γ—聚谷氨酸的合成
- 格式:pptx
- 大小:92.11 KB
- 文档页数:5
γ-聚谷氨酸的合成、性质和应用彭英云;张涛;缪铭;沐万孟;江波【摘要】γ-聚谷氨酸是一种生物可降解的高分子聚合物,可由微生物发酵得到。
γ-聚谷氨酸具有良好的水溶性和吸附性,能彻底被生物降解,对环境和人体无害,这使得γ-聚谷氨酸在食品、化妆品、医药和农业等领域具有广阔的应用前景。
综述了γ-聚谷氨酸的化学结构、性质、生产方法及其应用。
【期刊名称】《食品与发酵工业》【年(卷),期】2012(038)006【总页数】6页(P133-138)【关键词】γ-聚谷氨酸;生物合成;生物可降解;应用【作者】彭英云;张涛;缪铭;沐万孟;江波【作者单位】江南大学食品科学与技术国家重点实验室,江苏无锡214122 盐城工学院化学与生物工程学院,江苏盐城224003;江南大学食品科学与技术国家重点实验室,江苏无锡214122;江南大学食品科学与技术国家重点实验室,江苏无锡214122;江南大学食品科学与技术国家重点实验室,江苏无锡214122;江南大学食品科学与技术国家重点实验室,江苏无锡214122【正文语种】中文【中图分类】TQ929γ-聚谷氨酸(Poly γ-Glutamate,γ-PGA)是一种多聚氨基酸类的环保型多功能生物可降解高分子材料。
作为一种高分子聚合物,γ-PGA具有一些独特的物理、化学和生物学特性,如良好的水溶性,超强的吸附性,能彻底被生物降解,无毒无害,可食用等,可作为诸如保水剂、增稠剂、絮凝剂、重金属吸附剂、药物/肥料缓释剂及药物载体等的原料,在农业、食品、医药、化妆品、环保、合成纤维和涂膜等领域具有广泛的应用前景。
近十几年以来,日本、韩国、德国、美国、加拿大、台湾等多个国家和地区的学者在γ-PGA合成与应用方面进行了很多的研究并取得一定的成果,国内一些高校和研究所对γ-PGA的研究正处于兴起阶段。
随着人们环保意识的增强,γ-PGA的研究和应用越来越受到世界各国学术界的关注,已成为生物降解高分子材料的研究热点之一。
发酵科技通讯第35卷我国天然的水溶性高分子化合物的生产和应用具有悠久的历史。
随着材料科学、聚合物化学和生物医学的不断发展和紧密融合,生物可降解高分子材料的研究得到长足发展,在尖端技术、国防建设和国民经济各个领域已经得到广泛应用或正在显示出广阔的应用前景。
从事这方面生产的厂家有数百家,从事研究的也有数十所研究单位和学校。
随着高分子材料的快速发展,在其重要性日益凸现的同时,人们发现了它的不足之处,即大部分人工合成的高分子材料在自然界难以降解。
绿色化学的概念正在重新评价现有水处理化学品的作用和性能。
对现已使用和正在研发的产品,可生物降解性是最重要的评价指标,在人们越来越关心自己所处环境的今天,不可降解的高分子材料造成的“白色污染”,也越来越受到了人们的关注。
为了解决这个问题,人们开展了各种研究工作,制成了各种可降解材料,聚合氨基酸系列产品的开发也由此崭露头角。
近来日本从一种常用食品“纳豆”(由大豆经发酵后制成,类似我国的豆豉)的黏液中提取的γ—聚谷氨酸,开始引起人们的重视。
1γ-聚谷氨酸γ-聚谷氨酸(r-PGA)是一种水溶性高聚物,它是由微生物或酵素将麸酸聚合而成,是一种生物可降解物质,具有良好的生物相容性及可生物完全降解性,是一新型的高分子材料,具有重要的潜在应用价值。
研究指出,由于γ-聚谷氨酸既有羧基又有氨基,所以具有左右旋光性。
在不同的pH条件下,γ-聚谷氨酸形成不同的结构和性能。
在pH为2-3时,γ-聚谷氨酸呈螺旋结构。
在人体中γ-聚谷氨酸能降解为谷氨酸被吸收,但十分缓慢,有些像膳食纤维的性能。
