拟学业水平测试试题(三)一、选择题1.当x =1时,下列式子无意义的是( )A .B .C .D . 2.将分式2x y x y+中的x ,y 的值同时扩大为原来的3倍,则分式的值( ) A .扩大3倍B .缩小到原来的19C .缩小到原来的13D .不变 3.下列计算正确的是( ) A .(x ﹣y )2=x 2﹣y 2B .(﹣a 2b )3=a 6b 3C .a 10÷a 2=a 5D .(﹣3)﹣2=194.图(1)是一个长为2a 、宽为2b(a>b)的长方形,用剪刀沿图中虚线(对称轴)剪开,把它分成四块形状和大小都一样的小长方形,然后按图(2)那样拼成一个正方形,则中间空的部分的面积是 ( )A .(a-b)2B .(a+b)2C .2abD .a 2-b 25.下列各式中,不可以用公式分解因式的是( )A .﹣a 2+b 2B .x 2﹣4x+4C .22139a a -+D .x 2+2x+4 6.悬针篆文具有较高的历史意义和研究价值,下面四个悬针篆文文字明显不是轴对称图形的是 ( )A .B .C .D .7.如图,在3×3的网格中,与△ABC 成轴对称,顶点在格点上位置不同的三角形有( )A .2个B .3个C .4个D .5个8.如图,点A 的坐标是()2,2,若点P 在x 轴上,且APO ∆是等腰三角形,则点P 的坐标不可能是( )A.()1,0B.()2,0C.()-D.()4,09.如图,在△ABC 中,点D 为AB 的中点,过点D 作DE ⊥AB 交AC 于点E ,连接BE ,△BEC 的周长为15,AD =3,则△ABC 的周长为( )A.18B.21C.24D.2710.如图,如果△ABC ≌△CDA ,∠BAC=∠DCA ,∠B=∠D ,对于以下结论:①AB 与CD 是对应边;②AC 与CA 是对应边;③点A 与点A 是对应顶点;④点C 与点C 是对应顶点;⑤∠ACB 与∠CAD 是对应角,其中正确的是( )A.2个B.3个C.4个D.5个11.如图,AC 与BD 交于O 点,若OA OD =,用“SAS”证明AOB ≌DOC ,还需( )A .AB DC =B .OB OC = C .AD ∠=∠ D .AOB DOC ∠=∠12.如图,在四边形ABCD 中,AD BC ∥,B D ∠=∠,延长BA 至E ,连接CE 交AD 于F ,EAD ∠和ECD ∠的角平分线相交于点P .若60E ∠=︒,70APC ∠=︒,则D ∠的度数是( )A .80°B .75°C .70°D .60°13.下列说法中不正确的是( )A.内角和是1080°的多边形是八边形B.六边形的对角线一共有8条C.三角形任一边的中线把原三角形分成两个面积相等的三角形D.一个多边形的边数每增加一条,这个多边形的内角和就增加180°14.下列选项中,有稳定件的图形是()A.B.C .D .15.下列运算正确的是()A.a0=1 B.2=4 C.()=3 D.(-3)=9 二、填空题16.(﹣1)2005(6﹣π)0﹣(﹣12)﹣2=________ .17.现有若干张边长为a的正方形A型纸片,边长为b的正方形B型纸片,长宽为a、b的长方形C型纸片,小明同学选取了2张A型纸片,3张B型纸片,7张C型纸片拼成了一个长方形,则此长方形的周长为______.(用a、b代数式表示)18.如图,是直角三角形,是斜边,,,的垂直平分线分别交,于,,则的长为__________.19.三角形的三条________________交于一点,这个点叫做三角形的重心.20.如图,在等边△ABC中,AD⊥BC交于D,P、Q两点分别是AC、BC边上的两动点,且PQ∥AD,当∠PDQ=30°时,如果CQ=0.5,那么AB=_____.三、解答题21≤2a b+(a>0,b>0),当且仅当a=b时,等号成立.其中我们把2a b+叫做正数a、ba、b的几何平均数,它是解决最大(小)值问题的有力工具.例如:在x>0的条件下,当x为何值时,x+1x有最小值,最小值是多少?解:∵x>0,1x>0∴12xx+x+1x∴x+1x≥2当且仅当x=1x即x=1时,x+1x有最小值,最小值为2.请根据阅读材料解答下列问题(1)若x >0,函数y =2x+1x ,当x 为何值时,函数有最小值,并求出其最小值. (2)当x >0时,式子x 2+1+211x +≥2成立吗?请说明理由. 