新人教A版数学选修1-1《2.2.1双曲线及其标准方程》导学案
- 格式:doc
- 大小:330.96 KB
- 文档页数:5
第2课时 双曲线几何性质的应用学习目标 1.了解直线与双曲线的位置关系.2.了解与直线、双曲线有关的弦长、中点等问题.知识点一 直线与双曲线的位置关系思考 直线与圆(椭圆)有且只有一个公共点,则直线与圆(椭圆)相切,那么,直线与双曲线相切,能用这个方法判断吗? 答案 不能.梳理 设直线l :y =kx +m (m ≠0),①双曲线C :x 2a 2-y 2b2=1(a >0,b >0),②把①代入②得(b 2-a 2k 2)x 2-2a 2mkx -a 2m 2-a 2b 2=0.(1)当b 2-a 2k 2=0,即k =±b a时,直线l 与双曲线C 的渐近线平行,直线与双曲线相交于一点.(2)当b 2-a 2k 2≠0,即k ≠±b a时,Δ=(-2a 2mk )2-4(b 2-a 2k 2)(-a 2m 2-a 2b 2). Δ>0⇒直线与双曲线有两个公共点,此时称直线与双曲线相交; Δ=0⇒直线与双曲线有一个公共点,此时称直线与双曲线相切; Δ<0⇒直线与双曲线没有公共点,此时称直线与双曲线相离. 知识点二 弦长公式若斜率为k (k ≠0)的直线与双曲线相交于A (x 1,y 1),B (x 2,y 2)两点,则|AB |=+k2x 1+x 22-4x 1x 2]=⎝ ⎛⎭⎪⎫1+1k 2y 1+y 22-4y 1y 2].1.若直线与双曲线交于一点,则直线与双曲线相切.( × ) 2.直线l :y =x 与双曲线C :2x 2-y 2=2有两个公共点.( √ )类型一 直线与双曲线的位置关系例1 已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的离心率为233,且过点(6,1).(1)求双曲线C 的方程;(2)若直线l :y =kx +2与双曲线C 恒有两个不同的交点A ,B ,求k 的取值范围. 考点 直线与双曲线的位置关系 题点 直线与双曲线的位置关系 解 (1)由e =233,可得c 2a 2=43,所以a 2=3b 2,故双曲线方程可化为x 23b 2-y 2b2=1.将点P (6,1)代入双曲线C 的方程, 解得b 2=1,所以双曲线C 的方程为x 23-y 2=1.(2)联立直线与双曲线方程,⎩⎨⎧y =kx +2,x 2-3y 2-3=0,消去y ,得(1-3k 2)x 2-62kx -9=0.由题意得,⎩⎪⎨⎪⎧Δ=72k 2--3k2-,1-3k 2≠0,解得-1<k <1且k ≠±33. 所以k 的取值范围为⎝⎛⎭⎪⎫-1,-33∪⎝ ⎛⎭⎪⎫-33,33∪⎝ ⎛⎭⎪⎫33,1. 反思与感悟 (1)解决直线与双曲线的公共点问题,不仅要考虑判别式,更要注意二次项系数为0时,直线与渐近线平行的特殊情况.(2)双曲线与直线只有一个公共点的题目,应分两种情况讨论:双曲线与直线相切或直线与双曲线的渐近线平行.(3)注意对直线l 的斜率是否存在进行讨论.跟踪训练1 已知双曲线x 2-y 24=1,过点P (1,1)的直线l 与双曲线只有一个公共点,求直线l 的斜率k .考点 直线与双曲线的位置关系 题点 直线与双曲线的位置关系 解 当直线l 的斜率不存在时, 直线l :x =1与双曲线相切,符合题意. 当直线l 的斜率存在时,设l 的方程为y =k (x -1)+1, 代入双曲线方程,得(4-k 2)x 2-(2k -2k 2)x -k 2+2k -5=0. 当4-k 2=0时,k =±2,直线l 与双曲线的渐近线平行,l 与双曲线只有一个公共点; 当4-k 2≠0时,令Δ=0,得k =52.综上,k =52或k =±2或k 不存在.类型二 弦长公式及中点弦问题 例2 双曲线的方程是x 24-y 2=1.(1)直线l 的倾斜角为π4,被双曲线截得的弦长为8311,求直线l 的方程;(2)过点P (3,1)作直线l ′,使其被双曲线截得的弦恰被P 点平分,求直线l ′的方程. 考点 直线与双曲线的位置关系 题点 弦长及弦中点问题解 (1)设直线l 的方程为y =x +m ,代入双曲线方程,得3x 2+8mx +4(m 2+1)=0, Δ=(8m )2-4×3×4(m 2+1)=16(m 2-3)>0, ∴m 2>3.设直线l 与双曲线交于A (x 1,y 1),B (x 2,y 2)两点, 则x 1+x 2=-83m ,x 1x 2=m 2+3.由弦长公式|AB |=1+k 2|x 1-x 2|,得 2×⎝ ⎛⎭⎪⎫-83m 2-m 2+3=8311, ∴42×m 2-33=8311,即m =±5,满足m 2>3,∴直线l 的方程为y =x ±5.(2)设直线l ′与双曲线交于A ′(x 3,y 3),B ′(x 4,y 4)两点, 点P (3,1)为A ′B ′的中点,则x 3+x 4=6,y 3+y 4=2. 由x 23-4y 23=4,x 24-4y 24=4,两式相减得(x 3+x 4)(x 3-x 4)-4(y 3+y 4)(y 3-y 4)=0, ∴y 3-y 4x 3-x 4=34,∴l ′的方程为y -1=34(x -3),即3x -4y -5=0.把此方程代入双曲线方程,整理得5y 2-10y +114=0,满足Δ>0,∴所求直线l ′的方程为3x -4y -5=0.反思与感悟 (1)使用弦长公式时,一般可以利用根与系数的关系,解决此类问题,一定不要忽略直线与双曲线相交这个条件,得到的k 要保证满足相交,即验证Δ>0.(2)与弦中点有关的问题主要用点差法.跟踪训练2 设双曲线的顶点是椭圆x 23+y 24=1的焦点,该双曲线又与直线15x -3y +6=0交于A ,B 两点,且OA ⊥OB (O 为坐标原点). (1)求此双曲线的方程; (2)求|AB |.考点 直线与双曲线的位置关系 题点 弦长及弦中点问题解 (1)已知椭圆的焦点为(0,±1), 即是双曲线的顶点,因此设双曲线方程为y 2-mx 2=1(m >0),① 又直线15x -3y =-6,②A (x 1,y 1),B (x 2,y 2)是方程①②组成的方程组的两个解.由⎩⎨⎧y 2-mx 2=1,15x -3y =-6,得⎝ ⎛⎭⎪⎫53-m x 2+4153x +3=0, 当m =53时,显然不满足题意.当m ≠53时,则⎩⎪⎨⎪⎧x 1+x 2=-415353-m ,x 1x 2=353-m ,又OA ⊥OB ,∴OA →·OB →=0,∴x 1x 2+y 1y 2=0,∴x 1x 2+y 1y 2=83x 1x 2+2153(x 1+x 2)+4=0,∴83×353-m +2153×⎝ ⎛⎭⎪⎪⎫-415353-m +4=0,∴m =13,经验证,此时Δ>0.∴双曲线的方程为y 2-x 23=1.(2)∵⎩⎪⎨⎪⎧x 1+x 2=-15,x 1x 2=94,∴|AB |=1+k 2×x 1+x 22-4x 1x 2=1+⎝⎛⎭⎪⎫1532×-152-4×94=4.类型三 由直线与双曲线相交求参数的取值范围(值)例3 已知中心在坐标原点的双曲线C 的右焦点为(2,0),右顶点为(3,0). (1)求双曲线C 的方程;(2)若直线l :y =kx +2与双曲线C 恒有两个不同的交点A ,B ,且OA →·OB →>2(其中O 为原点),求k 的取值范围.考点 直线与双曲线的位置关系 题点 直线与双曲线的位置关系解 (1)设双曲线方程为x 2a 2-y 2b2=1(a >0,b >0),由已知得a =3,c =2,所以b =1.故所求双曲线方程为x 23-y 2=1.(2)将y =kx +2代入x 23-y 2=1,可得(1-3k 2)x 2-62kx -9=0. 由直线l 与双曲线交于不同的两点,得⎩⎨⎧1-3k 2≠0,Δ=-62k2+-3k2=-k2,故k 2≠13且k 2<1.设A (x 1,y 1),B (x 2,y 2), 则x 1+x 2=62k 1-3k 2,x 1x 2=-91-3k 2,由OA →·OB →>2,得x 1x 2+y 1y 2>2. 又因为y 1y 2=(kx 1+2)(kx 2+2)=k 2x 1x 2+2k (x 1+x 2)+2=-9k 21-3k 2+12k21-3k2+2=3k 21-3k2+2. 所以-91-3k 2+3k 21-3k 2+2>2,所以3k 2-91-3k 2>0.