理论力学第三章 刚体力学-2
- 格式:ppt
- 大小:1.96 MB
- 文档页数:47
理论力学题库——第三章一、填空题1.刚体作定轴转动时有个独立变量,作平面平行运动时有个独立变量。
2.作用在刚体上的力可沿其作用线移动而(“改变”或“不改变”)作用效果,故在刚体力学中,力被称为矢量。
3.作用在刚体上的两个力,若大小相等、方向相反,不作用在同一条直线上,则称为。
4.刚体以一定角速度作平面平行运动时,在任一时刻刚体上恒有一点速度为零,这点称为。
5.刚体作定点转动时,用于确定转动轴在空间的取向及刚体绕该轴线所转过的角度的三个独立变化的角度称为,其中ϕ称为角,ψ称为角,θ称为角。
6.描述刚体的转动惯量与回转半径关系的表达式是。
7.刚体作平面平行运动时,任一瞬间速度为零的点称为,它在刚体上的轨迹称为,在固定平面上的轨迹称为。
8.平面任意力系向作用面内任意一点简化的结果可以归结为两个基本物理量,主矢和主矩。
9.用钢楔劈物,接触面间的摩擦角为ϕf。
劈入后欲使楔不滑出,则钢楔两侧面的夹角θ需满足的条件为θ≦2ϕf。
10.刚体绕OZ轴转动,在垂直于转动轴的某平面上有A,B两点,已知OZ A=2OZB,某瞬时aA=10m/s2,方向如图所示。
则此时B点加速度的大小为5m/s2;与O z B成60度角。
11.如图,杆AB绕A轴以ϕ=5t(ϕ以rad计,t以s计)的规律转动,上一小环M将杆AB和半径为R(以m计)的固定大圆环连在一起,若以O1为原点,逆时针为正向,则用自然法表示的点M的运动方程为s=πR/2+10Rt 。
12. 两全同的三棱柱,倾角为θ,静止地置于光滑的水平地面上,将质量相等的圆盘与滑块分别置于两三棱柱斜面上的A处,皆从静止释放,且圆盘为纯滚动,都由三棱柱的A处运动到B处,则此两种情况下两个三棱柱的水平位移_相等_(填写相等或不相等),因为两个系统在水平方向质心位置守恒。
13.二力构件是指其所受两个力大小相等、方向相反,并且作用在一条直线上是最简单的平衡力系。
14. 若刚体在三个力作用下平衡,其中两个力的作用线汇交于一点,则第三个力的作用线必过此点 ,且 三力共面 。
学生整理,时间有限,水平有限,仅供参考,如有纰漏,请以老师、课本为主。
第一章质点力学(1)笛卡尔坐标系 位置:k z j y i x ++=r速度:k z j y i x dtr d ...v ++== 加速度:k z j y i x dtv d ......a ++== (2)极坐标系坐标:j i e r θθsin cos += j i e θθθcos sin +-= r e r =r 速度:r r .v = .v θθr =加速度:2...θr r a r -= .....2θθθr r a += (3)自然坐标系(0>θd ) 坐标:ds r d e t =θd e d e t n = θρd ds = 速度:t e v v = 加速度:n t e v e v ρ2.a +=(4)相对运动(5)牛顿运动定律 牛顿第一定律:惯性定律 牛顿第二定律:)(a m v m P dtP d dt v d m F ==== 牛顿第三定律:2112F F -= (6)功、能量vF dt rd F dt dW P rFd dA ⋅=⋅=== (7)(7)有心力第二章 质点动力学的基本定理知识点总结: 质点动力学的基本方程质点动力学可分为两类基本问题:. (1) .已知质点的运动,求作用于质点的力; (2) 己知作用于质点的力,求质点的运动。
动量定理 动量:符号动量定理微分形式动量守恒定律:如果作用在质点系上的外力主失恒等于零,质点系的动量保持不变。
即:质心运动定理:质点对点O 的动量矩是矢量mv r J i ⨯= 质点系对点0的动量矩是矢量i ni nii i i v m r J J ∑∑=⨯==1若z 轴通过点0,则质点系对于z 轴的动量矩为∑==ni z z z J M J ][若C 为质点系的质心,对任一点O 有 c c c J mv r J +⨯=02. 动量矩定理∑∑=⨯=⨯=nie i i n i i i i M F r v m r dt d dt dJ )()( 动量矩守恒:合外力矢量和为零,则动量矩为常矢量。