22.解下列各题: (1)计算:031(3)(2)(2)π--+-⨯- (2)因式分解:3222x xy -23.如图,已知△ABC 中,∠B=90°,AB=8cm ,BC=6cm ,P 、Q 是△ABC 边上的两个动点,其中P 点从点A 开始沿AB 方向运动且速度为每秒lcm ,点Q 从点B 开始沿B→C→A 方向运动,且速度为每秒2cm ,它们同时出发,设出发的时间为t 秒.(1)出发2秒后,求线段PQ 的长?(2)当点Q 在边BC 上运动时,出发儿秒钟后,OPQB 是等腰三角形?(3)当点Q 在边CA 上运动时,求能使△BCQ 成为等腰三角形的运动时间?24.如图,AD 为∠EAC 的角平分线,DE ⊥AE ,DF ⊥AC ,∠EBD=∠FCD.(1)判断△BDC 的形状并说明理由;(2)求证:CF-AF=AB.25.已知:如图1,在△ABC 中,CD 是高,若∠A=∠DCB .(1)试说明∠ACB=90°;(2)如图2,若AE 是角平分线,AE 、CD 相交于点F .求证:∠CFE=∠CEF .【参考答案】***一、选择题16.﹣217..18.19.中线20.4三、解答题21.(1)x=2时,有最小值,最小值为;(2)式子不成立,见解析. 22.(1)5;(2)2x(x+y)(x-y).23.(1)出发2秒后,线段PQ的长为(2)当点Q在边BC上运动时,出发83秒后,△PQB是等腰三角形; (3)当t为5.5秒或6秒或6.6秒时,△BCQ为等腰三角形.【解析】【分析】(1)根据点P、Q的运动速度求出AP,再求出BP和BQ,用勾股定理求得PQ即可;(2)设出发t秒钟后,△PQB能形成等腰三角形,则BP=BQ,由BQ=2t,BP=8-t,列式求得t即可;(3)当点Q在边CA上运动时,能使△BCQ成为等腰三角形的运动时间有三种情况:①当CQ=BQ时(图1),则∠C=∠CBQ,可证明∠A=∠ABQ,则BQ=AQ,则CQ=AQ,从而求得t;②当CQ=BC时(如图2),则BC+CQ=12,易求得t;③当BC=BQ时(如图3),过B点作BE⊥AC于点E,则求出BE,CE,即可得出t.【详解】(1)BQ=2×2=4cm,BP=AB−AP=8−2×1=6cm,∵∠B=90°,由勾股定理得:===,∴出发2秒后,线段PQ的长为(2)BQ=2t,BP=8-t ,由题意得:2t=8-t ,解得:t=83,∴当点Q在边BC上运动时,出发83秒后,△PQB是等腰三角形;(3) ∵∠ABC=90°,BC=6,AB=8,∴=10.①当CQ=BQ时(图1),则∠C=∠CBQ,∵∠ABC=90°,∴∠CBQ+∠ABQ=90°,∠A+∠C=90°,∴∠A=∠ABQ,∴BQ=AQ,∴CQ=AQ=5,∴BC+CQ=11,∴t=11÷2=5.5秒;②当CQ=BC时(如图2),则BC+CQ=12,∴t=12÷2=6秒,③当BC=BQ时(如图3),过B点作BE⊥AC于点E,∴BE=6824105 AB BCAC⋅⨯==,所以=185=3.6,故CQ=2CE=7.2,所以BC+CQ=13.2,∴t=13.2÷2=6.6秒.由上可知,当t为5.5秒或6秒或6.6秒时,△BCQ为等腰三角形.【点睛】本题考查了勾股定理、三角形的面积以及等腰三角形的判定和性质,注意分类讨论思想的应用.24.(1)详见解析;(2)详见解析.【解析】【分析】(1)由角平分线上的点到两边的距离相等可知DE=DF,又由题意知∠DEB=∠DFC=90°,∠EBD=∠FCD可证三角形DEB≌三角形DFC,可得BD=CD,即可知△BDC的形状;(2)由题意可得三角形ADE≌三角形ADF,可得AF=AE,由(1)知BE=CF,则可知CF-AF=AB.【详解】解:(1)∵AD为∠EAC的平分线,DE⊥BE,DF⊥AC,∴DE=DF,∵∠DEB=∠DFC=90°,∠EBD=∠FCD,∴三角形DEB≌三角形DFC,∴BD=CD,∴三角形BDC为等腰三角形;(2)由题意可得∠DAE=∠DAF,AD=AD,∠AED=∠AFD,则三角形ADE≌三角形ADF,可得AF=AE,由(1)知BE=CF,CF-AF=BE-AE=AB.【点睛】本题主要考察角平分线的性质,全等三角形的证明,理清楚各线段、各角度之间的关系式解题的关键. 25.(1)见解析(2)见解析。
宁夏石嘴山市2021届数学八年级上学期期末学业水平测试试题模拟卷三
一、选择题