又因为k 2≠13且k 2<1,所以13<k 2<1.所以k 的取值范围是⎩⎨⎧⎭⎬⎫k ⎪⎪⎪-1<k <-33或33<k <1. 反思与感悟 当与直线有关时,常常联立直线与双曲线的方程,消元后利用一元二次方程的判别式、根与系数的关系构造相关数量关系式求解. 跟踪训练3 已知双曲线C :x 2-y 2=1及直线l :y =kx -1. (1)若l 与C 有两个不同的交点,求实数k 的取值范围;(2)若l 与C 交于A ,B 两点,O 是坐标原点,且△AOB 的面积为2,求实数k 的值. 考点 直线与双曲线的位置关系题点 直线与双曲线相交弦长与三角形面积 解 (1)双曲线C 与直线l 有两个不同的交点,则方程组⎩⎪⎨⎪⎧x 2-y 2=1,y =kx -1有两个不同的实数根,整理得(1-k 2)x 2+2kx -2=0,∴⎩⎪⎨⎪⎧1-k 2≠0,Δ=4k 2+-k2,解得-2<k <2且k ≠±1.∴当双曲线C 与直线l 有两个不同的交点时,k 的取值范围是(-2,-1)∪(-1,1)∪(1,2).(2)设交点A (x 1,y 1),B (x 2,y 2), 直线l 与y 轴交于点D (0,-1).由(1)知,C 与l 联立的方程为(1-k 2)x 2+2kx -2=0, ∴⎩⎪⎨⎪⎧x 1+x 2=-2k1-k 2,x 1x 2=-21-k 2.当A ,B 在双曲线上的一支上且|x 1|>|x 2|时,S △OAB =S △OAD -S △OBD=12(|x 1|-|x 2|) =12|x 1-x 2|; 当A ,B 在双曲线的两支上且x 1>x 2时,S △OAB =S △ODA +S △OBD=12(|x 1|+|x 2|) =12|x 1-x 2|. ∴S △OAB =12|x 1-x 2|=2,∴(x 1-x 2)2=(22)2, 即⎝⎛⎭⎪⎫-2k 1-k 22+81-k 2=8,解得k =0或k =±62. 又∵-2<k <2且k ≠±1, ∴当k =0或k =±62时,△AOB 的面积为 2.1.若直线y =kx 与双曲线4x 2-y 2=16相交,则实数k 的取值范围是( ) A .-2<k <2B .-1<k <1C .0<k <2D .-2<k <0考点 直线与双曲线的位置关系 题点 直线与双曲线的位置关系 答案 A解析 易知k ≠±2,将y =kx 代入4x 2-y 2=16得关于x 的一元二次方程(4-k 2)x 2-16=0,由Δ>0可得-2<k <2.2.“直线与双曲线有唯一交点”是“直线与双曲线相切”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件考点 直线与双曲线的位置关系 题点 直线与双曲线的位置关系 答案 B3.直线y =x -1被双曲线2x 2-y 2=3所截得的弦的中点坐标是( ) A .(1,2) B .(-2,-1) C .(-1,-2)D .(2,1)考点 直线与双曲线的位置关系 题点 直线与双曲线的位置关系 答案 C解析 将y =x -1代入2x 2-y 2=3,得x 2+2x -4=0,由此可得弦的中点的横坐标为x 1+x 22=-22=-1,将x =-1代入直线方程y =x -1得y =-2,故选C. 4.过点A (3,-1)且被A 点平分的双曲线x 24-y 2=1的弦所在的直线方程是________.考点 直线与双曲线的位置关系 题点 直线与双曲线的其他问题 答案 3x +4y -5=0解析 易知所求直线的斜率存在,设为k ,设该直线的方程为y +1=k (x -3),代入x 24-y 2=1,消去y 得关于x 的一元二次方程(1-4k 2)x 2+(24k 2+8k )x -36k 2-24k -8=0, ∴-24k 2+8k 1-4k 2=6,∴k =-34,此时Δ>0,符合题意,∴所求直线方程为3x +4y -5=0.5.过双曲线x 2-y 22=1的右焦点F 作直线l 交双曲线于A ,B 两点,若|AB |=4,则满足条件的直线l 有________条.考点 直线与双曲线的位置关系题点 直线与双曲线相交弦长与三角形面积 答案 3解析 当直线l 交双曲线于左右两支时,因为2a =2,而|AB |=4,故可有两条.若直线l 交双曲线于同支,当直线l 垂直于x 轴时,|AB |=4,故只有一条,所以满足条件的直线有3条.双曲线的综合问题常涉及其离心率、渐近线、范围等,与向量、三角函数、不等式等知识交汇考查综合运用数学知识的能力.(1)当与向量知识结合时,注意运用向量的坐标运算,将向量间的关系,转化为点的坐标问题,再根据根与系数的关系,将所求问题与条件建立关系求解.(2)当与直线有关时,常常联立直线与双曲线的方程,消元后利用一元二次方程的判别式、根与系数的关系构造相关关系求解.一、选择题1.双曲线C 与椭圆x 29+y 24=1有相同的焦距,一条渐近线的方程为x -2y =0,则双曲线C 的标准方程为( ) A.x 24-y 2=1 B.x 24-y 2=1或y 2-x 24=1 C .x 2-y 24=1或y 2-x 24=1D .y 2-x 24=1 考点 双曲线性质的应用题点 双曲线与椭圆结合的有关问题 答案 B2.设直线l 过双曲线C 的一个焦点,且与C 的一条对称轴垂直,l 与C 交于A ,B 两点,|AB |为C 的实轴长的2倍,则C 的离心率为( ) A.2B.3C .2D .3 考点 双曲线的几何性质 题点 求双曲线的离心率答案 B解析 设双曲线的标准方程为x 2a 2-y 2b2=1(a >0,b >0).∵直线l 过双曲线的焦点且与对称轴垂直, ∴直线l 的方程为x =c 或x =-c ,代入x 2a 2-y 2b 2=1,得y 2=b 2⎝ ⎛⎭⎪⎫c 2a 2-1=b 4a 2, ∴y =±b 2a ,故|AB |=2b 2a .依题意2b2a=4a ,∴b 2a 2=2,∴c 2-a 2a2=e 2-1=2,∴e = 3. 3.双曲线y 2b 2-x 2a 2=1(a >b >0)的一条渐近线与椭圆x 2a 2+y 2b2=1交于点M ,N ,则|MN |等于( )A .a +b B.2aC.a 2+b 2 D.a 2-b 2考点 双曲线性质的应用题点 双曲线与椭圆结合的有关问题 答案 C解析 双曲线y 2b 2-x 2a 2=1的一条渐近线方程为y =ba x ,由⎩⎪⎨⎪⎧y =ba x ,x 2a 2+y 2b 2=1,得x =±22a . 所以|MN |=1+b 2a 2|x 2-x 1|=a 2+b 2a 2·2a=a 2+b 24.已知F 1,F 2分别为双曲线C :x 2-y 2=2的左、右焦点,点P 在C 上,|PF 1|=2|PF 2|,则cos∠F 1PF 2等于( ) A.14B.35C.34D.45 考点 双曲线的定义 题点 双曲线的焦点三角形 答案 C解析 由双曲线定义知,|PF 1|-|PF 2|=22, 又|PF 1|=2|PF 2|,∴|PF 2|=22,|PF 1|=4 2.|F 1F 2|=2c =2 a 2+b 2=4.∴cos ∠F 1PF 2=|PF 1|2+|PF 2|2-|F 1F 2|22|PF 1|·|PF 2|=32+8-162×22×42=2416×2=34. 5.已知双曲线方程为x 2-y 24=1,过P (1,0)的直线l 与双曲线只有一个公共点,则l 的条数为( )A .4B .3C .2D .1 考点 直线与双曲线的位置关系题点 直线与双曲线的位置关系答案 B解析 由双曲线x 2-y 24=1的渐近线方程为y =±2x ,点P (1,0)是双曲线的右顶点,则直线x =1与双曲线只有一个公共点,过点P (1,0)且平行于渐近线y =±2x 时,直线l 与双曲线只有一个公共点,有2条,故满足题意的直线共3条. 6.已知双曲线E :x 2a 2-y 2b2=1(a >0,b >0)的右焦点为F (3,0),过点F 的直线交双曲线于A ,B 两点,若AB 的中点坐标为N (-12,-15),则E 的方程为( )A.x 23-y 26=1 B.x 26-y 23=1 C.x 24-y 25=1 D.x 25-y 24=1 考点 直线与双曲线的位置关系题点 弦长及弦中点问题答案 C解析 设A (x 1,y 1),B (x 2,y 2), 则x 21a 2-y 21b 2=1,x 22a 2-y 22b2=1, 两式相减可得x 1+x 2x 1-x 2a 2=y 1+y 2y 1-y 2b 2.