刚体运动的理论力学分析刚体运动是经典力学研究的重要内容之一,涉及物体在空间中作直线运动、旋转运动以及复杂运动等方面的分析和研究。
本文将针对刚体运动的理论力学进行分析,并探讨刚体运动的力学定律和相关公式。
一、刚体的定义与特性刚体是指物体在受力作用下,各部分的相对位置不会发生变化的物体。
刚体具有以下特性:1. 形状不变性:刚体的形状和大小在运动过程中保持不变。
2. 组成部分的相对位置不变:刚体各部分相对位置保持不变,即不发生形变。
3. 刚体可以进行平动和转动。
二、刚体运动的描述刚体运动可以通过刚体在空间中的位置和姿态的变化来描述。
刚体可以存在三种运动状态:平动、转动和整体运动。
1. 平动:刚体的各个部分保持平行移动,位置和相对位置不发生变化。
平动运动可以由平动的速度和加速度来描述。
2. 转动:刚体绕固定轴线旋转,各个部分围绕轴线进行圆周运动。
转动运动可以通过角速度和角加速度来描述。
3. 整体运动:刚体在空间中同时进行平动和转动,即平动和转动的叠加。
三、刚体运动的力学定律刚体运动的力学定律主要包括牛顿第二定律和角动量守恒定律。
1. 牛顿第二定律:对于平动的刚体,根据牛顿第二定律可以得出以下公式:$$\sum F = ma$$其中,$\sum F$表示作用在刚体上的合力,m为刚体的质量,a为刚体的加速度。
2. 角动量守恒定律:对于转动的刚体,根据角动量守恒定律可以得出以下公式:$$L = I\omega$$其中,L为刚体的角动量,I为刚体的转动惯量,$\omega$为刚体的角速度。
四、刚体运动的相关公式1. 刚体的质心位置:刚体的质心位置可以通过以下公式计算:$$\bar{r} = \frac{1}{M}\int r dm$$其中,$\bar{r}$为质心的位置矢量,M为刚体的总质量,r为刚体中各个质点的位置矢量,dm为刚体中微小质元的质量。
2. 刚体的转动惯量:刚体的转动惯量可以通过以下公式计算:$$I = \int r^2 dm$$其中,I为刚体的转动惯量,r为刚体质点到转轴的距离,dm为刚体中微小质元的质量。
第三章思考题解答3.1 答:确定一质点在空间中得位置需要3个独立变量,只要确定了不共线三点的位置刚体的位置也就确定了,故须九个独立变量,但刚体不变形,此三点中人二点的连线长度不变,即有三个约束方程,所以确定刚体的一般运动不需3n 个独立变量,有6个独立变量就够了.若刚体作定点转动,只要定出任一点相对定点的运动刚体的运动就确定了,只需3个独立变量;确定作平面平行运动刚体的代表平面在空间中的方位需一个独立变量,确定任一点在平面上的位置需二个独立变量,共需三个独立变量;知道了定轴转动刚体绕转动轴的转角,刚体的位置也就定了,只需一个独立变量;刚体的平动可用一个点的运动代表其运动,故需三个独立变量。
3.2 答物体上各质点所受重力的合力作用点即为物体的重心。
当物体的大小远小于地球的线度时物体上各质点所在点的重力加速度都相等,且方向彼此平行即重力场为均匀场,此时质心与重心重合。
事实上但物体的线度很大时各质点所在处g 的大小是严格相等,且各质点的重力都指向地心,不是彼此平行的,重心与质心不和。
答 当物体为均质时,几何中心与质心重合;当物体的大小远小于地球的线度时,质心与重心重合;当物体为均质且大小远小于地球的线度时,三者都重合。
3.4 答 主矢F 是力系各力的矢量和,他完全取决于力系中各力的大小和方向,故主矢不随简化中心的位置而改变,故而也称之为力系的主矢;简化中心的位置不同,各力对简化中心的位矢i r 也就不同则各力对简化中心的力矩也就不同,故主矩随简化中心的位置而变,被称之为力系对简化中心的主矩。
分别取O 和O '为简化中心,第i 个力i F 对O 和O '的位矢分别为i r 和i r ',则i r =i r '+O O ',故()()iii ii i O F O O r F r M ⨯'-'=⨯'=∑∑'()∑∑⨯'-⨯'=ii ii i F O O F r ∑⨯'+=ii o F O O M即o o M M ≠'主矢不变,表明刚体的平动效应不变,主矩随简化中心的位置改变,表明力系的作用对刚体上不同点有不同的转动效应,但不改变整个刚体的转动规律或者说不影响刚体绕质心的转动。