1.若213x M N x 1x 1x 1
-=+-+-,则M 、N 的值分别为( ) A .M=-1,N=-2 B .M=-2,N=-1 C .M=1,N=2
D .M=2,N=1 2.下列计算正确的是( )
A
B .(﹣3)0=0
C .(﹣2a 2b )2=4a 4b 2
D .2a 3÷(﹣2a )=﹣a 3 3.科学家发现了一种新型病毒,其直径约为0.00000012mm ,数据0.00000012用科学记数法表示正确
的是( )
A .71.210⨯
B .71.210-⨯
C .81.210⨯
D .81.210-⨯ 4.下列运算正确的是( )
A .a+a= a 2
B .a 6÷a 3=a 2
C .(a+b)2=a 2+b 2
D .(a b 3) 2= a 2 b 6
5.下列计算中,正确的是( )
A .x 3•x 2=x 4
B .(x+y )(x ﹣y )=x 2+y 2
C .(x ﹣3)2=x 2﹣6x+9
D .3x 3y 2÷xy 2=3x 4
6.把代数式3x 3﹣12x 2+12x 分解因式,结果正确的是( )
A .3x (x 2﹣4x+4)
B .3x (x ﹣4)2
C .3x (x+2)(x ﹣2)
D .3x (x ﹣2)2 7.下列四张正方形硬纸片,剪去阴影部分后,如果沿虚线折叠,可以围成一个封闭的长方体包装盒的是( )
A .
B .
C .
D .
8.如图,是的高,,则度数是( )
A. B. C. D.
9.下列图形中,是轴对称图形的是( )
A .
B .
C .
D .
10.如图,E 、B 、F 、C 四点在一条直线上,且EB=CF ,∠A=∠D ,增加下列条件中的一个仍不能证明△ABC ≌△DEF ,这个条件是( )
A.DF ∥AC
B.AB=DE
C.∠E=∠ABC
D.AB ∥DE
11.如图,在△ABC 中,∠C=90°,AD 平分∠BAC ,DE ⊥AB 于E ,则下列结论:①AD 平分∠CDE ;②∠BAC=∠BDE ;③DE 平分∠ADB ;④BE+AC=AB ,其中正确的有( )
A.2个
B.3个
C.4个
D.1个
12.三条公路将A 、B 、C 三个村庄连成一个如图的三角形区域,如果在这个区域内修建一个公园,要使公园到三条公路的距离相等,那么这个公园应建的位置是( )
A.三条高线的交点
B.三条中线的交点
C.三条角平分线的交点
D.三边垂直平分线的交点
13.如图, ABCD 中,对角线AC 和BD 交于点O ,若AC=8,BD=6,则边AB 长的取值范围是( )
A .1<A
B <7
B .2<AB <14
C .6<AB <8
D .3<AB <4 14.一个多边形的每个内角都相等,并且它的一个外角与一个内角的比为1:3,则这个多边形为( )
A .三角形
B .四边形
C .六边形
D .八边形 15.已知等腰三角形的两条边长分别是2和4,则它的周长是( )
A .8
B .10
C .810或
D .无法确定 二、填空题 16.若对于()1x x ≠-的任何值,等式32311
x m x x -=+++恒成立,则m =__________. 17.分解因式:4ax 2-ay 2=________________.
18.在△ABC 中,已知∠A=60°,∠ABC 的平分线BD 与∠ACB 的平分线CE 相交于点O ,∠BOC 的平分线交BC 于F ,有下列结论:①∠BOE=60°,②∠ABD=∠ACE ,③OE=OD ,④BC=BE+CD 。
其中正确的是_________。
(把所有正确结论的序号都选上)
19.在不等边三角形ABC △中,已知两条边长分别为2、3,第三条边长为整数,那么它的长度为__________.
20.已知在平面直角坐标系中,点A (-1,-2),点B (4,12),试在x 轴上找一点P ,使得|PA -PB |的值最大,求P 点坐标为_________。
三、解答题
21.(1)分解因式:a 2﹣1+b 2﹣2ab
(2)解方程:22x x -+=22x x +-+2164
x - 22.如果一个正整数能表示为两个连续偶数的平方差,那么称这个正整数为“奇巧数”,如
12=2242-,20=2264-,28=2286-,……,因此12,20,28这三个数都是奇巧数。
(1)52,72都是奇巧数吗?为什么?
