高中数学第一章-集合与函数
- 格式:ppt
- 大小:2.06 MB
- 文档页数:58
高中数学必修1知识点第一章集合与函数概念〖〗集合【】集合的含义与表示(1) 集合的概念集合中的元素具有确定性、互异性和无序性(2) 常用数集及其记法N表示自然数集,N 或N表示正整数集,Z表示整数集,Q表示有理数集,R表示实数集•(3) 集合与元素间的关系对象a与集合M的关系是a M,或者a M,两者必居其一.(4) 集合的表示法①自然语言法:用文字叙述的形式来描述集合②列举法:把集合中的元素一一列举出来,写在大括号内表示集合③描述法:{X| x具有的性质},其中x为集合的代表元素•④图示法:用数轴或韦恩图来表示集合•(5) 集合的分类①含有有限个元素的集合叫做有限集•②含有无限个元素的集合叫做无限集•③不含有任何元素的集合叫做空集()•【】集合间的基本关系)已知集合有个元素,则它有个子集,它有个真子集,它有个非空子集,它有2n2非空真子集.【】集合的基本运算(1)(2)—元二次不等式的解法〖〗函数及其表示【】函数的概念(1) 函数的概念① 设A、B 是两个非空的数集,如果按照某种对应法则 f ,对于集合A 中任何一个数x , 在集合B 中都有唯一确定的数f(x)和它对应,那么这样的对应(包括集合 A ,B 以及 A 到B 的对应法则f )叫做集合 A 到B 的一个函数,记作 f : A B .② 函数的三要素:定义域、值域和对应法则.③ 只有定义域相同,且对应法则也相同的两个函数才是同一函数.(2)区间的概念及表示法①设a,b是两个实数,且a b,满足a x b的实数x的集合叫做闭区间,记做[a,b];满足a x b的实数x的集合叫做开区间,记做(a,b);满足a x b,或a x b 的实数x的集合叫做半开半闭区间,分别记做[a,b) , (a,b];满足x a, x a,x b,x b 的实数x 的集合分别记做[a, ),(a, ),( , b],( , b).注意:对于集合{x|a x b}与区间(a,b),前者a可以大于或等于b,而后者必须a b.(3)求函数的定义域时,一般遵循以下原则:①f(x)是整式时,定义域是全体实数.②f(x)是分式函数时,定义域是使分母不为零的一切实数.③f(x)是偶次根式时,定义域是使被开方式为非负值时的实数的集合.④对数函数的真数大于零,当对数或指数函数的底数中含变量时,底数须大于零且不等于1.⑤y tanx中,x k (k Z).2⑥零(负)指数幕的底数不能为零.⑦若f(x)是由有限个基本初等函数的四则运算而合成的函数时,则其定义域一般是各基本初等函数的定义域的交集.⑧对于求复合函数定义域问题,一般步骤是:若已知 f (x)的定义域为[a,b],其复合函数f[g(x)]的定义域应由不等式a g(x) b解出.⑨对于含字母参数的函数,求其定义域,根据问题具体情况需对字母参数进行分类讨论.⑩由实际问题确定的函数,其定义域除使函数有意义外,还要符合问题的实际意义.(4)求函数的值域或最值求函数最值的常用方法和求函数值域的方法基本上是相同的•事实上,如果在函数的值域中存在一个最小(大)数,这个数就是函数的最小(大)值.因此求函数的最值与值域,其实质是相同的,只是提问的角度不同•求函数值域与最值的常用方法:①观察法:对于比较简单的函数,我们可以通过观察直接得到值域或最值.②配方法:将函数解析式化成含有自变量的平方式与常数的和,然后根据变量的取值范围确定函数的值域或最值.③判别式法:若函数y f (x)可以化成一个系数含有y的关于x的二次方程a(y)x2b(y)x c(y) 0 ,则在a(y) 0时,由于x,y为实数,故必须有2b (y) 4a(y) c( y) 0 ,从而确定函数的值域或最值.④不等式法:利用基本不等式确定函数的值域或最值.⑤换元法:通过变量代换达到化繁为简、化难为易的目的,三角代换可将代数函数的最值问题转化为三角函数的最值问题.