∵线段AB 的中点坐标为N (-12,-15), ∴-x 1-x 2a 2=-y 1-y 2b 2. ∴y 1-y 2x 1-x 2=4b 25a 2.∵直线的斜率为-15-12-3=1, ∴4b 25a 2=1. ∵右焦点为F (3,0),∴a 2+b 2=9,解得a 2=4,b 2=5,∴E 的方程为x 24-y 25=1. 7.已知M (x 0,y 0)是双曲线C :x 22-y 2=1上的一点,F 1,F 2是C 的两个焦点.若MF 1→·MF 2→<0,则y 0的取值范围是( )A.⎝ ⎛⎭⎪⎫-33,33B.⎝ ⎛⎭⎪⎫-36,36 C.⎝ ⎛⎭⎪⎫-223,223 D.⎝ ⎛⎭⎪⎫-233,233 考点 双曲线的几何性质题点 双曲线范围的应用答案 A解析 由题意知a 2=2,b 2=1, 所以c 2=3,不妨设F 1(-3,0),F 2(3,0),所以MF 1→=(-3-x 0,-y 0),MF 2→=(3-x 0,-y 0),所以MF 1→·MF 2→=x 20-3+y 20=3y 20-1<0,所以-33<y 0<33. 8.如图,已知F 1,F 2是双曲线x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点,过F 1的直线l 与双曲线的左、右两支分别交于点B ,A ,若△ABF 2为等边三角形,则双曲线的离心率为( ) A.7B .4 C.233 D. 3考点 双曲线的几何性质题点 求双曲线的离心率答案 A解析 因为△ABF 2为等边三角形,不妨设|AB |=|BF 2|=|AF 2|=m ,A 为双曲线上一点,|F 1A |-|F 2A |=|F 1A |-|AB |=|F 1B |=2a ,B 为双曲线上一点,则|BF 2|-|BF 1|=2a ,|BF 2|=4a ,|F 1F 2|=2c ,由∠ABF 2=60°,得∠F 1BF 2=120°,在△F 1BF 2中,由用余弦定理,得4c 2=4a 2+16a 2-2·2a ·4a ·cos120°,得c 2=7a 2,则e 2=7,即e =7.二、填空题 9.双曲线x 2a 2-y 29=1的离心率e =54,则其两条渐近线方程为________. 考点 双曲线性质的应用题点 以离心率或渐近线为条件的简单问题答案 y =±34x 解析 双曲线x 2a 2-y 29=1,∴b =3, 又双曲线的离心率e =c a =1+b 2a 2=1+9a 2=54, 解得a =4, ∴双曲线的两条渐近线方程为y =±b a x =±34x .10.双曲线x 29-y 216=1的右顶点为A ,右焦点为F ,过点F 平行于双曲线的一条渐近线的直线与双曲线交于点B ,则△AFB 的面积为________.考点 双曲线的定义题点 双曲线的焦点三角形答案 3215 解析 双曲线右顶点A (3,0),右焦点F (5,0),双曲线一条渐近线的斜率是43,则直线FB 的方程是y =43(x -5),与双曲线方程联立解得点B 的纵坐标为-3215,故△AFB 的面积为12×|AF ||y B |=12×2×3215=3215. 11.若双曲线x 2a 2-y 2b2=1(a >0,b >0)与直线y =2x 无交点,则离心率e 的取值范围是________. 考点 双曲线的几何性质题点 求双曲线离心率的取值范围答案 (1,5]解析 由题意可得,双曲线的渐近线的斜率ba≤2,所以e =1+⎝ ⎛⎭⎪⎫b a 2≤ 5. 又e >1,则离心率e 的取值范围是(1,5].12.过P (8,3)作双曲线9x 2-16y 2=144的弦AB ,且P 为弦AB 的中点,那么直线AB 的方程为________.考点 直线与双曲线的位置关系题点 弦长及弦中点问题答案 3x -2y -18=0解析 设A (x 1,y 1),B (x 2,y 2),由P (8,3)为弦AB 的中点,可得x 1+x 2=16,y 1+y 2=6,又9x 21-16y 21=144,9x 22-16y 22=144,两式相减,可得9(x 1+x 2)(x 1-x 2)-16(y 1+y 2)(y 1-y 2)=0,即为9(x 1-x 2)-6(y 1-y 2)=0,可得k AB =y1-y 2x 1-x 2=32,则直线AB 的方程为y -3=32(x -8),即3x -2y -18=0.三、解答题13.已知双曲线的渐近线方程为y =±2x ,且双曲线过点(-3,42).(1)求双曲线的方程;(2)若直线4x -y -6=0与双曲线相交于A ,B 两点,求|AB |的值.考点 直线与双曲线的位置关系题点 直线与双曲线的位置关系解 (1)双曲线的渐近线方程为y =±2x ,则设双曲线的方程为x 2-y24=λ(λ≠0),把(-3,42)代入方程,得9-324=λ,解得λ=1,∴双曲线的方程为x 2-y 24=1.(2)设A (x 1,y 1),B (x 2,y 2),则⎩⎪⎨⎪⎧4x -y -6=0,x 2-y24=1,整理得3x 2-12x +10=0,由根与系数的关系,得x 1+x 2=4,x 1x 2=103, 由弦长公式可知|AB |=+k 2x 1+x 22-4x 1x 2] =+⎝ ⎛⎭⎪⎫42-4×103=21023, ∴|AB |的值为21023. 四、探究与拓展 14.过双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的右焦点F 作一条与其渐近线平行的直线l ,交C 于点P .若点P 的横坐标为2a ,求双曲线C 的离心率. 考点 双曲线的几何性质题点 求双曲线的离心率解 如图所示,不妨设与渐近线平行的直线l 的斜率为b a , 又直线l 过右焦点F (c,0),则直线l 的方程为y =b a(x -c ).因为点P 的横坐标为2a ,代入双曲线方程得4a 2a 2-y 2b2=1, 化简得y =-3b 或y =3b (点P 在x 轴下方,故舍去), 故点P 的坐标为(2a ,-3b ),代入直线方程得-3b =b a (2a -c ),化简可得离心率e =c a =2+ 3.15.直线y =ax +1与双曲线3x 2-y 2=1相交于A ,B 两点.(1)求线段AB 的长;(2)当a 为何值时,以AB 为直径的圆经过坐标原点? 考点 直线与双曲线的位置关系题点 弦长及弦中点问题解 由⎩⎪⎨⎪⎧ y =ax +1,3x 2-y 2=1,消去y , 得(3-a 2)x 2-2ax -2=0.由题意可得3-a 2≠0,设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=2a3-a 2,x 1x 2=-23-a 2.(1)|AB |=x 1-x 22+y 1-y 22=+a 2x 1+x 22-4x 1x 2] =+a 2⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫2a 3-a 22+83-a 2=2+a 2-a 2|3-a 2|.(2)由题意知,OA ⊥OB ,则OA →·OB →=0.即x 1x 2+y 1y 2=0,∴x 1x 2+(ax 1+1)(ax 2+1)=0,即(1+a 2)x 1x 2+a (x 1+x 2)+1=0,∴(1+a 2)·-23-a 2+a ·2a3-a 2+1=0,解得a =±1.经检验当a =±1时,以AB 为直径的圆经过坐标原点.。
