一次函数第一课时教案
- 格式:doc
- 大小:42.00 KB
- 文档页数:2
12.2.1一次函数(第一课时)教学目标:知识目标:1、理解一次函数和正比例函数的概念;掌握一次函数和正比例函数之间的关系.2、学会用两点坐标的方法画出正比例函数的图象,理解正比例函数的图像特点和倾斜程度与k的关系能力目标:经历探索过程,发展学生的抽象思维能力情感目标:激发学生问题探索的兴趣.教学重难点:重点:正确理解一次函数和正比例函数的概念,正比例函数的图像特点。
难点:正比函数图像倾斜程度与k的关系教学方法:先学后教,当堂训练教学过程:一、回顾旧知,引出课题阅读问题,分析问题中的变量,写出函数关系式。
1.小红每天做5道数学课外练习,试写出小红所做题目的总数y和练习天数x 之间的函数关系式2. 小张准备将平时的零用钱节约一些储存起来.他已存有50元,从现在起每个月节存12元.试写出小张的存款数y与从现在开始的月份数x之间的函数关系式。
引出课题:一次函数。
二、出示目标【投影】学习目标1、理解一次函数与正比例函数的概念以及两者之间的关系。
2、学会用两点坐标的方法画出正比例函数的图象,能够理解正比例函数的图像特点和倾斜程度与k 的关系。
三、指导自学(一)【投影】自学指导1自学教材第35页第6段之前的内容,思考:1、在这些函数解析式中,含有自变量的代数式,分别是关于自变量的什么式呢? 可以怎样表示? 2、这些函数是什么函数?它的一般形式如何表示?其中的K 、b 有什么限定条件?3、什么是正比例函数?它和一次函数是什么关系?3分钟以后比一比看谁能准确地解答自学检测合作学习:一次函数与正比例函数的概念以及两者之间的关系检测自学效果:[投影]问题1 1、填空:观察下列函数关系式① y=x2 ② y=3x+2 ③ y -3=3(x -1) ④ xy=5 ⑤ x+y=0其中属于一次函数的有 属于正比例函数的有先让学生回答如果回答不出来,可以让学生交流讨论得出答案,最后老师出示答案,帮助学生订正。
问题2 已知函数3(4)412m y m x n -=-+-(1)当m 、n 取什么值时,该函数是一次函数?(2)当m 、n 取什么值时,该函数是正比例函数?引导学生根据概念分析说理,指名学生板演,规范书写格式。
19.1.1 变量与函数(第1课时)主备人:何荣武一.教学目标:知识与技能:了解变量与常量的意义;体会运动变化过程中的数量变化.过程与方法:学生经历对实际问题数量关系的探索,提高数学学习的兴趣,学会合作学习,在解决问题的过程中体会到数学的应用价值,在探索活动中获得成功的体验,建立良好的自信;情感与态度价值观:进一步加深认识数学与人类生活的密切联系,体验数学活动充满着探索与创造,感受数学的严谨性以及数学结论的确定性.二.教学重难点:教学重点:了解变量与常量的意义,会在简单的过程中辨别常量和变量.教学难点:体验在一个过程中常量与变量相对地存在.三.教学过程:19.1.1 变量与函数(第2课时)主备人:何荣武一.教学目标:知识与技能:进一步体会运动变化过程中的数量变化;从典型实例中抽象概括出函数的概念,了解函数的概念.过程与方法:经过实际问题认识变量中的自变量与函数;积极参与活动、提高学习兴趣;形成合作交流意识及独立思考的习惯进一步加深认识数学与人类生活的密切联系.情感与态度价值观:进一步加深认识数学与人类生活的密切联系,体验数学活动充满着探索与创造,体验数学活动充满着探索与创造,感受数学的严谨性以及数学结论的确定性.二.教学重难点:教学重点:理解自变量、函数和函数值的概念。
教学难点:概括并理解函数概念中的单值对应关系19.1.1 变量与函数(第3课时)主备人:何荣武一、教学目标:知识与技能:了解解析法和列表法,并能用这两种方法表示简单实际问题中的函数关系;能确定简单实际问题中函数的自变量取值范围;过程与方法:经历回顾变量中的自变量与函数,初步分析简单实际问题中函数关系,从简单实际问题中抽象出函数解析式,感知变量的变化情况.情感态度价值观:积极参与活动、提高学习兴趣;形成合作交流意识及独立思考的习惯进一步加深认识数学与人类生活的密切联系,体验数学活动充满着探索与创造,感受数学的严谨性以及数学结论的确定性.二.教学重难点:教学重点:理解自变量、函数和函数值的概念。
一次函数第一课时的教案教案标题:一次函数第一课时的教案教学目标:1. 了解一次函数的定义和特征;2. 掌握一次函数的图像、表达式和性质;3. 能够应用一次函数解决实际问题。
教学准备:1. 教师准备:教案、黑板、白板、彩色粉笔或白板笔、教学PPT等;2. 学生准备:课本、笔记本、铅笔、直尺等。
教学过程:一、导入(5分钟)1. 教师通过提问或展示一幅图片引起学生对一次函数的兴趣,激发学生思考。
2. 引导学生回顾前一节课关于函数的知识,复习函数的定义和性质。
二、讲授(20分钟)1. 教师通过示意图向学生介绍一次函数的定义和特征,强调一次函数的表达式形式为y=ax+b,其中a和b为常数,a≠0。
2. 教师通过实例向学生展示一次函数的图像和表达式之间的关系,并解释图像上的斜率和截距的含义。
3. 教师引导学生观察一次函数图像的特点,如直线、斜率、截距等,并总结一次函数的性质。
三、练习(15分钟)1. 学生个人练习:学生根据给定的一次函数表达式,画出对应的图像,并标注斜率和截距。
2. 学生小组合作练习:学生分组完成一些简单的应用题,如求解一次函数的零点、求解实际问题等。
四、讲评(10分钟)1. 教师和学生共同讨论练习中出现的问题,并解答学生的疑惑。
2. 教师对学生的练习情况进行评价,鼓励优秀表现并指出需要改进之处。
五、拓展(5分钟)1. 教师引导学生思考一次函数在实际生活中的应用,如速度、距离、成本等问题。
2. 教师提供一些拓展问题,让学生进一步思考和探索一次函数的更多应用。
六、总结(5分钟)1. 教师对本节课的内容进行总结,强调一次函数的定义、特征和性质。
2. 鼓励学生将所学知识运用到实际问题中,并提出相关问题供学生思考。
七、作业布置(5分钟)1. 布置相关的课后作业,如完成课本上的习题或设计一些实际问题。
2. 提醒学生预习下一节课的内容,做好相关准备。
教学反思:本节课通过导入、讲授、练习、讲评、拓展、总结和作业布置等环节,全面展示了一次函数的定义、特征和性质。