⑥反函数法:利用函数和它的反函数的定义域与值域的互逆关系确定函数的值域或最值.⑦数形结合法:利用函数图象或几何方法确定函数的值域或最值.⑧函数的单调性法.【】函数的表示法(5 )函数的表示方法表示函数的方法,常用的有解析法、列表法、图象法三种.解析法:就是用数学表达式表示两个变量之间的对应关系.列表法:就是列出表格来表示两个变量之间的对应关系.图象法:就是用图象表示两个变量之间的对应关系.(6) 映射的概念①设A、B是两个集合,如果按照某种对应法则f,对于集合A中任何一个元素,在集合B中都有唯一的元素和它对应,那么这样的对应(包括集合 A , B以及A到B的对应法则f )叫做集合A到B的映射,记作f : A B .②给定一个集合A到集合B的映射,且a A,b B .如果元素a和元素b对应,那么我们把元素b叫做元素a的象,元素a叫做元素b的原象.〖〗函数的基本性质【】单调性与最大(小)值(1)函数的单调性一个减函数为增函数,减函数减去一个增函数为减函数.③对于复合函数y f[g(x)],令u g(x),若y f(u)为增,u g(x)为增,则y f[g(x)]为增;若y f (u)为减,u g(x)为减,则y f[g(x)]为增;若y f(u) 为增,u g(x)为减,则y f [g (x)]为减;若y f (u)为减,u g (x)为增,则y f[g(x)]为减.函数f (x)的最大值,记作f max (x)② 一般地,设函数y f (x)的定义域为I ,如果存在实数 m 满足:(1)对于任意的x I ,都有f (x) m ; (2)存在x o I ,使得f(X o ) m .那么,我们称 m 是函数f (x)的最小值,记作f max (X ) m .【】奇偶性(4 )函数的奇偶性函数的性质定义图象 判定方法如果对于函数f(x)定义(1)利用定义(要域内任意一个x ,都有(a f (a))先判断定义域是否函数的ZTf( — x)= — f(x),那么函C-关于原点对称)奇偶性1 a"数f(x)叫做奇函数.(-a, f f-fi))(2)利用图象(图象关于原点对称)(3) 打"2”函数f (x) x - (a 0)的图象与性质x f (x)分别在(,a ]、[.a,)上为增函数,分别在 [.a ,0)、(0,、a ]上为减函数. 最大(小)值定义 ①一般地,设函数y f(x)的定义域为I ,如果存在实数 满足:(1)对于任意的x I ,都有 f(x) M ; (2)存在 x o I ,使得 f (X o ) M .那么,我们称 M②若函数f(x)为奇函数,且在x 0处有定义,则f(0) 0 .③奇函数在y轴两侧相对称的区间增减性相同,偶函数在y轴两侧相对称的区间增减性相反.④在公共定义域内,两个偶函数(或奇函数)的和(或差)仍是偶函数(或奇函数)两个偶函数(或奇函数)的积(或商)是偶函数,一个偶函数与一个奇函数的积(或商) 是奇函数.〖补充知识〗函数的图象(1)作图利用描点法作图:①确定函数的定义域;②化解函数解析式;③讨论函数的性质(奇偶性、单调性) ;④画出函数的图象.利用基本函数图象的变换作图:要准确记忆一次函数、二次函数、反比例函数、指数函数、对数函数、幕函数、三角函数等各种基本初等函数的图象.①平移变换h 0,左移h个单位y f(x)h o,右移ihi个单位y f(x h)v f(x)k 0上移k个单位y f(x)ky f(x)k 0,下移|k|个单位y f (x) k②伸缩变换y f(x) 01缩伸y f( x)y f(x)缩y Af(x)③对称变换y f(x)y f(x)y f(x)y f( x)(2)识图对于给定函数的图象,要能从图象的左右、上下分别范围、变化趋势、对称性等方面研究函数的定义域、值域、单调性、奇偶性,注意图象与函数解析式中参数的关系.(3)用图函数图象形象地显示了函数的性质,为研究数量关系问题提供了“形”的直观性,它是探求解题途径,获得问题结果的重要工具•要重视数形结合解题的思想方法.。