§2.2 双曲线2.2.1 双曲线及其标准方程 课时目标 1.了解双曲线的定义、几何图形和标准方程的推导过程.2.掌握双曲线的标准方程.3.会利用双曲线的定义和标准方程解决简单的应用问题.1.双曲线的有关概念(1)双曲线的定义平面内与两个定点F 1,F 2的距离的差的绝对值等于常数(小于________)的点的轨迹叫做双曲线.平面内与两个定点F 1,F 2的距离的差的绝对值等于|F 1F 2|时的点的轨迹为 __________________________________________.平面内与两个定点F 1,F 2的距离的差的绝对值大于|F 1F 2|时的点的轨迹__________.(2)双曲线的焦点和焦距双曲线定义中的两个定点F 1、F 2叫做________________,两焦点间的距离叫做________________.2.双曲线的标准方程(1)焦点在x 轴上的双曲线的标准方程是________________,焦点F 1__________,F 2__________.(2)焦点在y 轴上的双曲线的标准方程是________________________,焦点F 1________,F 2__________.(3)双曲线中a 、b 、c 的关系是____________.一、选择题1.已知平面上定点F 1、F 2及动点M ,命题甲:||MF 1|-|MF 2||=2a (a 为常数),命题乙:M 点轨迹是以F 1、F 2为焦点的双曲线,则甲是乙的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件2.若ax 2+by 2=b (ab <0),则这个曲线是( )A .双曲线,焦点在x 轴上B .双曲线,焦点在y 轴上C .椭圆,焦点在x 轴上D .椭圆,焦点在y 轴上3.焦点分别为(-2,0),(2,0)且经过点(2,3)的双曲线的标准方程为( )A .x 2-y 23=1 B.x 23-y 2=1 C .y 2-x 23=1 D .x 22-y 22=1 4.双曲线x 2m -y 23+m=1的一个焦点为(2,0),则m 的值为( ) A .12B .1或3C .1+22D .2-125.一动圆与两圆:x 2+y 2=1和x 2+y 2-8x +12=0都外切,则动圆圆心的轨迹为( )A .抛物线B .圆C .双曲线的一支D .椭圆6.已知双曲线中心在坐标原点且一个焦点为F 1(-5,0),点P 位于该双曲线上,线段PF 1的中点坐标为(0,2),则该双曲线的方程是( )A .x 24-y 2=1B .x 2-y 24=1 C .x 22-y 23=1 D .x 23-y 22=1题号 1 2 3 4 5 6 答案7.设F 1、F 2是双曲线 x 24-y 2=1的两个焦点,点P 在双曲线上,且PF 1→·PF 2→=0,则|PF 1|·|PF 2|=______.8.已知方程x 21+k -y 21-k=1表示双曲线,则k 的取值范围是________. 9.F 1、F 2是双曲线x 29-y 216=1的两个焦点,P 在双曲线上且满足|PF 1|·|PF 2|=32,则∠F 1PF 2=______.三、解答题10.设双曲线与椭圆x 227+y 236=1有相同的焦点,且与椭圆相交,一个交点A 的纵坐标为4,求此双曲线的标准方程.11.在△ABC 中,B (4,0)、C (-4,0),动点A 满足sin B -sin C =12sin A ,求动点A 的轨迹方程.能力提升12.若点O 和点F(-2,0)分别为双曲线x 2a2-y 2=1(a>0)的中心和左焦点,点P 为双曲线右支上的任意一点,则OP →·FP →的取值范围为( )A .[3-23,+∞)B .[3+23,+∞)C .[-74,+∞)D .[74,+∞) 13.已知双曲线的一个焦点为F (7,0),直线y =x -1与其相交于M ,N 两点,MN 中点的横坐标为-23,求双曲线的标准方程.1.双曲线的标准方程可以通过待定系数法求得.2.和双曲线有关的轨迹问题要按照求轨迹方程的一般步骤来解,也要和双曲线的定义相结合.3.直线和双曲线的交点问题可以转化为解方程组(设而不求),利用韦达定理,弦长公式等解决.§2.2 双曲线2.2.1 双曲线及其标准方程答案知识梳理1.(1)|F 1F 2| 以F 1,F 2为端点的两条射线 不存在 (2)双曲线的焦点 双曲线的焦距2.(1)x 2a 2-y 2b 2=1(a >0,b >0) (-c,0) (c,0) (2)y 2a 2-x 2b 2=1(a >0,b >0) (0,-c ) (0,c ) (3)c 2=a 2+b 2作业设计1.B [根据双曲线的定义,乙⇒甲,但甲 乙,只有当2a <|F 1F 2|且a ≠0时,其轨迹才是双曲线.]2.B [原方程可化为x 2b a+y 2=1,因为ab <0,所以b a<0,所以曲线是焦点在y 轴上的双曲线,故选B.]3.A [∵双曲线的焦点在x 轴上,∴设双曲线方程为x 2a 2-y 2b 2=1 (a >0,b >0). 由题知c =2,∴a 2+b 2=4. ①又点(2,3)在双曲线上,∴22a 2-32b 2=1. ② 由①②解得a 2=1,b 2=3,∴所求双曲线的标准方程为x 2-y 23=1.] 4.A [∵双曲线的焦点为(2,0),在x 轴上且c =2,∴m +3+m =c 2=4.∴m =12.] 5.C [由题意两定圆的圆心坐标为O 1(0,0),O 2(4,0),设动圆圆心为O ,动圆半径为r ,则|OO 1|=r +1,|OO 2|=r +2,∴|OO 2|-|OO 1|=1<|O 1O 2|=4,故动圆圆心的轨迹为双曲线的一支.]6.B [设双曲线方程为x 2a 2-y 2b 2=1,因为c =5,c 2=a 2+b 2,所以b 2=5-a 2,所以 x 2a 2-y 25-a 2=1.由于线段PF 1的中点坐标为(0,2),则P 点的坐标为(5,4).代入双曲线方程得5a 2-165-a 2=1,解得a 2=1或a 2=25(舍去),所以双曲线方程为x 2-y 24=1.故选B.]7.2解析 ∵||PF 1|-|PF 2||=4, 又PF 1⊥PF 2,|F 1F 2|=25, ∴|PF 1|2+|PF 2|2=20,∴(|PF 1|-|PF 2|)2=20-2|PF 1||PF 2|=16,∴|PF 1|·|PF 2|=2.8.-1<k <1解析 因为方程x 21+k -y 21-k=1表示双曲线, 所以(1+k )(1-k )>0.所以(k +1)(k -1)<0.所以-1<k <1.9.90°解析 设∠F 1PF 2=α,|PF 1|=r 1,|PF 2|=r 2.在△F 1PF 2中,由余弦定理,得(2c )2=r 21+r 22-2r 1r 2cos α,∴cos α=(r 1-r 2)2+2r 1r 2-4c 22r 1r 2=36+64-10064=0. ∴α=90°.10.解 方法一 设双曲线的标准方程为y 2a 2-x 2b2=1 (a >0,b >0),由题意知c 2=36-27 =9,c =3.又点A 的纵坐标为4,则横坐标为±15,于是有⎩⎪⎨⎪⎧ 42a 2-(±15)2b 2=1,a 2+b 2=9,解得⎩⎪⎨⎪⎧a 2=4,b 2=5. 所以双曲线的标准方程为y 24-x 25=1. 方法二 将点A 的纵坐标代入椭圆方程得A (±15,4),又两焦点分别为F 1(0,3),F 2(0,-3).所以2a =|(±15-0)2+(4+3)2-(±15-0)2+(4-3)2|=4,即a =2,b 2=c 2-a 2=9-4=5,所以双曲线的标准方程为y 24-x 25=1. 11.解 设A 点的坐标为(x ,y ),在△ABC 中,由正弦定理,得a sin A =b sin B =c sin C=2R , 代入sin B -sin C =12sin A , 得|AC |2R -|AB |2R =12·|BC |2R,又|BC |=8, 所以|AC |-|AB |=4.因此A 点的轨迹是以B 、C 为焦点的双曲线的右支(除去右顶点)且2a =4,2c =8,所以 a =2,c =4,b 2=12.所以A 点的轨迹方程为x 24-y 212=1 (x >2). 12.B[由c =2得a 2+1=4,∴a 2=3,∴双曲线方程为x 23-y 2=1. 设P (x ,y )(x ≥3),∴ OP →·FP →=(x ,y )·(x +2,y )=x 2+2x +y 2 =x 2+2x +x 23-1 =43x 2+2x -1(x ≥3). 令g (x )=43x 2+2x -1(x ≥3),则g (x )在[3,+∞)上单调递增.g (x )min =g (3)=3+2 3. OP →·FP →的取值范围为[3+23,+∞).]13.解 设双曲线的标准方程为x 2a 2-y 2b2=1, 且c =7,则a 2+b 2=7.① 由MN 中点的横坐标为-23知, 中点坐标为⎝⎛⎭⎫-23,-53. 设M (x 1,y 1),N (x 2,y 2),则由⎩⎨⎧ x 21a 2-y 21b 2=1,x 22a 2-y 22b 2=1, 得b 2(x 1+x 2)(x 1-x 2)-a 2(y 1+y 2)(y 1-y 2)=0.∵⎩⎨⎧x 1+x 2=-43y 1+y 2=-103,且y 1-y 2x 1-x 2=1, ∴2b 2=5a 2.②由①,②求得a 2=2,b 2=5.∴所求双曲线的标准方程为x 22-y 25=1.。