课题:一次函数的图像(第一课时)观风海中学李兴兴教学目标:知识与技能:1.了解一次函数的图象是一条直线,能熟练作出一次函数的图象过程与方法:1.经历函数图象的作图过程,初步了解作函数图象的一般步骤.2.已知函数的代数表达式作函数的图象,培养学生数形结合的意识和能力.情感、态度与价值观:1.经历作图过程,归纳总结作函数图象的一般步骤,发展学生的总结概括能力.2.在探究活动中发展学生的合作意识和探究能力.教学重点1.熟练地作一次函数的图象.2.理解、归纳作函数图象的一般步骤:列表、描点、连线.3.理解一次函数的代数表达式与图象之间的一一对应关系.教学难点理解一次函数的代数表达式与图象之间的一一对应关系.教学流程:一、课前回顾1. 在下列函数24(1)3(2)2(3)(4)25y x y x y y x x =-===-; ; ; ; 是一次函数的是 (2)(4) ,是正比例函数的是 (2) .2、函数的表示法: ①图象法、②列表法、③解析式法(关系式法)三种方法可以相互转化二、 情境引入探究一: 什么是函数的图象?把一个函数的自变量x 与对应的因变量y 的值分别作为点的横坐标和纵坐标,在直角坐标系内描出它的对应点,所有这些点组成的图形叫做该函数的图象.试在平面直角坐标系中画出点M(4,3)请作出正比例函数y=2x的图象.分析:函数图象上的点一般来说有无数多个,要把每个点都作出来得到函数图象很困难,甚至是不可能的.所以我们常作出函数图象上的一部分点,然后用光滑的线把这些点连接起来得到函数的图象.请同学们想一想,怎么才能得到图象上的一部分点呢?为此,我们首先要取一些自变量x的值,求出对应的函数值y,那么以(x,y)为坐标的点就是函数图象上的点.为了表达方便,我们可以列表来表示x和y的对应关系.解:列表: 取自变量的一些值,求出对应的函数值,填入表中.描点:以表中各组对应值作为点的坐标,在直角坐标系内描出相应的点.连线:把这些点依次连结起来,得到y=2x的图象.总结:作一个函数的图象需要三个步骤:列表,描点,连线.这种画函数图象的方法叫做描点法.探究二:(1)作出一次函数y=-3x的图象.(2) 在所作的图象上取几个点,找出它们的横坐标和纵坐标,并验证它们是否都满足关系y=-3x.满足(1)列表(2)描点连线( 3 ) 满足关系式y=-3x的x,y所对应的点(x,y)是否都在它的图象上? 是( 4 ) 正比例函数y=-3x的图象上的点(x,y)都满足它的关系式吗? 满足( 5 ) 正比例函数y=kx的图象有什么特点?一条直线总结:正比例函数y=kx的图象是一条经过原点的直线。
一次函数一、教学目标:知识与技能:掌握一次函数的定义;并且能运用一次函数解决简单的实际问题。
过程与方法:通过对山高与气温的关系探究,获得对一次函数的初步认识;经历实际问题的分析和求解过程,体会数学与现实的密切联系,提高解决问题的能力。
情感、态度与价值观:通过实际操作经历对实际问题的数据关系的探索,培养学生积极探索的精神以及观察、分析、总结的学习态度。
二、教学重、难点重点:深入理解一次函数的定义;运用一次函数解决实际问题。
难点:运用一次函数解决实际问题。
三、教学过程1、创设情境,引入新课问题1:某登山队大本营所在地的气温为5℃,海拔每升高1km 气温下降6 ℃,登山队员由大本营向上登高x km时,他们所在位置的气温是y ℃,试用解析式表示y与x的关系.分析:y随x的变化规律是,从大本营所在地向上当海拔每增加1千米,气温y减少6 ℃,由此得出下表:由表可得出y与x的关系为:y=5-6x问题2、把一个长10cm、宽5cm的长方形的长减少x cm,宽不变,长方形的面积(单位:平方厘米)随的值怎么变化,写出y与的x关系式。
分析:长方形面积等于长与宽的乘积,那么根据长方形长的变化可以列出下表:由表可以看出y与x的关系为:y=5*(10-x)=50-5x。
思考题:下题中变量间的对应关系可用怎样的函数来表示?仿照上面两题的方法,给出下面问题中的y与x的关系。
某城市的市内电话的月收费额y(单位:元)包括:月租费22元,拔打电话x分的计时费(按0.1元/分收取);对比这三个函数关系式,发现有什么共同点呢?学生自由发言,教师总结,引出一次函数,并归纳一次函数的定义。
2、归纳定义一般地,形如y=kx+b (k,b 是常数,k ≠0 )的函数,叫做一次函数。
特别的,当b=0时,y=kx+b 就变成了y=kx ,即正比例函数,所以:正比例函数是一种特殊的一次函数。
3、理解应用例1: 概念辨析:下列哪些函数是一次函数,哪些又是正比例函数.431--=x y )( xy 12=)( 1432+=x y )( xy 94=)(练习1:下列函数哪些是一次函数,哪些又是正比例函数?x y 81-=)( xy 82-=)( 6532+=x y )( 15.04--=x y )(例2:一个小球由静止开始在一个斜坡向下滚动,其速度每秒增加2 米/秒.(1)求小球速度v (单位:米)随时间t (单位:秒)变化的 函数关系式,它是一次函数吗?(2)求第2.5秒时小球的速度。
19.2一次函数——一次函数的图象和性质(第1课时)一、内容和内容解析1、内容:义务教育人教版数学八年级下册第十九章《一次函数》 19.2.2 “一次函数的图象和性质”第一课时。
2、内容解析:在学习本节课之前,学生已经掌握了变量和函数、正比例函数的图象和性质、一次函数的概念等相关知识,对于函数图象的画法有较好的基础。
本节内容的作用主要体现在以下几个方面:首先,学生对函数概念的认识,需要通过对具体函数的学习掌握来巩固和提高,而一次函数的学习提供了这样的条件;其次,一次函数的研究模式为今后研究反比例函数、二次函数提供了完整的研究模式,也是学习高中代数、解析几何及其他数学分支乃至其他学科的重要基础。
第三,为方程(组)、不等式、函数解法的相互转化和补充提供了新的途径,使学生更加深刻地理解“数形结合”的思想方法。
一次函数性质的核心是其增减性与系数k的符号之间的关系。
在一次函数的图象及其性质研究中,蕴含了数形结合的思想、分类讨论的思想和观察、表征、类比、归纳等数学认知活动。
二、教学目标(1)会画一次函数的图象。
(2)能从图象角度理解正比例函数与一次函数的关系,探究出一次函数的主要性质。
(3)通过观察图象、类比正比例函数性质概括一次函数性质的活动,发展数学感知、数学表征和数学概括能力,体会数形结合的思想,发展几何直观。
(4)通过学生在学习活动中获得成功的体验,增强学习数学的自信心。
教学重点:通过画图、观察,研究一次函数的的图象和增减变化规律。
教学难点:用数形结合的思想方法,概括和理解一次函数的性质。
三、教法选择和学法指导美国教育学家杜威先生说过这样一句话:“你可以将一匹马牵到河边,但是你决不可能按着马头让它饮水。
”这句话也道出了数学教学的灵魂在于主体探究。
因此,在教学中,不仅要使学生“知其然”,而且要使学生“知其所以然”。
用学生的眼光看教材,构造合理的思维场,使学生保持在欲知未知、半生不熟的中等强度上,逐步向学生体现数学事实的内在规律和联系;同时特别注重指导学生在独立思考的基础上,以分组活动、小组讨论等学习方式,最终达到共同提高的目的;运用多媒体适度辅助教学,增强问题直观性;同时设计简单的学案,配备好表格和平面直角坐标系,使作图简便、快捷、准确。
八年级数学一次函数的性质第一课时一次函数的性质(一)教学目标1、探索一次函数图象观察、分析等过程,提高学生数形结合意识,培养数形结合的能力.2、掌握一次函数y=kx+b的性质。
教学过程一、观察、分析一次函数图象特点1.画出一次函数y=23x+1的图象.让学生动手画出一次函数,y=23x+l的图象,复习一次函数的怍图方法.教师在黑板上画出一次函数y=23x+1的图象。