第一部分集合与函数的概念知识点整理第一章集合与函数概念一:集合的含义与表示1、集合的含义:集合为一些确定的、不同的东西的全体,人们能意识到这些东西,并且能判断一个给定的东西是否属于这个整体。
把研究对象统称为元素,把一些元素组成的总体叫集合,简称为集。
2、集合的中元素的三个特性:(1)元素的确定性:集合确定,则一元素是否属于这个集合是确定的:属于或不属于。
(2)元素的互异性:一个给定集合中的元素是唯一的,不可重复的。
(3)元素的无序性:集合中元素的位置是可以改变的,并且改变位置不影响集合3、集合的表示:{…}(1)用大写字母表示集合:A={我校的篮球队员},B={1,2,3,4,5} (2)集合的表示方法:列举法与描述法。
a、列举法:将集合中的元素一一列举出来 {a,b,c……}b、描述法:①区间法:将集合中元素的公共属性描述出来,写在大括号内表示集合。
{x R| x-3>2} ,{x| x-3>2}②语言描述法:例:{不是直角三角形的三角形}③Venn图:画出一条封闭的曲线,曲线里面表示集合。
4、集合的分类:(1)有限集:含有有限个元素的集合(2)无限集:含有无限个元素的集合(3)空集:不含任何元素的集合5、元素与集合的关系:(1)元素在集合里,则元素属于集合,即:a∈A(2)元素不在集合里,则元素不属于集合,即:a¢A注意:常用数集及其记法:非负整数集(即自然数集)记作:N正整数集 N*或 N+整数集Z有理数集Q实数集R6、集合间的基本关系(1).“包含”关系(1)—子集定义:如果集合A的任何一个元素都是集合B的元素,我们说这两个集合有包含关系,称集合A是集合B的子集。
记作:BA⊆(或B⊇A)注意:BA⊆有两种可能(1)A是B的一部分;(2)A与B是同一集合。
反之: 集合A不包含于集合B,或集合B不包含集合A,记作A⊆/ B或B⊇/A(2).“包含”关系(2)—真子集如果集合BA⊆,但存在元素x∈B且x¢A,则集合A是集合B的真子集如果A⊆B,且A≠B那就说集合A是集合B的真子集,记作A B(或B A)读作A真含与B(3).“相等”关系:A=B“元素相同则两集合相等”如果A⊆B 同时 B⊆A 那么A=B(4). 不含任何元素的集合叫做空集,记为Φ规定: 空集是任何集合的子集,空集是任何非空集合的真子集。
【精华】人教版高中数学必修一第一章集合与函数概念一、集合的概念集合是数学中最基本的概念之一,它是某些指定对象的总体。
这些对象被称为集合的元素。
集合可以是有序的,也可以是无序的。
例如,自然数集合{1, 2, 3, }是无序的,而有序对集合{(1, 2), (2, 3), }是有序的。
集合的表示方法有两种:列举法和描述法。
列举法是将集合中的所有元素一一列出,用花括号{}括起来。
例如,集合{1, 2, 3}表示包含元素1、2、3的集合。
描述法是使用文字描述集合中元素的特征,例如,自然数集合可以表示为{所有大于0的整数}。
集合的基本运算包括交集、并集、差集、补集等。
交集是指两个集合共同拥有的元素组成的集合;并集是指两个集合所有元素组成的集合;差集是指一个集合中有而另一个集合中没有的元素组成的集合;补集是指一个集合中所有不属于另一个集合的元素组成的集合。
二、函数的概念函数是数学中另一个基本的概念,它描述了两个变量之间的依赖关系。
在函数中,一个变量被称为自变量,另一个变量被称为因变量。
函数的表示方法有三种:解析法、表格法和图像法。
解析法是使用数学公式来表示函数的方法,例如,y = x^2 表示一个二次函数。
表格法是使用表格来表示函数的方法,表格中的每一行都代表一个函数值。
图像法是使用图形来表示函数的方法,图形中的每个点都代表一个函数值。