上课时间第周星期第节课型课题 2.2.1 双曲线及其标准方程教学目的学生掌握双曲线的定义和标准方程,以及标准方程的推导教学设想教学重点:双曲线的定义和双曲线的标准方程.教学难点:在与椭圆的类比中获得双曲线的知识,从而培养学生分析、归纳、推理等能力:教学过程一、新课导入:1. 提问:椭圆的定义是什么?椭圆的标准方程是什么?(学生口答,教师板书)2. 在椭圆的标准方程22221x ya b+=中,,,a b c有何关系,若5,3a b==,则?c=写出符合条件的椭圆方程。
二、讲授新课:1. 双曲线的定义:①提问:把椭圆定义中的“距离的和”改为“距离的差”,那么点的轨迹会怎样?如图2-23,定点12,F F是两个按钉,MN是一个细套管,两条细绳分别拴在按钉上且穿过套管,点M移动时,|MF1|-|MF2|是常数,这样就画出一条曲线;由|MF2|-|MF1|是同一常数,可以画出另一支.②定义:平面内与两定点12,F F的距离的差的绝对值等于常数(小于12F F)的点的轨迹叫做双曲线。
两定点12,F F叫做双曲线的焦点,两焦点间的距离12F F叫做双曲线的焦距。
③(理科)类比椭圆标准方程的建立过程推导出双曲线的标谁方程。
(文科)简单讲解推导给出标准方程。
标准方程:22222221,(0,0,)x ya b c a ba b-=>>=+(焦点12(,0),(,0)F c F c-在x 轴)思考:若焦点在y轴,标准方程又如何?④例1、58P分析:由双曲线的标准方程知,只要求出,a b即可得方程;练习:1、已知双曲线的两焦点为12(8,0),(8,0)F F-,双曲线上任意点到12,F F的距离的差的绝对值等于10,求此双曲线的标准方程。
2、双曲线的两焦点分别为12(3,0),(3,0)F F-,①若2,___;a b==则②若1,___;b a==则3、双曲线的两焦点分别为12(10,0),(10,0)F F-,点(8,0)在双曲线上求双曲线的标准方程。
§2.3.1 双曲线及其标准方程1.掌握双曲线的定义;2.掌握双曲线的标准方程.5255,文P 45~ P 48找出疑惑之处)复习1:椭圆的定义是什么?椭圆的标准方程是什么?复习2:在椭圆的标准方程22221x y a b+=中,,,a b c 有何关系?若5,3a b ==,则?c =写出符合条件的椭圆方程.二、新课导学※ 学习探究问题1:把椭圆定义中的“距离的和”改为“距离的差”,那么点的轨迹会怎样?如图2-23,定点12,F F 是两个按钉,MN 是一个细套管,两条细绳分别拴在按钉上且穿过套管,点M 移动时, 12MF MF -是常数,这样就画出一条曲线;由21MF MF -是同一常数,可以画出另一支.新知1:双曲线的定义:平面内与两定点12,F F 的距离的差的 等于常数(小于12F F )的点的轨迹叫做双曲线。
两定点12,F F 叫做双曲线的 ,两焦点间的距离12F F 叫做双曲线的 .反思:设常数为2a ,为什么2a <12F F ?2a =12F F 时,轨迹是 ;2a >12F F 时,轨迹 .试试:点(1,0)A ,(1,0)B -,若1AC BC -=,则点C 的轨迹是 .新知2:双曲线的标准方程:22222221,(0,0,)x y a b c a b a b -=>>=+(焦点在x 轴)其焦点坐标为1(,0)F c-,2(,0)F c.思考:若焦点在y轴,标准方程又如何?※典型例题例1已知双曲线的两焦点为1(5,0)F-,2(5,0)F,双曲线上任意点到12,F F的距离的差的绝对值等于6,求双曲线的标准方程.变式:已知双曲线221169x y-=的左支上一点P到左焦点的距离为10,则点P到右焦点的距离为.例2 已知,A B两地相距800m,在A地听到炮弹爆炸声比在B地晚2s,且声速为340/m s,求炮弹爆炸点的轨迹方程.变式:如果,A B两处同时听到爆炸声,那么爆炸点在什么曲线上?为什么?小结:采用这种方法可以确定爆炸点的准确位置.※动手试试练1:求适合下列条件的双曲线的标准方程式:(1)焦点在x轴上,4a=,3b=;(2)焦点为(0,6),(0,6)-,且经过点(2,5)-.练2.点,A B的坐标分别是(5,0)-,(5,0),直线AM,BM相交于点M,且它们斜率之积是49,试求点M的轨迹方程式,并由点M的轨迹方程判断轨迹的形状.三、总结提升※学习小结1 .双曲线的定义;2 .双曲线的标准方程.※知识拓展GPS(全球定位系统):双曲线的一个重要应用.在例2中,再增设一个观察点C,利用B,C两处测得的点P发出的信的时间差,就可以求出另一个双曲线的方程,解这两个方程组成的方程组,就能确定点P的准确位置.※自我评价你完成本节导学案的情况为().A. 很好B. 较好C. 一般D. 较差※当堂检测(时量:5分钟满分:10分)计分:1.动点P到点(1,0)M及点(3,0)N的距离之差为2,则点P的轨迹是().A. 双曲线B. 双曲线的一支C. 两条射线D. 一条射线2.双曲线2255x ky+=的一个焦点是,那么实数k的值为().A .25-B .25C .1-D .13.双曲线的两焦点分别为12(3,0),(3,0)F F -,若2a =,则b =( ).A. 5B. 13C.D.4.已知点(2,0),(2,0)M N -,动点P 满足条件||||PM PN -=则动点P 的轨迹方程为 .5.已知方程22121x y m m -=++表示双曲线,则m 的取值范围 .1. 求适合下列条件的双曲线的标准方程式:(1)焦点在x 轴上,a =(5,2)A -;(2)经过两点(7,A --,B .2.相距1400m ,A B 两个哨所,听到炮弹爆炸声的时间相差3s ,已知声速是340/m s ,问炮弹爆炸点在怎样的曲线上,为什么?。
教学目标:1.通过教学,使学生熟记双曲线的定义及其标准方程,理解双曲线的定义,体会双曲线标准方程的探索推导过程.2. 使学生在学会知识的过程中,进一步熟练用坐标法建立曲线方程,培养学生等价转化、数形结合等数学思想,提高学生分析问题、解决问题的能力.3. 通过对定义与方程的探索、评价,优化学生的思维品质,培养学生运动变化、辨证统一的思想.教学重点与难点双曲线的定义和标准方程及其探索推导过程是本课的重点.定义中“差的绝对值”、a与c的大小关系的理解与标准方程的建立是难点.教学方法:实验发现法、电化教学法、启导法、类比教学法教学用具:CAI课件、演示教具课时安排:一课时教学过程:一、课题导入师:椭圆的定义是什么?(学生口述椭圆的定义,教师利用CAI课件把椭圆的定义和图象放出来.)师:椭圆定义是由轨迹的问题引出来的,我们把满足几何条件|PF1|+|PF2|=2a(常数)(2a>|F1F2|)的动点P的轨迹叫椭圆.下面,我们来做这样一个实验:(同学分组实验:利用拉链演示双曲线的生成过程,导入课题)师:通过这个实验,我们发现笔尖画出了这样两条特殊的曲线,这是一类什么曲线呢?这就是我们今天要研究的“双曲线及其标准方程”(板书课题)二、定义探究师:我们知道满足几何条件|PF1|+|PF2|=2a(常数)的动点P的轨迹是椭圆,那双曲线应该是点P满足什么几何条件的轨迹呢?(引导学生从刚才的演示实验中寻找答案:|PF1|-|PF2|=2a或|PF2|-|PF1|=2a)师:是不是有以上规律呢?为了更直观的体现我们刚才的实验过程,下面我们来验证一下.(播放双曲线flash生成动画,验证几何条件)师:实验证明当点P满足以上几何条件时,我们得到的轨迹确实是双曲线,如果|PF1|>|PF2|,则得到曲线的右支,如果|PF2|>|PF1|则得到曲线的左支,能否用一个等式将两几何条件统一起来呢?三、方程推导师:平面解析几何的基本思想是利用代数的方法来研究几何问题,借助于曲线的方程来揭示曲线的性质.下面我们来探究双曲线的方程.首先请回忆椭圆的标准方程是什么?(学生口述教师板书椭圆的标准方程)师:椭圆的标准方程我们是借助于椭圆的定义用坐标法建立起来的,在此我们完全可以仿效求椭圆标准方程的方法探求双曲线方程.(学生在草稿纸上试着完成,教师板书方程的推导过程)建立直角坐标系,设双曲线上任意一点的坐标为P(x 、y),|F 1F 2|=2c ,并设F 1(-c,0),F 2(c,0).