2.观察,分析函数y=23x+l图象的变化规律.师生共同观察分析,当一个点在直线上从左向右移动(自变量x从小到大)时,它的位置也在逐渐从低到高变化(函数y的值也从小到大)问题2中的函数y=50+12x是否这样?这就是说,函数值y随自变量x增大而_______在同一直角坐标系中画出函数y=3x-2的图象(如图中的虚线)是否也有这种现象.进—步引导学生观察、分析得出与上面相同的结论.3、画出函数y=-x+2和y=-32x-1的图象。
学生动手画出以上一次函数图象,教师指导并纠正学生可能出现的错误画法.同时,教师在黑板面出这两个一次函数的图象.4、观察、分析函数y=-x+2和y=-32x-1图象的变化规律.问题l:仿照以上研究方法,研究它们是否也有相应的性质,有什么不同?你能否发现什么规律?让学生分组讨论.发表意见,教师评析并归纳为:当一个点在直线上从左到右(自变量x变量x的增大而减小.再联想问题1中的函数y=570-95t,是否也有这样的规律,发表你的看法.让学生讨论回答,问题1中的函数y=570-95t也有与上面得出的同样规律。
二、归纳、概括根据以上研究的结果,你能表述一次函数y=kx+b的性质吗?让学生归纳、概括、表述如下性质:1.当k>0时,y随x的增大而增大,这时函数的图象从左到右上升;2.当k<0时,y随x的增大而减小,这时函数的图象从左到右下降.这些性质在P40问题1和P41问题2中,反映怎样的实际意义?让学生思考后回答.三、做一做画出函数y=-2x+2的图象,结合图象回答下列问题:1.这个函数中,随着x的增大y将增大还是减小?它的图象从左到右怎样变化?2.当x取何值时,y=0?3.当x取何值时,y>0?四、课堂练习P45页练习l、2.五、小结一次函数y=kx+b有哪些性质?六、作业P47页习题17.3 8、9(1)第二课时一次函数的性质(二) 教学目标1.使学生理解待定系数法。
12.2 一次函数(第1课时)-教案一、教材分析 本节课是沪科版八年级(上)12.2一次函数的第一课时,主要内容是一次函数与正比例函数的概念,以及正比例函数的图象与性质,它是在前面函数的学习基础上作进一步的学习。
一次函数是初中阶段函数部分的重要内容,正比例函数图象与性质的学习是后面一次函数图象与性质学习的基础。
二、学情分析本节课之前,学生已初步掌握了函数的相关知识,在此基础上学习一次函数与正比例函数的概念、以及正比例函数的图象与性质,对学生来说并不陌生;但学生已有知识水平与认知水平具有层次性,从而在教学中引导学生动手操作、小组合作,让每位学生都参与进来、得到一定的收获,培养学生的合作意识。
三、教学目标1.理解一次函数与正比例函数的概念。
2.会画正比例函数的图象,掌握正比例函数的性质。
四、教学重点与难点重点:一次函数与正比例函数的概念及正比例函数的图象与性质。
难点:正比例函数的图象与性质。
五、教学过程(一)预习导学1.阅读教材第35页内容。
2.完成下列题目。
(1)某弹簧的自然长度为12厘米,在弹性限度内,每挂1千克就伸长0.5厘米,写出挂物后的弹簧长度y (cm)与物体的质量x (kg)之间的关系式是__________。
(2)一辆汽车的速度是60 km/h ,写出行驶路程y (cm)与时间x (kg)之间的关系式_____________。
(3)指出下列函数中哪些是一次函数,哪些是正比例函数,并说出b k ,的值。
①12-=x y ; ②x y 21=; ③x y 1=; ④n m 8100-=;⑤12-=x y 。
活动:由学生独立完成,教师检查,了解学生对本节知识的理解情况。
设计意图:培养学生自主学习与阅读理解的能力。
第2题的设置意在让学生了解一次函数的实际背景,检测学生对教材的理解情况,也是学生对自己阅读理解能力的自我检测。
(二)合作探究1.观察下列各式:(1)180030+=t h ;(2)30025+-=t Q ;(3)x y 2=;(4)x y 2-=; (5)t s 80=。
§11.2.2 一次函数(一)教学目标1、掌握一次函数解析式的特点及意义2、知道一次函数与正比例函数的关系3、理解一次函数图象特点与解析式的联系规律教学重点1、一次函数解析式特点2、一次函数图象特征与解析式的联系规律教学难点1、一次函数与正比例函数关系2、根据已知信息写出一次函数的表达式。
教学过程Ⅰ.提出问题,创设情境问题1小明暑假第一次去北京.汽车驶上A地的高速公路后,小明观察里程碑,发现汽车的平均车速是95千米/小时.已知A地直达北京的高速公路全程为570千米,小明想知道汽车从A地驶出后,距北京的路程和汽车在高速公路上行驶的时间有什么关系,以便根据时间估计自己和北京的距离.分析我们知道汽车距北京的路程随着行车时间而变化,要想找出这两个变化着的量的关系,并据此得出相应的值,显然,应该探求这两个变量的变化规律.为此,我们设汽车在高速公路上行驶时间为t小时,汽车距北京的路程为s千米,根据题意,s和t的函数关系式是s=570-95t.说明找出问题中的变量并用字母表示是探求函数关系的第一步,这里的s、t是两个变量,s是t的函数,t是自变量,s是因变量.问题2小张准备将平时的零用钱节约一些储存起来.他已存有50元,从现在起每个月节存12元.试写出小张的存款与从现在开始的月份之间的函数关系式.分析我们设从现在开始的月份数为x,小张的存款数为y元,得到所求的函数关系式为:y=50+12x.问题3以上问题1和问题2表示的这两个函数有什么共同点?Ⅱ.导入新课上面的两个函数关系式都是左边是因变量y,右边是含自变量x的代数式。
并且自变量和因变量的指数都是一次。
若两个变量x,y间的关系式可以表示成y=kx+b(k,b为常数k ≠0)的形式,则称y是x的一次函数(x为自变量,y为因变量)。
特别地,当b=0时,称y 是x 的正比例函数。
例1:下列函数中,y 是x 的一次函数的是( )①y=x-6;②y=x 2;③y=8x ;④y=7-x A 、①②③ B 、①③④ C 、①②③④ D 、②③④例2 下列函数关系中,哪些属于一次函数,其中哪些又属于正比例函数?(1)面积为10cm 2的三角形的底a (cm)与这边上的高h (cm);(2)长为8(cm)的平行四边形的周长L (cm)与宽b (cm);(3)食堂原有煤120吨,每天要用去5吨,x 天后还剩下煤y 吨;(4)汽车每小时行40千米,行驶的路程s (千米)和时间t (小时).(5)汽车以60千米/时的速度匀速行驶,行驶路程中y (千米)与行驶时间x (时)之间的关系式;(6)圆的面积y (厘米2)与它的半径x (厘米)之间的关系;(7)一棵树现在高50厘米,每个月长高2厘米,x 月后这棵树的高度为y (厘米) 分析 确定函数是否为一次函数或正比例函数,就是看它们的解析式经过整理后是否符合y =kx +b (k ≠0)或y =kx (k ≠0)形式,所以此题必须先写出函数解析式后解答. 解 (1)ha 20=,不是一次函数. (2)L =2b +16,L 是b 的一次函数.(3)y =150-5x ,y 是x 的一次函数.(4)s =40t ,s 既是t 的一次函数又是正比例函数.(5)y=60x ,y 是x 的一次函数,也是x 的正比例函数;(6)y=πx 2,y 不是x 的正比例函数,也不是x 的一次函数;(7)y=50+2x ,y 是x 的一次函数,但不是x 的正比例函数例3 已知函数y =(k -2)x +2k +1,若它是正比例函数,求k 的值.