函数的基本性质包括单调性、奇偶性、周期性等。
单调性是指函数在某个区间内是递增或递减的;奇偶性是指函数在自变量取相反数时,函数值也取相反数;周期性是指函数在一定区间内重复出现。
三、集合与函数的关系集合与函数有着密切的关系。
集合可以用来表示函数的定义域和值域,而函数可以用来描述集合中元素之间的关系。
例如,一个函数可以将一个集合中的元素映射到另一个集合中的元素,从而建立两个集合之间的对应关系。
在解决数学问题时,集合与函数的概念常常被结合起来使用。
例如,在求解函数的值域时,需要先确定函数的定义域,然后根据函数的性质来求解值域。
高中数学必修1知识点总结第一章 集合与函数概念【1.1.1】集合的含义与表示(1)集合的概念集合中的元素具有确定性、互异性和无序性. (2)常用数集及其记法N 表示自然数集,N *或N +表示正整数集,Z 表示整数集,Q 表示有理数集,R 表示实数集.(3)集合与元素间的关系对象a 与集合M 的关系是a M ∈,或者a M ∉,两者必居其一. (4)集合的表示法①自然语言法:用文字叙述的形式来描述集合.②列举法:把集合中的元素一一列举出来,写在大括号内表示集合. ③描述法:{x |x 具有的性质},其中x 为集合的代表元素. ④图示法:用数轴或韦恩图来表示集合. (5)集合的分类①含有有限个元素的集合叫做有限集.②含有无限个元素的集合叫做无限集.③不含有任何元素的集合叫做空集(∅).【1.1.2】集合间的基本关系(6)子集、真子集、集合相等(7)已知集合A 有(1)n n ≥个元素,则它有2n 个子集,它有21n -个真子集,它有21n -个非空子集,它有22n-非空真子集.【1.1.3】集合的基本运算(8)交集、并集、补集【补充知识】含绝对值的不等式与一元二次不等式的解法0)【1.2.1】函数的概念(1)函数的概念①设A、B是两个非空的数集,如果按照某种对应法则f,对于集合A中任何一个数x,在集合B中都有唯一确定的数()f x和它对应,那么这样的对应(包括集合A,B以及A到B的对应法则f)叫做集合A到B的一个函数,记作:f A B→.②函数的三要素:定义域、值域和对应法则.③只有定义域相同,且对应法则也相同的两个函数才是同一函数.(2)区间的概念及表示法①设,a b是两个实数,且a b<,满足a x b≤≤的实数x的集合叫做闭区间,记做[,]a b;满足a x b<<的实数x的集合叫做开区间,记做(,)a b;满足a x b≤<,或a x b<≤的实数x的集合叫做半开半闭区间,分别记做[,)a b,(,]a b;满足,,,x a x a x b x b≥>≤<的实数x的集合分别记做[,),(,),(,],(,) a a b b+∞+∞-∞-∞.注意:对于集合{|}x a x b<<与区间(,)a b,前者a可以大于或等于b,而后者必须a b<.(3)求函数的定义域时,一般遵循以下原则:①()f x是整式时,定义域是全体实数.②()f x是分式函数时,定义域是使分母不为零的一切实数.③()f x是偶次根式时,定义域是使被开方式为非负值时的实数的集合.④对数函数的真数大于零,当对数或指数函数的底数中含变量时,底数须大于零且不等于1.⑤tany x=中,()2x k k Zππ≠+∈.⑥零(负)指数幂的底数不能为零.⑦若()f x是由有限个基本初等函数的四则运算而合成的函数时,则其定义域一般是各基本初等函数的定义域的交集.⑧对于求复合函数定义域问题,一般步骤是:若已知()f x的定义域为[,]a b,其复合函数[()]f g x的定义域应由不等式()a g x b≤≤解出.⑨对于含字母参数的函数,求其定义域,根据问题具体情况需对字母参数进行分类讨论.⑩由实际问题确定的函数,其定义域除使函数有意义外,还要符合问题的实际意义.(4)求函数的值域或最值求函数最值的常用方法和求函数值域的方法基本上是相同的.