由两点间距离公式,得|PF 1|=22)(y c x ++,|PF 2|=22)(y c x +-由双曲线定义,得|PF 1|-|PF 2|=±2a 即22)(y c x ++-22)(y c x +-=±2a化简方程22)(y c x ++=±2a+22)(y c x +-两边平方,得(x+c)2+y 2=4a 2±4a 22)(y c x +-+(x-c)2+y 2化简得:cx-a 2=±22)(y c x +-两边再平方,整理得(c 2-a 2)x 2-a 2y 2=a 2 (c 2-a 2)(为使方程简化,更为对称和谐起见)由2c-2a >0,即c >a ,所以c 2-a 2>0设c 2-a 2=b 2 (b >0),代入上式,得b 2x 2-a 2y 2=a 2b2也就是x 2/a 2-y 2/b 2=1师:利用椭圆标准方程推导类比地推导出双曲线的标准方程,它同样具有方程简单、对称,具有和谐美的特点,便于我们今后研究双曲线的有关性质.这一简化的方程称为双曲线的标准方程.结合图形再一次理解方程中a >0,b >0的条件是不可缺少的.b 的选取不仅使方程得到了简化、和谐,也有特殊的几何意义.具有c 2=a 2+b 2,区别其与椭圆中a 2=b 2+c 2的不同之处.(师生共析:双曲线的方程右边为1,左边是两个完全平方项,符号一正一负,为正的项相应的坐标轴为焦点所在坐标轴.用一句话概括“以正负定焦点”)四、巩固内化例:已知两定点())0,5(,0,521F F -,求到这两点的距离之差的绝对值为8的点的轨迹方程。
双曲线及其标准方程(人教A版选修1-1第二章第2节)一、教学设计教学内容与内容解析本节课为《普通高中课程标准实验教科书数学·选修1—1》(人教A版)第二章“圆锥曲线与方程”中第二节双曲线的第一课时.本节课是在学生学习了直线、圆和椭圆的基础上进一步研究学习的,为后面的抛物线及其标准方程做铺垫.双曲线是继椭圆之后的另一种圆锥曲线,无论是定义的探索或是问题的解决或是学生的学法、教师的教法等等方面,这两者都具有极强的相似性,是渗透学法指导(如类比学习)的良好载体.新课程强调教师要创造性使用教材,这就需要教师对教材的精心解读.由椭圆的距离之和引发对距离之差的思考,再对常数的考虑,引起学生对教材双曲线定义不严密性........(常数必须大于...0.).的思考,培养学生思维的缜密.解析几何的教育价值在于通过坐标法,利用代数方法解决几何问题,为此,在推导双曲线的标准方程时,仍需让学生类比思考:怎样建立坐标系,为什么这样建立,这对文科的学生而言,“知其所以然”是需要反复强调,方可内化的.教学目标与目标解析1.学生能了解双曲线的定义、双曲线标准方程的推导及化简过程.2.在定义的探索或问题的解决中,学生能类比椭圆进行双曲线的学习.3.学生在经历双曲线定义的获得过程,能类比发现问题、不断完善、解决问题.教学问题诊断分析1.学生的知识储备分析:学生已经学习直线、圆和椭圆,基本掌握了求曲线方程的一般方法,能对含有两个根式的方程进行化简,对分类讨论、类比推理的思想方法有一定的体会.2.学生的数学能力分析:通过一年多的高中学习,学生已具备了一定的观察事物的能力,积累了一些研究问题的经验,在一定程度上具备了抽象、概括的能力和语言转换能力.但是他们的思维正从属于经验性的逻辑思维向抽象思维发展,仍需要依赖一定的具体形象的经验材料来理解抽象的逻辑关系.3.本节课是一节2012年泉州市“送教送研下乡”活动中的一节公开课,由于借班上课,拿不准永春侨中高二年文科的学生的水平.“以不变应万变”,本节课重点在于“类比”学习双曲线,考虑文科学生计算能力相对弱,故难点在于双曲线标准方程的推导.教学支持条件分析课本以拉链问题呈现双曲线的定义,虽然直观,但实际操作性难.,于是弃之不用,选择当场制作课件,让学生直接感受.同时通过列表的形式,让学生更为直观理解椭圆与双曲线的差异,且通过对题目合理变式让学生明白椭圆与双曲线不仅定义可类比、解题同样可以类比,对学生学法指导(如“类比”学习)做了很好的铺垫与引导.教学过程设计(一)复习引入1.椭圆的定义:平面内与两个定点12F ,F 的距离之和等于常数(大于12F F )的点的轨迹叫做椭圆,这两个定点叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距.设M 是椭圆上的动点,则需满足()121222MF MF a a F F =>+2.椭圆的标准方程: (1) 焦点在x 轴:()222210x y a b a b+=>>. (2)焦点在y 轴:(222210y x a b a b+=>> 其中222c a b =-. 3.导入新课:问题:我们知道,差是和的逆运算,那么,平面内与两个定点12F ,F 距离的差等于常数的点的轨迹是什么呢?为了研究方便,设动点M ,则问题即为研究满足12MF MF -=常数C 的轨迹问题. 解析:实数C 可以分为000C ,C ,C =><. 【学情预设】由于学生事先有预习,所以急着给出答案:双曲线.果真是双曲线吗?一石激起千层浪!【设计意图】从“差是和的逆运算”,引导学生思考问题,过渡自然,且在“发现问题”做了较好的引导.对学生的答案及时加以肯定,但“果真是双曲线吗?”,又引起学生对实数C 的讨论,渗透分类讨论思想.(二)新课学习1.展示知识形成过程(几何画板揭示动点轨迹形成) 在()120MF MF C C -=>的解决中,关键在于M 动,但12MF MF -定,为此,可联想到圆的性质,圆上任一点到圆心的距离相等,可构造两相交圆.(教师当场利用几何画板作图,如图1,2)教师借助直观,说明作图依据:如图1,设两定点12A ,A ,B 为以2A 为端点的射线上的一点,则有1212A B A B A A -==定值. 以1F 为圆心,1A B 为半径作圆,以2F 为圆心,2A B 为半径作圆,设两圆的交点为M ,则121212MF MF A B A B A A -=-==常数.【学情预设】学生对“轨迹的形成”充满好奇,却不知其原因,对知识形成充满好奇.【设计意图】教师当场利用几何画板作图,可以让学生直观感受双曲线定义的形成,深刻理解定义的形成过程,避免出现学生“知其然,不知其所以然”的局面.(2)“形”“数”两方面揭示定义从形.的方面,我们可以看到图2中的两条曲线有完美的对称性(关于线段12F F 的中垂线对称),我们把这两条曲线合起来叫做双曲线,每一条叫做双曲线的一支.从数.的方面,可以统一为:1212MF MF A A -=,类比椭圆,不妨记为()1220MF MF a a -=>【设计意图】虽然解析几何强调坐标法,但对形的认识也是必不可少的,借助几何画板,可以直观展示双曲线定义形成过程.从形的直观提炼数的特征再到定义的归纳(即图形语言、符号语言、文字语言之间的转化)又是学生认识的一个提升.2.尝试、完善双曲线的定义(1)类比椭圆定义,获得双曲线定义:把平面内与两个定点1F ,2F 的距离的差的绝对值等于非零常数(小于12F F )的点的轨迹叫做双曲线.其中这两个定点叫做双曲线的焦点,两焦点间的距离叫做双曲线的焦距.即双曲线上的动点M 满足()1212202MF MF a a F F -=<<.注:容易忽略的地方:①“距离的差的绝对值”;②“常数小于21F F ”. 思考:若122a F F =:两条射线;若122a F F >:无轨迹.(2)师生共同阅读课本让学生解释拉链问题.【学情预设】学生是有能力类比椭圆的定义得到双曲线的定义,但对“距离的差的绝对值”;“常数小于21F F ”认识不够,常忽视!【设计意图】让学生尝试、完善双曲线的定义,培养学生思维的慎密.3.探究双曲线的标准方程(1)回顾椭圆标准方程的推导过程:“建系、设点、列式、化简”(为了使学生更好类比椭圆标准方程的推导,教师引导学生回归课本,再次熟悉课本推导过程)【设计意图】引导学生回归课本,再次熟悉椭圆标准方程的推导过程,是为了更好地类比到双曲线!