若它是一次函数,求k 的值.分析 根据一次函数和正比例函数的定义,易求得k 的值.解 若y =(k -2)x +2k +1是正比例函数,则2k +1=0,即k =21-. 若y =(k -2)x +2k +1是一次函数,则k -2≠0,即k ≠2.例4 已知y 与x -3成正比例,当x =4时,y =3.(1)写出y 与x 之间的函数关系式;(2)y 与x 之间是什么函数关系;(3)求x =2.5时,y 的值.解 (1)因为 y 与x -3成正比例,所以y =k (x -3).又因为x =4时,y =3,所以3= k (4-3),解得k =3,所以y =3(x -3)=3x -9.(2) y 是x 的一次函数.(3)当x =2.5时,y =3×2.5=7.5.例5已知A、B两地相距30千米,B、C两地相距48千米.某人骑自行车以每小时12千米的速度从A地出发,经过B地到达C地.设此人骑行时间为x(时),离B地距离为y(千米).(1)当此人在A、B两地之间时,求y与x的函数关系及自变量x取值范围.(2)当此人在B、C两地之间时,求y与x的函数关系及自变量x的取值范围.分析 (1)当此人在A、B两地之间时,离B地距离y为A、B两地的距离与某人所走的路程的差.(2)当此人在B、C两地之间时,离B地距离y为某人所走的路程与A、B两地的距离的差.解(1) y=30-12x.(0≤x≤2.5)(2) y=12x-30.(2.5≤x≤6.5)例6某油库有一没储油的储油罐,在开始的8分钟时间内,只开进油管,不开出油管,油罐的进油至24吨后,将进油管和出油管同时打开16分钟,油罐中的油从24吨增至40吨.随后又关闭进油管,只开出油管,直至将油罐内的油放完.假设在单位时间内进油管与出油管的流量分别保持不变.写出这段时间内油罐的储油量y(吨)与进出油时间x(分)的函数式及相应的x取值范围.分析因为在只打开进油管的8分钟内、后又打开进油管和出油管的16分钟和最后的只开出油管的三个阶级中,储油罐的储油量与进出油时间的函数关系式是不同的,所以此题因分三个时间段来考虑.但在这三个阶段中,两变量之间均为一次函数关系.解在第一阶段:y=3x(0≤x≤8);在第二阶段:y=16+x(8≤x≤16);在第三阶段:y=-2x+88(24≤x≤44).Ⅲ.随堂练习1、见下表:x -2 -1 0 1 2 ……y -5 -2 1 4 7 ……根据上表写出y与x之间的关系式是:________________,y是否为x一的次函数?y 是否为x有正比例函数?2、为了加强公民的节水意识,合理利用水资源,某城市规定用水收费标准如下:每户每月用水量不超过6米3时,水费按0.6元/米3收费;每户每月用水量超过6米3时,超过部分按1元/米3收费。
《一次函数》教案(共5则)第一篇:《一次函数》教案《一次函数》教案马才义一.教学目标1、经历一般规律的探索过程,发展学生的抽象思维能力。
2、理解一次函数和正比例函数的概念,能根据所给的条件写出简单的一次函数表达式,发展学生的数学应用能力。
教学重点、难点重点:理解一次函数和正比例函数的概念。
难点:能根据所给的条件写出简单的一次函数表达式。
二。
教学过程(一)问题的提出题的提出饮料每箱12瓶,售价55元,求买饮料的总价Y(元)与所买瓶数X(瓶)的关系式。
2 某弹簧的自然长度为3厘米,在弹簧限度内,所挂物体的质量X每增加12千克,弹簧长度Y增加0。
5厘米。
(1)计算所挂物体的质量为1千克2千克3千克4千克5千克、、、、、、X千克弹簧长度,并填入下表;X/千克 0 1 2 3 4 5、、、X Y/厘米(2)你能写出X与Y的函数之间的关系吗?(二)做一做某汽车油箱中原有汽油100升,汽车每行驶50千米耗油9升。
(1)完成下表路程X/千米 0 50 100 150 200 300、、、余油Y/升(2)你能写出X与Y的函数之间的关系吗?说明:各题中的X 都有一定的限制。
问:观察上述关系式的特点,总结规律。
(三)一次函数定义、正比例函数的定义若两个变量x,y间的关系式可以表示成y=kx+b(k,b为常数,k≠0)则称y是x的一次函数(x是自变量,y是因变量)。
特别地,当b=0时,称y是x的正比例函数。
(四)讲例例1写出下列各题中x与y之间的关系式,并判断y是否为x一次函数?是否为正比例函数?(1)汽车以60千米/时的速度行使,行使路程y(千米)与行使时间x(时)之间的关系。
(2)圆的面积y (cm2)与它的半径x(cm)之间的关系。
(3)一棵树现高50cm,每个月长高2cm,x月后这棵树的高度为y(cm)。
分析:本题较为简单,由学生完成。
例2 我国现行个人工资、薪金所得税征收办法规定:月收入不超过800元的部分不收税;月收入超过800元但不超过1300元的部分征收5%的所得税……如某人月收入1160元,他应缴个人工资、薪金所得税为(1160—800)*5%=18(元)。
“三段式”教学技能竞赛6.3 一次函数的图象(第一课时)学习目标1、了解作图过程,掌握作函数图象的一般步骤。
2、能熟练画出一次函数的图象,明确一次函数的图象是一条直线。
教学重点:了解经历作图过程,掌握作函数图象的一般步骤教学难点:能熟练画出一次函数的图象,明确一次函数的图象是一条直线,培养数形结合思想。
教学过程:一、激趣导课:对于一次函数y = x - 1当x=0时,y=_____;当x=1时,y=_____;当x=2时,y=_____;当x=-1时,y=_____;当x=-2时,y=_____.二、自学(104页—106页习题6.3以上)通过自主学习,你有什么发现?1、什么是函数的图象?2、作函数的图象的一般步骤是什么?3、作函数图象需要注意哪些问题?4、一次函数的图象有什么特征?自学检测:1、把一个函数的自变量x与对应的因变量y的值分别作为点的和,在直角坐标系内描出它的对应点,所有这些点组成的图形叫做该函数的.2、作出一次函数y=-2x+5的图象.:以表中各组对应值作为点的坐标,在直角坐标系内描出相应的点.:把这些点依次连接起来,得到y=2x+1的图象。
三、互动:议一议:(1)满足关系式y=-2x+5的x , y所对应的点(x , y)都在一次函数y=-2x+5图象上吗?(2)一次函数y=-2x+5的图象上的点(x , y)都满足关系式y=-2x+5吗?(3)一次函数y=kx+b的图象有什么特点?(4)画一次函数y=kx+b的图象,只要找几个点就可以了?为什么?(四)检测1.已知直线y= (k+1)x+1-2k, 若直线与y轴交于(0, -1), 则k=_____; 若直线与x轴交于点(3, 0), 则k=_____.2.直线y=-2x+4与x轴的交点坐标是________, 与y轴的交点坐标是________.3.下列各点,不在一次函数y=2x+1图象上的是( )A.(1,3)B.(-1,-1)C.(0.5,2)D.(0,2)4、作出下列一次函数的图象:y=-3x+9(五)归纳小结:1.函数图象的概念把一个函数的自变量x与对应的因变量y的值分别作为点的横坐标和纵坐标,在直角坐标系内描出它的对应点,所有这些点组成的图形叫做该函数的图象.2.作一次函数图象的一般步骤列表、描点、连线.3、两个重要结论结论1:一次函数y=kx+b与其图象是一一对应的.结论2 :一次函数的图象是一条直线;六、布置作业课本106页习题6.3 第1题七、板书设计6.3一次函数的图像一、函数的图象概念(x,y)二、作函数图像的一般步骤:列表描点连线三、一次函数的图像:一条直线背景知识:1、函数的背景知识函数概念则是由17世纪德国著名数学家莱布尼茨提出的。