事实上,如果在函数的值域中存在一个最小(大)数,这个数就是函数的最小(大)值.因此求函数的最值与值域,其实质是相同的,只是提问的角度不同.求函数值域与最值的常用方法:①观察法:对于比较简单的函数,我们可以通过观察直接得到值域或最值.②配方法:将函数解析式化成含有自变量的平方式与常数的和,然后根据变量的取值范围确定函数的值域或最值③判别式法:若函数()y f x=可以化成一个系数含有y的关于x的二次方程2()()()0a y xb y xc y++=,则在()0a y≠时,由于,x y为实数,故必须有2()4()()0b y a yc y∆=-⋅≥,从而确定函数的值域或最值.④不等式法:利用基本不等式确定函数的值域或最值.⑤换元法:通过变量代换达到化繁为简、化难为易的目的,三角代换可将代数函数的最值问题转化为三角函数的最值问题.⑥反函数法:利用函数和它的反函数的定义域与值域的互逆关系确定函数的值域或最值.⑦数形结合法:利用函数图象或几何方法确定函数的值域或最值.⑧函数的单调性法.【1.2.2】函数的表示法(5)函数的表示方法表示函数的方法,常用的有解析法、列表法、图象法三种.解析法:就是用数学表达式表示两个变量之间的对应关系.列表法:就是列出表格来表示两个变量之间的对应关系.图象法:就是用图象表示两个变量之间的对应关系.(6)映射的概念①设A、B是两个集合,如果按照某种对应法则f,对于集合A中任何一个元素,在集合B中都有唯一的元素和它对应,那么这样的对应(包括集合A,B以及A到B的对应法则f)叫做集合A到B的映射,记作:f A B→.②给定一个集合A到集合B的映射,且,a Ab B∈∈.如果元素a和元素b对应,那么我们把元素b叫做元素a的象,元素a叫做元素b的原象.〖1.3〗函数的基本性质【1.3.1】单调性与最大(小)值(1)函数的单调性①定义及判定方法o②在公共定义域内,两个增函数的和是增函数,两个减函数的和是减函数,增函数减去一个减函数为增函数,减函数减去一个增函数为减函数. ③对于复合函数[()]y f g x =,令()u g x =,若()y f u =为增,()u g x =为增,则[()]y f g x =为增;若()y f u =为减,()u g x =为减,则[()]y f g x =为增;若()y f u =为增,()u g x =为减,则[()]y f g x =为减;若()y f u =为减,()u g x =(2)打“√”函数()(0)af x x a x=+>的图象与性质()f x 分别在(,-∞、)+∞上为增函数,分别在[,0)、(0,]a 上为减函数.(3)最大(小)值定义 ①一般地,设函数()y f x =的定义域为I ,如果存在实数M 满足:(x I ∈,都有()f x M ≤;(2)存在0x I ∈,使得0()f x M =.那么,我们称M 是函数()f x 作max ()f x M =.【1.3.2】奇偶性(4)函数的奇偶性①定义及判定方法②若函数()f x 为奇函数,且在0x =处有定义,则(0)0f =.③奇函数在y 轴两侧相对称的区间增减性相同,偶函数在y 轴两侧相对称的区间增减性相反.④在公共定义域内,两个偶函数(或奇函数)的和(或差)仍是偶函数(或奇函数),两个偶函数(或奇函数)的积(或商)是偶函数,一个偶函数与一个奇函数的积(或商)是奇函数.〖补充知识〗函数的图象(1)作图利用描点法作图:①确定函数的定义域; ②化解函数解析式; ③讨论函数的性质(奇偶性、单调性); ④画出函数的图象. 