(2)教师引导学生类比椭圆推导双曲线的标准方程建系:取过焦点21F F ,的直线为x 轴,线段21F F 的垂直平分线为y 轴设点:设()M x,y 为双曲线上的任意一点,双曲线的焦距是2c (0>c )则 )0,(),0,(21c F c F -,1MF =2MF =列式:()1220MF MF a a -=>,122MF MF a ∴-=±a y c x y c x 2)()(2222±=+--++∴,2a =±整理得:)()(22222222a c a y a x a c -=--,由定义c a 22<022>-∴a c ,令222c a b -=代入,得:222222b a y a x b =-, 两边同除22b a 得:12222=-b y a x ,此即为双曲线的标准方程. 它所表示的双曲线的焦点在x 轴上,焦点是)0,(),0,(21c F c F -,其中222b a c +=【学情预设】学生对方程的整理还是存在一定的困难,需要一定的时间处理问题.【设计意图】让学生再次熟悉课本椭圆标准方程推导过程,不仅可以回顾旧知,而且可以较顺利解决新知.让学生尝试推导双曲线标准方程,能进一步落实计算处理.(3)若坐标系的选取不同,可得到双曲线的不同的方程.类比焦点在y 轴上的椭圆方程以及类比刚才的推导过程,如图可得到:焦点在y 轴上则焦点是),0(),,0(21c F c F -,将y x ,互换,得到12222=-bx a y ,此也是双曲线的标准方程 【设计意图】呈现焦点在y 轴上双曲线的形状,从形帮助学生的理解.4.找不同(让学生发现椭圆、双曲线标准方程的不同点)椭圆0a b >> 双曲线00a ,b >>焦点在x 轴:22221x y a b+= 焦点在y 轴:22221y x a b+= 焦点在x 轴:22221x y a b-= 焦点在y 轴:22221y x a b -= 方程形式 + -a,b 大小a b > a 不一定大于b 2c222c a b =- 222c a b =+ 焦点判断 看分母的大小(看大的) 看系数的正负(看正的)【设计意图】把信息表格化,能直观区分椭圆与双曲线的差异,能快速建立新知与旧知的联系.5.演练反馈1.判断下列方程是否表示双曲线?若是,求出c b a ,,及焦点坐标.(1)22142x y -=(2)22148x y -=- 【设计意图】强调双曲线标准方程(尤其(2):把非标准方程化为标准方程)及基本量c b a ,,的计算.2.课本第47页例1:已知双曲线两个焦点分别为()()125050F ,,F ,-,双曲线上一点P 到12F ,F 距离差的绝对值等于6,求双曲线的标准方程.变式:已知双曲线两个焦点分别为()()125050F ,,F ,-,(6P ,在双曲线上,求双曲线的标准方程.解法一:因为双曲线的焦点在x 轴上,所以设它的标准方程为:()2222100x y a ,b a b -=>>. 则有2236481a b-=,即22223648b a a b -=,又2225a b +=, 代入消去2b 有4210936250a a -+⨯=,即()()2210090a a --=,所以29a =(舍去2100a =). 即所求双曲线的标准方程为221916x y -=. 解法二:(教师先引导学生把课本翻到第34页,共同回顾例1的解题过程)因为双曲线的焦点在x 轴上,所以设它的标准方程为:()2222100x y a ,b a b -=>>由双曲线的定义有122a MF MF =-=137=-=6 所以3a =,又因为5c =,所以22216b c a =-=,因此,所求双曲线的标准方程为221916x y -=. 【解题反思】求标准方程常见方法有二:①待定系数法,立足基本量的运算:设方程、代入、消参;②利用定义,注意:两焦点,用定义.【学情预设】多数的学生会采用解法一:待定系数法,涉及基本量的计算,解法二对学生的理解要求较高,学生比较难以第一时间想到,让他们回顾椭圆中的解法,有利于建立新知与旧知的联系.【设计意图】解法二的介绍目的在于让学生明白椭圆与双曲线不仅定义可类比、解题同样可以类比.解完题,及时引导学生进行反思,有利知识的梳理与深化.(三)课堂小结(1)通过表格总结椭圆与双曲线的定义和标准方程.(2)关注双曲线与椭圆之间的类比学习,如定义、方程推导、解题等.(四)课后作业课本第48页:练习1、2;课本第54页:A组1、2.二、教学实践心得基于解析几何教学价值的学法指导“高中数学课程应注重学生的数学思维能力,这是数学教育的基本目标之一.人们在学习数学和运用数学解决问题时,不断地经历直观感知、观察发现、归纳类比……等思维过程”.只有学生掌握了一定的数学学习方法,才有可能从繁杂多样的“题海”中解脱,才有可能实现“减负”,因此,注重学生学法的指导是课堂教学的一个重要、长期的教学任务.这也就要求教师在日常的教学中,能善于抓住教学时机,对学生渗透学习方法的指导,并逐渐实现潜移默化,使教学效率得以提高.1.学法指导要有针对性即要结合数学学科的特征、学习内容,针对学生的实际情况进行指导,这是学法指导的根本原则.比如双曲线与椭圆,无论是定义的探索或是问题的解决或是学生的学法、教师的教法等等方面,这两者都具有极强的相似性,这样无论是双曲线在定义形成、标准方程的推导、解题方法,都适合与椭圆进行类比,当然这种类比在抛物线的学习同样适用.2.学法指导要有实用性学法指导的最终目的是通过让学生掌握科学的学习方法,提高学习能力,培养良好的学习习惯,增强学习效果.所以,学法指导应避免摆花架子,不切实际,死搬硬套,要立足日常的课堂教学,以常规的学习方法为重点.椭圆、双曲线、抛物线是进行学法指导的良好载体,因此在双曲线(抛物线)的定义形成、方程推导、解题的学习要让学生体会“通过类比,可以解决诸如此类的问题”,让他们学以致用,用以生效.更深层次可以引导学生归纳提炼它们的解决都是围绕着“练、思、算”,即圆锥曲线学习离不开“一定量的练习、勤于反思总结类比、合理简化运算”三步曲.3.学法指导要循序渐进学法指导过程中,要按照数学学科的逻辑系统和学生认知发展的规律,结合学法指导的内在规律,持续、连贯、有系统地进行指导,要循序渐进、逐步提高.三种圆锥曲线适合类比学习,但并不意味着学生类比学习就能把它们学好,在一些具体的环节上仍需教师加以引导,比如为什么椭圆要求122a F F >,而双曲线则要求122a F F <,再如直线代入椭圆方程一般只须考虑判别式∆,而双曲线除了考虑判别式∆,还要考虑二次项前面的系数是否为0等等.因此,师生对学习方法的掌握过程要有一定的“心理价位”,不可操之过急.三、专家点评 本节课作为新授课的教学,能凸显概念教学中重要而有效的突破点:经历概念的发生发展过程,提炼概念本质.圆锥曲线的学习中,不仅要让学生深深体会、理解“坐标法”的核心思想,同时要让学生掌握学习的方法,即三种圆锥曲线之间的类比学习,本节课在学法指导方面下足功夫,教学顺畅,体现了授课教师很好的业务素质,教学效果良好,学生能得到很好的启发与引导.本节课有如下几个亮点:1.体现学科教育价值授课教师教学过程中能落实数学教育的任务.数形结合思想是解析几何的重要思想之一,本节课在双曲线标准的推导中,能引导学生类比椭圆标准方程的推导,思考如何建系,如何整理方程,并通过表格使得椭圆与双曲线的差异直观呈现.其次,教学中,教师舍得花时间让学生进行演算(而非直接给出双曲线的标准方程,计算能力的突破是解析几何教学的难点),能较好落实学生的计算能力的提升.2.能注重学法指导授课教师在双曲线定义的呈现上,以几何画板当场呈现,让学生直观感受动点轨迹的形成;在例题、习题上设置上能凸显教学目标,凸显对学生学法的指导,可见授课教师在备课上下足了功夫,能很好的研读教材,能理清教材内容之间的纵横联系,并且在教学的过程中,能有所取舍(舍去拉链问题的操作,突出对拉链问题背后的数学说理,强化学生对双曲线定义的理解),突出教学重点,化解教学难点.同时,在例题1的讲解上,能进行适当的变式,能以此为契机,让学生明白双曲线与椭圆的类比不仅仅是定义、方程的类比,也可以是解题方法上的类比,对学生及时进行学法的指导,实现“授之以渔”的教育目标.(洪丽敏)。
基于核心问题的“学思课堂”教学设计
具体的要求呢?
合作探究质疑(学)1.定义的挖掘、
2.标准方程的推导、
3.方程的对比
1、首先,我设置了这样两个问题:
(1)类比椭圆寻找双曲线定义中的关
键字;
(2)若分别去掉这几个关键字曲线会发
生怎样变化?
然后让学生带着问题进行合作探究,教
师可适当引导,对于学生难以理解的地
方适时给予帮助指导。
2、标准方程的推导
这一环节是本节课的难点,为了突破它,我
了这样几个问题让其贯穿推导过程以将难
解:
(1)回顾椭圆标准方程的推导步骤及方法;
(2)类比椭圆试着推导双曲线的标准方程;
(3)换元处理与椭圆有没有区别?