一次函数的图象教学设计(第一课时)一、教学设计思想本节课共两课时,第1课时本节交代了函数图象的概念和作图的一般步骤,目的是为后继学习反比例函数、二次函数的图像作必要的知识准备。
根据教学目标,结合学生心理特点,这节课采用在教师引导下,学生主动探索发现的教学方法.即教师创设问题情景,引导学生观察、比较、自学、思考并展开讨论,使学生作为学习主体参与知识发生、发展的全过程,体验揭示规律,发现真理的乐趣,从而产生巨大的内驱力,提高课堂教学效率,充分发挥教师主导作用和学生的主体作用.二、教学目标知识与技能1.总结作一次函数图像的一般步骤,能熟练作出一次函数图像.2.总结归纳出一次函数的性质———k>0或k<0时图像变化的情况.过程与方法经历作图过程,归纳总结作作函数图像的一般步骤,发展总结概括能力,培养数形结合的意识.情感态度与价值观加强新旧知识的联系,促进新的认知结构的建构.三、教学重点1.能熟练地作出一次函数的图象.2.归纳作函数图象的一般步骤.3.理解一次函数的代数表达式与图象之间的对应关系.四、教学难点理解一次函数的代数表达式与图象之间的对应关系.五、教学方法讲、议结合法.六、教具准备投影片两张:第一张:补充练习(§6.3.1 A );第二张:补充练习(§6.3.1 B).七、教学过程Ⅰ.导入新课[师]上节课我们学习了一次函数及正比例函数的概念,正比例函数与一次函数的关系,并能根据已知信息列出x 与y 的函数关系式,本节课我们来研究一下一次函数的图象及性质.Ⅱ.讲授新课 一、函数图象的概念[师]要研究一次函数的图象,首先应知道什么叫图象?把一个函数的自变量x 与对应的因变量y 的值作为点的横坐标和纵坐标,在直角坐标系内描出它的对应点,所有这些点组成的图形叫做该函数的图象(graph ). 假设在代数表达式y =2x 中,自变量x 取1时,对应的因变量y =2,则我们可在直角坐标系内或描出表示(1,2)的点,再给x 的另一个值,对应又一个y ,又可知直角坐标系内描出一个点,所有这些点组成的图形叫该函数y =2x 的图象.由此看来,函数图象是满足函数表达式的所有点的集合.那么应如何作函数的图象呢? 二、作一次函数的图象 [例1]作出一次函数y =21x +1的图象. [师]根据图象的定义,需要先找点.所以要先列表,找满足条件的点,再描点,连线. 解:列表x … -2 -1 0 1 2 …y =21x +1 021 123 2 …描点:以表中各组对应值作为点的坐标,在直角坐标系内描出相应的点. 连线:把这些点依次连接起来,得到y =21x +1的图象如下,它是一条直线.[师]从刚才我们作图的情况来总结一下,作一次函数的图象有哪些步骤呢?[生]①列表;②描点;③连线.三、做一做(1)作出一次函数y=-2x+5的图象.(2)在所作的图象上取几个点,找出它们的横坐标和纵坐标,并验证它们是否满足关系式y=-2x+5.[生]列表x …-2 -1 0 1 2 …y=-2x+5 …9 7 5 3 1 …描点:以表中各组对应值作为点的坐标,在直角坐标系内描出相应的点.连线:把这些点依次连接起来,得到y=-2x+5的图象,它是一条直线.图象如下:在图象上找点A(3,-1),B(4,-3)当x=3时,y=-2×3+5=-1.当x=4时,y=-2×4+5=-3.∴(3,-1),(4,-3)满足关系式y=-2x+5.四、议一议(1)满足关系式y=-2x+5的x、y所对应的点(x,y)都在一次函数y=-2x+5的图象上吗?(2)一次函数y=-2x+5的图象上的点(x,y)都满足关系式y=-2x+5吗?(3)一次函数y=kx+b的图象有什么特点?[师]请大家分组讨论,然后回答.[生]满足关系式y=-2x+5的x,y所对应的点(x,y)都在一次函数y=-2x+5的图象上.(2)一次函数y =-2x +5的图象上的点(x ,y )都满足关系式y =-2x +5.[师]由此看来,满足函数关系式y =-2x +5的x ,y 所对应的点(x ,y )都在一次函数y = -2x +5的图象上;反过来,一次函数y =-2x +5的图象上的点(x ,y )都满足关系式y =-2x +5.所以,一次函数的代数表达式与图象是一一对应的.即满足一次函数的代数表达式的点在图象上,图象上的每一点的横坐标x ,纵坐标y 都满足一次函数的代数表达式.(3)[生]一次函数的图象是一条直线. [师]非常正确.一次函数的图象是一条直线.由直线的公理可知:两点确定一条直线,所以作一次函数的图象时,只要确定两个点,再过这两个点作直线就可以了,一次函数y =kx +b 的图象也称为直线y =kx +b .Ⅲ.课堂练习 分别作出一次函数y =31x 与y =-3x +9的图象. [师]根据刚才的讨论可知,我们在画一次函数的图象时,只要确定两个点就可以了. [生]作函数y =31x 的图象时,找点(3,1),(6,2)图象如下.作函数y =-3x +9的图象时,找点(1,6),(2,3) 图象如下:补充练习投影片(§6.3.1A )(1)作出一次函数y =-x +21的图象. (2)在所作的图象上取几个点,找出它们的坐标,并验证其是否都满足关系式y =-x +21. [生](1)作一次函数y =-x +21的图象时,取点(0, 21)和(1,-21),然后过这两点作直线即可.图象如下:(2)在图象上取点A (23,-1),B (-1,23) 当x =23时,y =-23+ 21=-1 当x =-1时,y =1+21=23∴A 、B 两点的坐标都满足关系式y =-x +21. 投影片(§6.3.1 B ) (1)作出一次函数y =4x +3的图象;(2)判断下列各对数是不是满足关系式y =4x +3,如果是,请验证一下以这些数对为坐标的点是否在你所作出的函数图象上. (0,3),(-1,-1),(21,5),(1,7),(-23,-3) [生]解:(1)作一次函数y =4x +3的图象时,找点(0,3),(1,7),然后过这两点作直线即可.图象如下:(2)当x =0时,y =4×0+3=3; 当x =-1时,y =4×(-1)+3=-1; 当x =21时,y =4×21+3=5; 当x =1时,y =4×1+3=7; 当x =-23时,y =4×(-23)+3=-3. ∴每对数都满足关系式y =4x +3.由前面的议一议可知,以这些数对为坐标的点在所作的函数图象上. Ⅳ.课时小结本节课主要学习了以下内容: 1.函数图象的概念;2.作一次函数图象的步骤以及熟练地作出一次函数的图象,并能验证某些数对是否在函数图象上.3.