利用基本函数图象的变换作图:要准确记忆一次函数、二次函数、反比例函数、指数函数、对数函数、幂函数、三角函数等各种基本初等函数的图象. ①平移变换0,0,|()()h h h h y f x y f x h ><=−−−−−−−→=+左移个单位右移|个单位0,0,|()()k k k k y f x y f x k ><=−−−−−−−→=+上移个单位下移|个单位②伸缩变换01,1,()()y f x y f x ωωω<<>=−−−−→=伸缩 01,1,()()A A y f x y Af x <<>=−−−−→=缩伸③对称变换()()x y f x y f x =−−−→=-轴()()y y f x y f x =−−−→=-轴 ()()y f x y f x =−−−→=--原点1()()y x y f x y f x -==−−−−→=直线 ()(||)y y y y f x y f x =−−−−−−−−−−−−−−−→=去掉轴左边图象保留轴右边图象,并作其关于轴对称图象()|()|x x y f x y f x =−−−−−−−−−→=保留轴上方图象将轴下方图象翻折上去(2)识图对于给定函数的图象,要能从图象的左右、上下分别范围、变化趋势、对称性等方面研究函数的定义域、值域、单调性、奇偶性,注意图象与函数解析式中参数的关系. (3)用图函数图象形象地显示了函数的性质,为研究数量关系问题提供了“形”的直观性,它是探求解题途径,获得问题结果的重要工具.要重视数形结合解题的思想方法.。
新人教A版高中数学教材目录(必修+选修)必修1第一章集合与函数概念1.1集合1.2函数及其表示1.3函数(de)基本性质第二章基本初等函数(Ⅰ)2.1指数函数2.2对数函数2.3幂函数第三章函数(de)应用3.1函数与方程3.2函数模型及其应用必修2第一章空间几何体1.1空间几何体(de)结构1.2空间几何体(de)三视图和直观图1.3空间几何体(de)表面积与体积第二章点、直线、平面之间(de)位置关系2.1空间点、直线、平面之间(de)位置关系2.2直线、平面平行(de)判定及其性质2.3直线、平面垂直(de)判定及其性质第三章直线与方程3.1直线(de)倾斜角与斜率3.2直线(de)方程3.3直线(de)交点坐标与距离公式第四章圆与方程4.1圆(de)方程4.2直线、圆(de)位置关系4.3空间直角坐标系必修3第一章算法初步1.1算法与程序框图1.2基本算法语句1.3算法案例第二章统计2.1随机抽样阅读与思考一个着名(de)案例阅读与思考广告中数据(de)可靠性阅读与思考如何得到敏感性问题(de)诚实反应2.2用样本估计总体阅读与思考生产过程中(de)质量控制图2.3变量间(de)相关关系阅读与思考相关关系(de)强与弱第三章概率3.1随机事件(de)概率3.2古典概型3.3几何概型必修4第一章三角函数1.1任意角和弧度制1.2任意角(de)三角函数1.3三角函数(de)诱导公式1.4三角函数(de)图象与性质1.5函数y=Asin(ωx+ψ)1.6三角函数模型(de)简单应用第二章平面向量2.1平面向量(de)实际背景及基本概念2.2平面向量(de)线性运算2.3平面向量(de)基本定理及坐标表示2.4平面向量(de)数量积2.5平面向量应用举例第三章三角恒等变换3.1两角和与差(de)正弦、余弦和正切公式3.2简单(de)三角恒等变换必修5第一章解三角形1.1正弦定理和余弦定理探究与发现解三角形(de)进一步讨论1.2应用举例阅读与思考海伦和秦九韶1.3实习作业第二章数列2.1数列(de)概念与简单表示法2.2等差数列2.3等差数列(de)前n项和2.4等比数列2.5等比数列前n项和第三章不等式3.1不等关系与不等式3.2一元二次不等式及其解法3.3二元一次不等式(组)与简单(de)线性规划问题3.4基本不等式选修1-1第一章常用逻辑用语1.1命题及其关系1.2充分条件与必要条件1.3简单(de)逻辑联结词1.4全称量词与存在量词第二章圆锥曲线与方程2.1椭圆2.2双曲线2.3抛物线第三章导数及其应用3.1变化率与导数3.2导数(de)计算3.3导数在研究函数中(de)应用3.4生活中(de)优化问题举例选修1-2第一章统计案例1