(2)设两个连续偶数为2n ,2n+2(其中n 为正整数),由这两个连续偶数构造的奇巧数是8的倍数吗?为什么?
(3)研究发现:任意两个连续“奇巧数”之差是同一个数,请给出验证。
23.已知,在中,,为上一动点,以为斜边作,,交
于点,且
. (1)如图①,若平分,,求的长
(2)如图②,连接并延长交的延长线于点,过点作于,求证.
24.圣母大学计算机系的史戈宇教授带一家人去旅行,途中汽车被劫走报警911,警察无作为,汽车上安装的MS 系统,可以提示汽车与手机APP 间的直线距离。
史教授用“贪心算法”把被盗车辆位置确定在了图中灰色的区域里,这是一个以暴乱和枪击闻名的地区。
当史教授开车从E 向A 的方向行驶时,汽车与手机APP 间的直线距离逐渐变小,从A 向F 的方向行驶时,汽车与手机APP 问的直线距离逐渐变大.当史教授开车从F 向B 的方向行驶时,汽车与手机APP 间的直线距离逐渐变小,从B 向G 的方向行驶时,汽车与手机APP 间的直线距离逐渐变大. 史教授再次报警后,警察根据史教授确定的被盗汽车的位置,很快找到了被盗汽车根据你学的数学知识,在图中,画出被盗汽车的位置.
25.如图,已知△ABC 中,点D 、E 分别在边AB 、AC 上,点F 在CD 上.
(1)若∠AED=∠ACB, ∠DEF= ∠B ,求证:EF//AB ;
(2)若D 、E 、F 分别是AB 、AC 、CD 的中点,连接BF ,若四边形 BDEF 的面积为6,试求△ABC 的面积.
【参考答案】***
一、选择题
16.5
17.a(2x+y)(2x-y)
18.①③④
19.4
20.(-2,0)
三、解答题
21.(1)(a-b+1)(a-b-1)(2)原方程无解.
22.(1)52是奇巧数,72不是;理由见解析;(2)不是,理由见解析;(3)答案见解析. 23.(1)12;(2)见解析
【解析】
【分析】
(1)由“SAS”可证△AEM≌△FCM,可得EM=MC,由等腰三角形性质可求∠AEF=∠MCE=∠MEC=30°,由直角三角形的性质可求ME=MC=8,即可求AC的长;
(2)过点C作CG⊥AC交AD于点G,由“SAS”可证△ACG≌△EFC,可得AG=CE,CF=CG,由等腰三角形的性质可得FG=2FN,即可得结论.
【详解】
(1)∵EF平分∠AEC,
∴∠AEF=∠FEC,
∵∠BAC=∠EFC=90°,AM=MF,∠AME=∠FMC
∴△AEM≌△FCM(SAS)
∴EM=MC
∴∠MEC=∠MCE
∴∠MEC=∠MCE=∠AEF,
∵∠MEC+∠MCE+∠AEF=90°
∴∠AEF=∠MCE=∠MEC=30°,且∠BAC=90°
∴EM=2AM=8
∴MC=8
∴AC=AM+MC=12
(2)如图,过点C作CG⊥AC交AD于点G,
由(1)可知:EM=MC
∵AM=MF
∴AC=EF,
∵∠BAC=∠EFC=90°
∴点A,点F,点C,点E四点共圆
∴∠CAG=∠FEC,且AC=EF,∠EFC=∠ACG=90°
∴△ACG≌△EFC(ASA)
∴AG=CE,CF=CG,
∵CF=CG,CN⊥AG
∴FG=2FN
∴EC=AG=AF+FG=AF+2FN
【点睛】
考查了全等三角形的判定和性质,等腰三角形的性质,直角三角形的性质,添加恰当辅助线构造全等三角形是本题的关键.
24.见解析.
【解析】
【分析】
如图,连接EF,FG,分别过点A,B作EF,FG的垂线AN,BM,直线AM,BN交于点P,点P即为被盗汽车的位置.
【详解】
解:如图,连接EF,FG,分别过点A,B作EF,FG的垂线AN,BM,直线AN,BM交于点P,点P即为被盗汽车的位置.
【点睛】
本题考查作图—过一点作垂线,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.
25.(1)详见解析;(2)16。