明确一次函数的图象是一条直线,因此在作一次函数的图象时,不需要列表,只要确定两点就可以了.Ⅴ.课后作业 习题6.3 Ⅵ.活动与探究1.已知函数y =(m -2)x 552+-m m+m -4,问当m 为何值时,它是一次函数?解:根据一次函数的定义,有⎩⎨⎧≠-=+-021552m m m解得⎩⎨⎧≠==241m m m 或∴m =1或m =42.如果y +3与x +2成正比例,且x =3时,y =7. ①写出y 与x 之间的函数关系式; ②求当x =-1时,y 的值; ③求当y =0时,x 的值.分析:①y +3与x +2成正比例,就是y +3=k ·(x +2),根据x =3时,y =7,求k 的值,从而确定y 与x 之间的函数关系式.②把x =-1代入所求函数关系式,求出y 的值. ③把y =0代入函数关系式,求出x 的值. 解:①∵y +3与x +2成正比例 ∴y +3=k (x +2)把x =3,y =7代入得:7+3=k (3+2) ∴k =2,∴y =2x +1②把x =-1代入y =2x +1中,得y =-2+1=-1③把y =0代入y =2x +1中,得 0=2x +1,∴x =-21. 说明:若y 与x 成一次函数关系式,那么函数关系式要写成y =kx +b (k ≠0)的形式. 3.如果y =mx 82-m是正比例函数,而且对于它的每一组非零的对应值(x ,y )有xy <0,求m 的值.分析:按正比例函数y =kx (k ≠0)中对于k 及x 的指数的要求决定m 的值. 解:根据题意得,y =mx 82-m 是正比例函数,故有:m 2-8=1且m ≠0即m =3或m =-3又∵xy <0,∴x ,y 是异号.∴m =xy<0 ∴m =3不合题意,舍去. ∴m =-3.常见错误:忽略m ≠0的要求,在解题过程不写这一条件. 4.已知y +b 与x +a (a ,b 是常数)成正比例. 求证:y 是x 的一次函数.分析:由y +b 与x +a 成正比例,设立解析式,分析此解析式为x 的一次函数. 解:∵y +b 与x +a 成正比例 ∴可设y +b =k (x +a )(k ≠0) 整理,得y =kx +ka -b =kx +(ka -b ) ∵k ,a ,b 都是常数. ∴ka -b 也是常数. 又∵k ≠0∴y 是x 的一次函数.常见错误:整理得到y =kx +ka -b 时不会把ka -b 看作一个整式.说明:在叙述函数的,一定要说清楚谁是谁的什么名称函数,否则容易发生混淆现象.如本题中,y +b 是x +a 的正比例这个说法是正确的,同时,y 是x 的一次函数的说法也是正确的.八、板书设计。
第四章一次函数4. 4 一次函数的应用第 1 课时《一次函数图象的应用》是义务教育课程标准北师大版实验教科书数学八年级(上)第四章《一次函数》的第4节.本节内容安排了3个课时完成,本节为第1课时.教学任务主要是利用一次函数图象解决有关现实问题.本节课注重学生图象信息的识别与分析,提高学生的识图能力和阅读能力,通过读取的信息回答和解决现实生活中的具体问题,进一步培养学生的数形结合能力和数学阅读能力,发展形象思维.1.能通过函数图象获取信息,解决简单的实际问题;在解决问题过程中,初步体会方程与函数的关系,建立各种知识的联系.2.通过对函数图象的观察与分析,培养学生数形结合的意识和数学阅读能力,发展形象思维;通过具体问题的解决,发展学生的数学应用能力;引导学生从事观察、操作、交流、归纳等探索活动,使学生初步形成多样的学习方式.3.在解决实际问题中,使学生认识到数学与生活是密不可分的,培养学生学习数学的兴趣,进而更好的解决实际问题.【教学重点】一次函数图象的应用.【教学难点】从函数图象正确读取信息,解决实际问题.学生每人准备好草稿纸、铅笔、直尺;教师准备课件,图片.一、提出问题,思考引入前面,我们学习了一次函数及其图象和性质,你能写出两个具体的一次函数解析式吗?如何画出它们的图象?y = 3x-1y = -2x+3思考:反过来,已知一个一次函数的图象经过两个具体的点,你能求出它的解析式吗?二、合作交流,探究新知(一)确定正比例函数的表达式内容1:展示实际情境提供两个问题情境,供老师选用.实际情境一:某物体沿一个斜坡下滑,它的速度v (米/秒)与其下滑时间t (秒 )的关系如图所示.(1)写出v 与t 之间的关系式;(2)下滑3秒时物体的速度是多少?分析:要求v 与t 之间的关系式,首先应观察图象,确定函数的类型,然后根据函数的类型设它对应的解析式,再把已知点的坐标代入解析式求出待定系数即可.内容2:求正比例函数 y =(m -4)x m 2-15的表达式.解:由正比例函数的定义知m 2-15=1且 m -4 ≠ 0,∴m =-4∴y =-8x方法总结:利用正比例函数的定义确定表达式:自变量的指数为1,系数不为0目的:利用函数图象提供的信息可以确定正比例函数的表达式,一方面让学生初步掌握确定函数表达式的方法,即待定系数法,另一方面让学生通过实践感受到确定正比例函数只需一个条件.情景一、二可根据学生情况进行选取.想一想:确定正比例函数的表达式需要几个条件?确定一次函数的表达式呢?目的:在实践的基础上学生加以归纳总结.这个问题涉及到数学对象的一个本质概念——基本量.由于一次函数有两个基本量、,所以需要两个条件来确定.(二)确定一次函数的表达式已知一次函数的图象经过(0,5)、(2,-5)两点,求一次函数的表达式.解:设一次函数的表达式为y=kx+b根据题意得,∴-5=2k+b,5=b,解得b=5,k=-5∴一次函数的表达式为y=-5x+5做一做某种拖拉机的油箱可储油40 L,加满油并开始工作后,油箱中的剩余油量y(L)与工作时间x(h)之间为一次函数关系,函数图象如图所示.(1)求y 关于x 的函数表达式;(2)一箱油可供拖拉机工作几小时?归纳总结根据图象确定一次函数的表达式的方法:从图象上选取两个已知点的坐标,然后运用待定系数法将两点的横、纵坐标代入所设表达式中求出待定系数,从而求出函数的表达式.三、运用新知例1 正比例函数与一次函数的图象如图所示,它们的交点为A (4,3),B 为一次函数的图象与y 轴的交点,且OA=2OB.求正比例函数与一次函数的表达式.例2 在弹性限度内,弹簧的长度y(厘米)是所挂物体质量x(千克)的一次函数.一根弹簧不挂物体时长14.5 厘米;当所挂物体的质量为 3 千克时,弹簧长16 厘米.请写出y 与x 之间的关系式,并求当所挂物体的质量为 4 千克时弹簧的长度.解:设,根据题意,得14.5=,①16=3+,②将代入②,得.所以在弹性限度内,.当时,(厘米).即物体的质量为千克时,弹簧长度为厘米.归纳总结解此类题要根据所给的条件建立数学模型,得出变化关系,并求出函数的表达式,根据函数的表达式作答.目的:引例中设置的是利用函数图象求函数表达式,这个例子选取的是弹簧的一个物理现象,目的在于让学生从不同的情景中获取信息求一次函数表达式,进一步体会函数表达式是刻画现实世界的一个很好的数学模型.这道例题关键在于求一次函数表达式,在求出一般情况后,第二个问题就是求函数值的问题可迎刃而解.