.1回归分析(de)基本思想及其初步应用1.2独立性检验(de)基本思想及其初步应用第二章推理与证明2.1合情推理与演绎证明2.2直接证明与间接证明第三章数系(de)扩充与复数(de)引入3.1数系(de)扩充和复数(de)概念3.2复数代数形式(de)四则运算第四章框图4.1流程图4.2结构图选修2-1第一章常用逻辑用语命题及其关系充分条件与必要条件简单(de)逻辑联结词全称量词与存在量词第二章圆锥曲线与方程曲线与方程椭圆双曲线抛物线选修2-2第一章导数及其应用变化率与导数导数(de)计算导数在研究函数中(de)应用生活中(de)优化问题举例定积分(de)概念微积分基本定理定积分(de)简单应用第二章推理与证明合情推理与演绎推理直接证明与间接证明数学归纳法第三章数系(de)扩充与复数(de)引入数系(de)扩充和复数(de)概念复数代数形式(de)四则运算选修2-3第一章计数原理分类加法计数原理与分步乘法计数原理排列与组合二项式定理第二章随机变量及其分布离散型随机变量及其分布列二项分布及其应用离散型随机变量(de)均值与方差正态分布第三章统计案例回归分析(de)基本思想及其初步应用独立性检验(de)基本思想及其初步应用选修3-1数学史选讲第一讲早期(de)算术与几何一古埃及(de)数学二两河流域(de)数学三丰富多彩(de)记数制度第二讲古希腊数学一希腊数学(de)先行者二毕达哥拉斯学派三欧几里得与原本四数学之神──阿基米德第三讲中国古代数学瑰宝一周髀算经与赵爽弦图二九章算术三大衍求一术四中国古代数学家第四讲平面解析几何(de)产生一坐标思想(de)早期萌芽二笛卡儿坐标系三费马(de)解析几何思想四解析几何(de)进一步发展第五讲微积分(de)诞生一微积分产生(de)历史背景二科学巨人牛顿(de)工作三莱布尼茨(de)“微积分”第六讲近代数学两巨星一分析(de)化身──欧拉二数学王子──高斯第七讲千古谜题一三次、四次方程求根公式(de)发现二高次方程可解性问题(de)解决三伽罗瓦与群论四古希腊三大几何问题(de)解决第八讲对无穷(de)深入思考一古代(de)无穷观念二无穷集合论(de)创立三集合论(de)进一步发展与完善第九讲中国现代数学(de)开拓与发展一中国现代数学发展概观二人民(de)数学家──华罗庚三当代几何大师──陈省身选修3-3球面上(de)几何引言第一讲从欧氏几何看球面一平面与球面(de)位置关系二直线与球面(de)位置关系和球幂定理三球面(de)对称性第二讲球面上(de)距离和角一球面上(de)距离二球面上(de)角第三讲球面上(de)基本图形一极与赤道二球面二角形三球面三角形1.球面三角形2.三面角3.对顶三角形4.球极三角形第四讲球面三角形一球面三角形三边之间(de)关系二、球面“等腰”三角形三球面三角形(de)周长四球面三角形(de)内角和第五讲球面三角形(de)全等第六讲球面多边形与欧拉公式一球面多边形及其内角和公式二简单多面体(de)欧拉公式三用球面多边形(de)内角和公式证明欧拉公式第七讲球面三角形(de)边角关系一球面上(de)正弦定理和余弦定理二用向量方法证明球面上(de)余弦定理1.向量(de)向量积2.球面上余弦定理(de)向量证明三从球面上(de)正弦定理看球面与平面四球面上余弦定理(de)应用──求地球上两城市间(de)距离第八讲欧氏几何与非欧几何一平面几何与球面几何(de)比较二欧氏平行公理与非欧几何模型──庞加莱模型三欧氏几何与非欧几何(de)意义选修3-4对称与群引言第一讲平面图形(de)对称群一平面刚体运动1.平面刚体运动(de)定义2.平面刚体运动(de)性质二对称变换1.对称变换(de)定义2.正多边形(de)对称变换3.对称变换(de)合成4.对称变换(de)性质5.对称变换(de)逆变换三平面图形(de)对称群第二讲代数学中(de)对称与抽象群(de)概念一n元对称群Sn二多项式(de)对称变换三抽象群(de)概念1.