(4)猜证双曲线焦点在y轴上的标准方程。
(
然后让学生独立完成推导过程。
3.方程的对比
此时,学生接触的方程已比较多,很容易混
有必要加以对比。
我引导学生进行以下两组对比:
(1)双曲线方程的两种形式的对比;
(2)椭圆方程与双曲线方程的对比。
对比时会让学生注意方程结构的区别和联系
如说:到底是平方差还是平方和。
另外,还
意椭圆方程和双曲线方程都涉及到的三个量
b、c它们的区别和联系。
,。
高二数学选修 2-1 §一、学习任务:1.理解双曲线的定义,掌握求双曲线的方程,和一些几何性质。
培养解析法的思想。
2.双曲线的定义和标准方程。
二、探究新知:(学习情景,自主学习,合作探究,(问题1,2,3)当堂检查,巩固训练,拓展延伸,对点训练,感受高考等) 自主学习:(一)、学习情景: 已知两定点F 1F 2距离为10,求动点M 到两定点距离的差为6的轨迹方程. (二)、探究点一、——双曲线的定义问题1:根据课本上双曲线的定义,制作教具,画双曲线?问题2:写出双曲线上的点满足的关系式________________________________________ 问题3:这两个定点叫做双曲线的_______。
两个定点的距离用______表示。
常数用______表示问题4:双曲线的定义中强调平面内动点到两定点的距离差的绝对值为常数,若没有绝对值,则动点的轨迹是什么? 双曲线的定义为什么要满足2a <2c 呢?(1)当2a <∣F 1F 2∣时,轨迹是_____ (2)当2a =∣F 1F 2∣时,轨迹是_____ (3)当2a >∣F 1F 2∣时轨迹是. _____对点训练: 动点P 到两定点F1(-4,0),F2(4,0)的距离差是8,则动点P 的轨迹为( ) (A )双曲线 (B )双曲线的一支(C )以F 1,F 2 为端点的两条射线(D )不能确定。
问题5:建立坐标系后,利用问题2的关系式,写出推导双曲线方程的过程 问题6:双曲线的标准方程是:___________________________ 问题7:上面的a,b,c 三个量满足的关系式为:___________ 问题8:如何判断焦点在何轴? (三)、合作、探究、展示:探究点二、——双曲线的标准方程根据下列方程,分别求出a 、b 、c 并且判断焦点在何轴?(1)双曲线标准方程为161022=-y x ,则a = ,b = , =c ;(2)双曲线标准方程为1522=-y x ,则a = ,b = , =c ; (3)双曲线标准方程为8222=-y x ,则a = ,b = , =c . 书本课后练习练 1:求适合下列条件的双曲线的标准方程式:(1)焦点在x 轴上, a = 4 , b = 3 ;(2) 已知双曲线两个焦点为(0,-6 ),(0,6) ,且经过点(2,-5 ) .变式:(1)已知双曲线的焦点在y 轴上,并且双曲线过点(3,-42)和⎝⎛⎭⎫94,5,求双曲线的标准方程;(2)求与双曲线x 216-y 24=1有公共焦点,且过点(32,2)的双曲线方程.探究点三、——与双曲线定义有关的应用问题1、已知双曲线221169x y-=的左支上一点P 到左焦点的距离为 10,则 点 P 到右焦点的距离为_______ . 2.===-212221121625,PF PF y x F F P ,则上一点,且为焦点的双曲线是以点( ) A .2 B .22 C .4或22 D .2或223.已知双曲线14922=-y x ,B A 、为过左焦点1F 的直线与双曲线左支的两个交点,2,9F AB =为右焦点,则△B AF 2的周长为4、 已知点P (x ,y )的坐标满足下列条件,试判断下列各条件下点P 的轨迹是什么图形?(1)6)5()5(2222=+--++y x y x ; (2)6)4()4(2222=+--++y x y x探究点四、——轨迹问题例3、点 A , B 的坐标分别是(-5 ,0) ,(5,0),直线AM , BM 相交于点M ,且它们斜率之积是94,试求点M 的轨迹方程式,并由点M 的轨迹方程判断轨迹的形状.思考:1.双曲线 52x + k 2y = 5 的一个焦点是(6,0),那么实数k 的值为( ). A . -2 5 B .25 C . -1 D .12.已知双曲线的方程是x 216-y 28=1,点P 在双曲线上,且到其中一个焦点F 1的距离为10,点N 是PF 1的中点,求|ON |的大小(O 为坐标原点).2.已知方程11222=+-+m y m x 表示双曲线,则m 的取值范围_____________ . 3.求与椭圆2214924x y +=有公共焦点,且离心率54e =的双曲线的方程.三、 本节小结和感悟F 2F 1。
河北省唐山市开滦第二中学高中数学 2.2.1双曲线及其标准方程学
案 新人教A 版选修1-1
【学习目标】
1.了解双曲线的定义、几何图形和标准方程的推导过程;
2.掌握双曲线的标准方程;
3.会利用双曲线的定义和标准方程解决简单的问题.
【重点难点】双曲线定义及其标准方程
【学习过程】
一、问题情景导入:
1.太空中飞过太阳系的彗星,其轨道就是双曲线,彗星从无穷处飞来,又飞到无穷远处,双曲线是不封闭的圆锥曲线,它不同于抛物线,也不是两个抛物线构成双曲线的两支,最明显的差别是双曲线有渐近线,而抛物线没有.初中学过的反比例函数图象是双曲线,它以坐标轴为渐近线.
2.我们知道,与两个定点距离的和为非零常数(大于两个定点间的距离)的点的轨迹是椭圆,那么,与两个定点距离的差为非零常数的点的轨迹是什么?
3.你能类比椭圆的标准方程的推导过程推导出双曲线的标准方程吗?
二、自学探究:(阅读课本第45-47页,完成下面知识点的梳理)
1.双曲线的定义:把平面内与两个定点21,F F 的距离的 等于常数(小于21F F )的点的轨迹叫做双曲线.这两个定点叫做双曲线 ,两焦点间的距离叫做双曲线的 . 双曲线的定义用集合语言表示为{}
21212,2F F a a MF MF M P <=-=
思考:双曲线定义中212F F a <,如果212F F a =轨迹是什么图形呢?能否有212F F a <的轨迹图形呢? 2.
焦点在x 轴上 焦点在y 轴上 图象 标准方程
焦点坐标
c b a ,,的关系
思考:⑴方程13222=-y x 与13
22
2=-x y 分别表示焦点在哪个坐标轴上的双曲线?焦点坐标分别是什么?
⑵方程12
2=+n
y m x ,当参数n m ,的取值怎样时,方程分别表示焦点在x 轴上与焦点在y 轴上的双曲线?
三、例题演练:
例 1.若一个动点()y x P ,到两个定点()()0,1,0,1B A -的距离之差的绝对值为定值()0≥a a 时,讨论点P 的轨迹.
例 2.已知双曲线两个焦点分别为()()0,5,0,521F F -,双曲线上一点P 到21,F F 距离差的绝对值等于6,求双曲线的标准方程.
变式:求适合下列条件的双曲线的标准方程:
⑴5,4==c a ,焦点在x 轴上;
⑵4=a ,经过点⎪⎪⎭
⎫ ⎝⎛3104,1A ; ⑶求与双曲线14162
2=-y x 有共同的焦点,且过点()
2,23的双曲线的标准方程.
例3.在ABC ∆中,已知4=BC ,且A B C sin 2
1sin sin =
-,求动点A 的轨迹方程.
变式:已知定圆02410:221=+++x y x C ,定圆:C 091022=+-+x y x ,动圆C 与定圆21,C C 都外切,求动圆圆心C 的轨迹方程.
【课堂小结与反思】
【课后作业与练习】
1.判断下列方程是否表示双曲线,若是,求出三量c b a ,,的值. ①12422=-y x ②12
22
2=-y x ③12
42
2-=-y x ④369422=-x y
2.求a =4,b =3,焦点在x 轴上的双曲线的标准方程
3.求a =25,经过点(2,-5),焦点在y 轴上的双曲线的标准方程
4.证明:椭圆22525922=+y x 与双曲线151522=-y x 的焦点相同
5.若方程1cos sin 22=+ααy x 表示焦点在y 轴上的双曲线,则角α所在象限是( )
A 、第一象限
B 、第二象限
C 、第三象限
D 、第四象限
6.设双曲线19
162
2=-y x 上的点P 到点)0,5(的距离为15,则P 点到)0,5(-的距离是( ) A .7 B.23 C.5或23 D.7或23
7.椭圆134222=+n y x 和双曲线1162
22=-y n
x 有相同的焦点,则实数n 的值是 ( ) A 5± B 3± C 5 D 9
8.已知21,F F 是双曲线19
162
2=-y x 的焦点,PQ 是过焦点1F 的弦,且PQ 的倾斜角为600,那么PQ QF PF -+22的值为________
9.设21,F F 是双曲线14
22
=-y x 的焦点,点P 在双曲线上,且02190=∠PF F ,则点P 到x 轴的距离为( )
A 1 B
5
5 C 2 D 5
10.P 为双曲线)0,0(122
22>>=-b a b
y a x 上一点,若F 是一个焦点,以PF 为直径的圆与圆222a y x =+的位置关系是()
A 内切
B 外切
C 外切或内切
D 无公共点或相交。