教学注意事项:学生除了从函数的观点来考虑这个问题之外,还有学生是用推理的方式:挂3千克伸长了1.5厘米,则每千克伸长了0.5厘米,同样可以得到与间的关系式.对此,教师应给予肯定,并指出两种方法考虑的角度和采用的方法有所不同.内容2:想一想:大家思考一下,在上面的两个题中,有哪些步骤是相同的,你能否总结出求一次函数表达式的步骤.求函数表达式的步骤有:1.设一次函数表达式.2.根据已知条件列出有关方程.3.解方程.4.把求出的k,b值代回到表达式中即可.目的:对求一次函数表达式方法的归纳和提升.在此基础上,教师可指出这种先将表达式中未知系数用字母表示出来,再根据条件求出这个未知系数,这种方法称为待定系数法.四、巩固新知1. 一次函数y = kx + b (k ≠ 0) 的图象如图,则下列结论正确的是( )A.k=2 B.k=3 C.b=2 D.b=32. 如图,直线l 是一次函数y = kx+b的图象,填空:(1)b=______,k=______(2)当x=30时,y=______(3)当y=30时,x=______3. 某商店售货时,在进价的基础上加一定利润,其数量x 与售价y 的关系如下表所示,请你根据表中所提供的信息,列出售价y (元)与数量x (千克)的函数关系式,并求出当数量是 2.5 千克时的售价.4. 已知一次函数的图象过点(0,2),且与两坐标轴围成的三角形的面积为 2,求此一次函数的表达式.五、归纳小结1. 本节课主要学习了怎样确定一次函数的表达式,在确定一次函数的表达式时可以用待定系数法,即先设出解析式,再根据题目条件(根据图象、表格或具体问题)求出,的值,从而确定函数解析式.其步骤如下:(1)设函数表达式;(2)根据已知条件列出有关k ,b 的方程;(3)解方程,求k ,b ;4.把k ,b 代回表达式中,写出表达式.2. 本节课用到的主要的数学思想方法:数形结合、方程的思想.目的:引导学生小结本课的知识及数学方法,使知识系统化.略.。
19.2.2 一次函数青海一中李清第1课时一次函数的概念【知识与技能】1.理解一次函数的概念以及它与正比例函数的关系.2.能根据问题的信息写出一次函数的表达式,能利用一次函数解决简单的问题.【过程与方法】在探究过程中,发展抽象思维及概括能力,体验特殊和一般的辩证关系.【情感态度】经历利用一次函数解决实际问题的过程,逐步形成利用函数观点认识现实世界的意识和能力.【教学重点】1.一次函数的概念.2.根据已知信息写出一次函数的表达式.【教学难点】理解一次函数的定义及与正比例函数的关系.一、情境导入,初步认识引导学生一起回忆函数、正比例函数的概念和两者间的关系.问题某登山队大本营所在地的气温为5℃,海拔每升高1km气温下降6℃,登山队员由大本营向上登高xkm,他们所在位置的气温是y℃,试用解析式表示y与x的关系.【分析】 y随x的变化规律是,从大本营向上海拔增加xkm时,气温从5℃减少6x℃,因此y与x的函数关系为y=5-6x,变形可写成y=-6x+5.【教学说明】找出y与x的关系式后,引导学生观察这个函数式是不是正比例函数,它的形式与正比例函数解析式有什么异同?由学生共同讨论.二、思考探究,获取新知学生思考下列问题,写出对应的函数解析式:(1)有人发现,在20~25℃时蟋蟀每分钟鸣叫次数C与温度t(单位:℃)有关,即C的值约是t的7倍与35的差.(2)一种计算成年人标准体重G(单位:千克)的方法是,以厘米为单位量出身高值h,h再减常数105,所得的差是G的值.(3)把一个长10cm,宽5cm的长方形的长减小xcm,宽不变,长方形的面积y(单位:cm2)随x的值而变化.【答案】(1)C=7t-35;(2)G=h-105;(3)y=-5x+50.【教学说明】让学生观察所写解析式的特点,并让学生认识到:各小题表示变量的字母虽然不同,但结构相同.变量间对应关系反映出了一种函数形式,与所取符号无关,找出这些式子的共同点,才能概括出一般规律.【归纳总结】(1)一般地,形如y=kx+b(k,b为常数,k≠0)的函数,叫一次函数.(2)当b=0时,得y=kx,故正比例函数是一次函数的特例.三、典例精析,掌握新知例1 下列函数中哪些是一次函数?哪些正比例函数?①y=-2x;②2yx=-;③y=2x2-3;④y=13x+2.【答案】①④是一次函数,①是正比例函数.【教学说明】一次函数包括正比例函数.例2 某校校办工厂的现有年产值是15万元,计划今后每年增加2万元,由此可知,年产值发生了变化.(1)在这个变化过程中,自变量、因变量各是什么?(2)如果年数用x(年)表示,年产值用y(万)元表示,那么y与x之间有什么样的关系?(3)当年由1年增加到5年时,年产值是怎样变化的?【分析】由题意可知,现有年产值是15万元,以后每年增加2万元,可见,年数乘以2万元即为增加的产值.【答案】(1)在这个变化过程中,自变量是年数,因变量是年产值.(2)y=2x+15.(3)当年数由1年增加到5年时,年产值由17万元增加到25万元.例3托运行李P千克(P为整数)的费用为c元,已知托运第一个1千克须付2元,以后每增加1千克(不足1克的按1千克计)须增加费用5角,写出c与P的关系式,并计算出托运5千克行李的托运费.【分析】因为P千克可写成(P1)+1,其中1千克付费2元,P-1千克增加费用0.5(P-1),所以c=2+0.5(P-1)=0.5P+1.5.【答案】c=2+0.5(P-1)=0.5P+1.5.当P=5时,c=0.5×5+1.5=4(元).即5千克行李的托运费是4元.【教学说明】在写系式时,应注意(P-)千克是增加的重量.类似的问题还有用水、用电、话费结算等,它们都是以分段形式收费的.四、运用新知,深化理解1.一个小球由静止开始在一个斜坡上向下滚动,其速度每秒增加2米/秒.(1)求小球速度v随时间t变化的函数关系式,它是一次函数吗?(2)求第2.5秒时小球的速度.2.汽车油箱中原有油50升,如果行驶中每小时用油5升,求油箱中的油量y(单位:升随行驶时间x(单位:时)变化的函数关系式,并写出自变量x的取值范围,y是x 的一次函数吗?3.气温随着高度的增加而下降,下降的一般规律是从地面到高空11km处,每升高1km,气温下降6℃.高于11km时,气温几乎不再变化,设地面的气温为38℃,高空中xkm的气温为y℃.(1)当0≤x≤11时,求y与x的关系式.(2)求当x=2,5,8,11时y的值.(3)求在离地面13km的高空处,气温是多少度?(4)当气温是-16℃时,问在离地面多高的地方?【教学说明】上述问题由学生思考并得出结果.【答案】1.(1)v=2t,是一次函数;(2)第2.5秒时小球的速度是5米/秒.2.y=50-5x,0≤x≤10,y是x的一次函数.3.(1)0≤x≤11时,y与x之间的关系式为y=38-6x.(2)分别为26,8,-10,-28.(3)气温是-28℃.(4)离地面9km高的地方.五、师生互动,课堂小结问题1 反思函数、正比例函数、一次函数的概念及它们间的关系.问题2 就本节课所学、所想、所思、所获,交流体会.【教学说明】引导学生用语言表述个人见解,指导获取正确清晰的知识点和知识间联系.1.布置作业:从教材“习题19.2”中选取.2.完成练习册中本课时练习.本课时重点是引领学生从整体的高度把握一次函数与正比例函数的概念间的关系,教师应选取适当的材料帮助学生从不同的角度认识这个知识点,并通过一定的练习指导学生巩固认识.教学中可重点指导学生表述、交流个人体会,再互相分析,在师生的共同探讨中逐步抓住知识的本质,再鼓励学生主动地应用于解决问题中,获得实际应用能力. 【素材积累】1、走近一看,我立刻被这美丽的荷花吸引住了,一片片绿油油的荷叶层层叠叠地挤摘水面上,是我不由得想起杨万里接天莲叶无穷碧这一句诗。