群(de)一般概念2.直积第三讲对称与群(de)故事一带饰和面饰二化学分子(de)对称群三晶体(de)分类四伽罗瓦理论选修4-1几何证明选讲第一讲相似三角形(de)判定及有关性质一平行线等分线段定理二平行线分线段成比例定理三相似三角形(de)判定及性质1.相似三角形(de)判定2.相似三角形(de)性质四直角三角形(de)射影定理第二讲直线与圆(de)位置关系一圆周角定理二圆内接四边形(de)性质与判定定理三圆(de)切线(de)性质及判定定理四弦切角(de)性质五与圆有关(de)比例线段第三讲圆锥曲线性质(de)探讨一平行射影二平面与圆柱面(de)截线三平面与圆锥面(de)截线选修4-2引言第一讲线性变换与二阶矩阵一线性变换与二阶矩阵(一)几类特殊线性变换及其二阶矩阵1.旋转变换2.反射变换3.伸缩变换4.投影变换5.切变变换(二)变换、矩阵(de)相等二二阶矩阵与平面向量(de)乘法(二)一些重要线性变换对单位正方形区域(de)作用第二讲变换(de)复合与二阶矩阵(de)乘法一复合变换与二阶矩阵(de)乘法二矩阵乘法(de)性质第三讲逆变换与逆矩阵一逆变换与逆矩阵1.逆变换与逆矩阵2.逆矩阵(de)性质二二阶行列式与逆矩阵三逆矩阵与二元一次方程组1.二元一次方程组(de)矩阵形式2.逆矩阵与二元一次方程组第四讲变换(de)不变量与矩阵(de)特征向量一变换(de)不变量——矩阵(de)特征向量1.特征值与特征向量2.特征值与特征向量(de)计算二特征向量(de)应用(de)简单表示2.特征向量在实际问题中(de)应用选修4-5不等式选讲引言第一讲不等式和绝对值不等式一不等式1.不等式(de)基本性质2.基本不等式3.三个正数(de)算术-几何平均不等式二绝对值不等式1.绝对值三角不等式2.绝对值不等式(de)解法第二讲讲明不等式(de)基本方法一比较法二综合法与分析法三反证法与放缩法第三讲柯西不等式与排序不等式一二维形式柯西不等式二一般形式(de)柯西不等式三排序不等式第四讲数学归纳法证明不等式一数学归纳法二用数学归纳法证明不等式选修4-6初等数论初步引言第一讲整数(de)整除一整除1.整除(de)概念和性质2.带余除法3.素数及其判别法二最大公因数与最小公倍数1.最大公因数2.最小公倍数三算术基本定理第二讲同余与同余方程一同余1.同余(de)概念2.同余(de)性质二剩余类及其运算三费马小定理和欧拉定理四一次同余方程五拉格朗日插值法和孙子定理六弃九验算法第三讲一次不定方程一二元一次不定方程二二元一次不定方程(de)特解三多元一次不定方程第四讲数伦在密码中(de)应用一信息(de)加密与去密二大数分解和公开密钥选修4-7优选法与试验设计初步引言第一讲优选法一什么叫优选法二单峰函数三黄金分割法——法1.黄金分割常数2.黄金分割法——法阅读与思考黄金分割研究简史四分数法1.分数法阅读与思考斐波那契数列和黄金分割2.分数法(de)最优性五其他几种常用(de)优越法1.对分法2.盲人爬山法3.分批试验法4.多峰(de)情形六多因素方法1.纵横对折法和从好点出发法2.平行线法3.双因素盲人爬山法第二讲试验设计初步一正交试验设计法1.正交表2.正交试验设计3.试验结果(de)分析4.正交表(de)特性二正交试验(de)应用选修4-9风险与决策引言第一讲风险与决策(de)基本概念一风险与决策(de)关系二风险与决策(de)基本概念1.风险(平均损失)2.平均收益3.损益矩阵4.风险型决策第二讲决策树方法第三讲风险型决策(de)敏感性分析第四讲马尔可夫型决策简介一马尔可夫链简介1.马尔可夫性与马尔可夫链2.转移概率与转移概率矩阵二马尔可夫型决策简介三长期准则下(de)马尔可夫型决策理论1.马尔可夫链(de)平稳分布2.平稳分布与马尔可夫型决策(de)长期准则3.平稳准则(de)应用案例。