《一次函数1》教学案学习目标:1、掌握一次函数的概念,根据概念判断一个式子是否是一次函数2、会区分正比例函数与一次函数的关系。
重点:一次函数的概念难点:区分正比例函数与一次函数的关系。
一、预习导学:复习:根据上节课所学内容回答下列问题:(1)、正比例函数的概念:一般地,形如 (k 是 ,k )的函数,叫做 ,其中k 叫做(2)、下列函数是正比例函数的是:①y =2πx ② y = x+2 ③ y=x 3 ④ y=3x ⑤ y=x 2+1 ⑥y=-12x+1 ⑦y=-4x ⑧y= 2 x (3)、试对正比例函数y=-0.5x 的图象、性质进行简单描述:该函数的图象是过 的一条 ,图象经过第 象限,它的图像从左到右是 趋势,即:y 随x 的增大而 。
(4)、试对正比例函数y=10x 的图象、性质进行简单描述:该函数的图象是过 的一条 ,图象经过第 象限,它的图像从左到右是 趋势,即:y 随x 的增大而 。
(5)、判断点(2,-1)是否在函数y=-0.5x 的图象上,答: ,点(-3,-1.5)呢?答: 你能自己说出几个在该函数图象上的点吗? 。
(6)若A (1,m )在函数x y 2=的图像上,则m=________。
(7)请判断点(1,k )在正比例函数y=kx 的图象上吗?答: 。
正比例函数的图象还必经过原点,因此画正比例函数图象的最简单方法是经过 和点 画一条直线即可。
二、研习探究:(一)一次函数概念探究:根据题意写出下列函数的解析式(1) 有人发现,在20~25℃时蟋蟀每分鸣叫次数c 与温度t (单位:℃)有关,即c 的值约是t 的7倍与35的差;_______________(2) 一种计算成年人标准体重G (单位:千克)的方法是,以厘米为单位量出身高值h ,再减常数105,所得的差是G 的值;_______________(3) 某城市的市内电话的月收费为y (单位:元)包括:月租22元,拨打电话x 分的计时费(按0.1元/分收取);_______________(4) 把一个长10cm 、宽5cm 的长方形的长减少xcm ,宽不变,长方形的面积y (单位:cm 2)随x 的值而变化。
一次函数第一课时教案
教学目标
知识与技能
理解一次函数与正比例函数的定义。
过程与方法
通过对函数概念的进一步理解的过程,能把实际问题中的变量关系用一次函数的形式刻画出来。
情感、态度与价值观
引导学生主动地从事观察、实验、猜想、交流、反思等数学活动,鼓励学生自主探索与合作交流,让学生获得成功的经验。
教学重点和难点
重点
理解一次函数与正比例函数的定义
难点
会寻找实际问题中的等量关系,并用函数关系式表达出来,提高学生解决问题的能力。
课前准备
1.学生课前准备
2.教学器材:直尺、多媒体等.
3.教学课件:与教材配套的教学软件.
教学过程设计
一、问题导入(教师运用多媒体打出)
问题1:小明暑假第一次去北京.汽车驶上A地的高速公路后,小明观察里程碑,发现汽车的平均速度是95千米/时.己知A地直达北京的高速公路全程为570千米,小明想知道汽车从A地驶出后,距北京的路程和汽车在高速公路上行驶的时间有什么关系,以便根据时间估计自己和北京的距离.
问题2:小张准备将平时的零用钱节约一些储存起来.他己存有50元,从现在起每个月节存12元.试写出小张的存款与从现在开始的月份数之间的函数关系式.请同学们思考后回答:
(1)找出问题中的变量并用字母表示,列出函数关系式.
(2)这两个函数关系式有什么共同点?自变量的取值范围各有什么限制?
以上这些问题,请各小组讨论一下,派代表回答.引出课题(板书课题)教师最后总结一次函数的概念.(板书)
二、合作探究并归纳
引导学生观察这两个函数关系式的结构特征,引出一次函数的一般形式(学生回答,且互相补充)老师最后归纳:
一次函数通常可以表示为b
kx
y+
=的形式,其中b
k,为常数,0
≠
k.特别地,当0
=
b时,一次函数kx
y=(常数0
≠
k)也叫做正比例函数.
三、练习
1.仓库内原有粉笔400盒,如果每个星期领出36盒,求仓库内余下的粉笔盒数Q与星期数t之间的函数关系式.
2.今年植树节,同学们种的树苗高约1.80米.据介绍,这种树苗在10年内平均每年长高0.35米,求树高(米)与年数之间的函数关系式,并算一算4年后这些树约有多高.
3.小徐的爸爸为小徐存了一份教育储蓄.首次存入1万元,以后每个月存入500元,存满3万元止.求存款数增长的规律.几个月后可存满全额?
4.以上3道题中的函数有什么共同特点?
四、小试牛刀
1.下列函数关系中,哪些属于一次函数,其中哪些又属于正比例函数?
(1)面积为10cm²的三角形的底a(cm)与这边上的高h(cm);
(2)长为8(cm)的平行四边形的周长L(cm)与宽b(cm);
(3)食堂原有煤120吨,每天要用去5吨,x天后还剩下煤y吨;
(4)汽车每小时行驶40千米,行驶的路程s(千米)和时间t(小时).
(5)圆圆的半径面积Scm²与r(cm);
2.已知函数y=(k-2)x+2k+1,若它是正比例函数,求k的值;若它是一次函数,求k的取值范围.
3.已知y 与x -3成正比例,当x =4时, y =3 .
(1)写出y 与x 之间的函数关系式; (2) y 与x 之间是什么函数关系式; (3)求x =2.5时, y 的值
4.已知A 、B 两地相距30千米, B 、C 两地相距48千米,某人骑自行车以每小时12千米的速度从A 地出发,经过B 地到达C 地.设此人骑车时间为x(时)离B 地距离为y(千米).
(1)当此人在A 、B 两地之间时,求 y 与x 之间的函数关系式及自变量x 的取值范围; (2)当此人在B 、C 两地之间时,求 y 与x 之间的函数关系式及自变量x 的取值范围;
五、能力提升
某油库有一没储油的储油罐,在开始的8分钟内,只开进油管,不开出油管,油罐进油至24吨后,将进油管和出油管同时打开16分钟,油罐中的油从24吨增至40吨.随后又关闭进油管,只开出油管,直至将油罐内的油放完.假设在单位时间内进油管与出油管的流量分别保持不变.写出这段时间内油罐的储油量y(吨)与进出油时间x(分)的函数式及相应的x 取值范围.
六、小结
1、函数的解析式是用自变量的一次整式表示的,我们称它们为一次函数.
2、一次函数通常可以表示为b kx y +=的形式,其中b k ,是常数,0≠k .
3、特别地,当b =0时,一次函数kx y =(常数0≠k )也叫做正比例函数.
4、正比例函数也是一次函数,它是一次函数的特例.
七、作业
《全品练习册》31页。