主链上有大量游离羧基存在,具有水溶性聚羧酸的性质,如强吸水保湿性能,可用于化妆品、食品、防尘等领域。
活性位点为材料的功能化提供了条件,可以改变聚谷氨酸性质或接上靶向基团。
聚谷氨酸是一种优良的肝脏靶向药物载体,具有蛋白质类似的结构,因此制造出的纤维舒适性良好;聚谷氨酸甲酯是耐高温、有良好透气性能的聚合物,用于制造人造皮革、食品包装膜等。
新型药物载体聚谷氨酸的合成及其应用[关键词]:谷氨酸,生物降解,制备,药物载体健康网讯:γ-聚谷氨酸(Polyglutamic acid,PGA)是由L-谷氧酸(L-Glu)、D-谷氨酸(D-Glu)通过肽键结合形成的一种多肽分子,在自然界或人体内能生物降解成内源性物质Glu,不易产生积蓄和毒副作用。
它的分子链上具有活性较高的侧链羧基(-COOH),易于和一些药物结合生成稳定的复合物,是一类理想的体内可生物降解的医药用高分子材料。
本文综述了PGA的制备方法及其作为药物载体和医用粘合剂的应用。
PGA的制备目前PGA的生产技术主要有化学合成法、提取法、生物聚合法。
化学合成法传统的肽合成法传统的肽合成法是将氨基酸逐个连接形成多肽,这个过程一般包括基团保护、反应物活化、偶联和脱保护。
化学合成法是肽类合成的重要方法,但合成路线长、副产物多、收率低,尤其是含20个氨基酸以上的纯多肽合成。
二聚体缩聚由L-Glu,D-Glu及消旋体(DL-Glu)反应生成α-甲基谷氨酸,后者凝聚成谷氨酸二聚体后,再和浓缩剂1-(3-二甲氨丙基)3-乙基碳亚二胺盐酸盐及1-羟苯基三吡咯(1-hy droxy benzotriazole)水合物在N,N-二甲基甲酰胺中发生凝聚,获得产率为44%~91%、相对分子质量为 5000~20000的聚谷氨酸甲基酯,经碱性水解变成γ-PGAo化学合成法难度很大,没有工业应用价值。
取取法早期,日本生产PGA大多采用提取法,用乙醇将纳豆(一种日本的传统食品)中的PGA 分离提取出来。
由于纳豆中所含的PGA浓度甚微,且有波动,因此,提取工艺十分复杂,生产成本甚高,同样难以大规模生产。
微生物的生物素合法自从1942年Bovar nick等发现芽孢杆菌属微生物能在培养基中蓄积γ- PGA以来,利用微生物生物聚合生成γ-PGA的研究十分活跃。
地衣杆菌发酵制备地衣杆菌ATCC9945a 是能够生产γ-PGA的细菌族的一种。
γ-聚谷氨酸的特性、生产及应用γ-聚谷氨酸[y-poly(g1utamic acid),γ-PGA],是由L-谷氨酸[L-Glu]、D-谷氨酸[D-Glu]通过γ-酰胺键结合形成的一种高分子氨基酸聚合物,其结构式如图1(略)。
γ-聚谷氨酸的合成方法较多,有传统的肽合成法、二聚体缩合法、纳豆提取法和微生物发酵法等。
由于化学合成法难度很大,没有工业应用价值,因此对于γ-聚谷氨酸合成方法的研究主要集中在微生物发酵领域。
而对于微生物生产γ-聚谷氨酸的研究,日本一直走在各国的前列,最初是利用纳豆菌对谷氨酸进行聚合而成的。
近年,我国、美国等国家也开展了微生物发酵法合成广聚谷氨酸的研究。
能发酵生产γ-聚谷氨酸的菌种较多,有地衣杆菌、枯草芽孢杆菌等菌种,而以枯草芽孢杆菌发酵生产γ-PGA的研究居多。
在我国,浙江大学、南京工业大学等高校已经开始对微生物发酵法生产广聚谷氨酸进行研究。
γ-聚谷氨酸作为一种高分子聚合物,具有一些独特的物理、化学和生物学特性,如生物可降解性、良好生物相容性、强保水性、对人体无毒害等特性。
这些特性决定了γ-聚谷氨酸在农业、食品、医药、环保、化妆品工业、烟草、皮革制造工业和植物种子保护等领域的广泛用途。
1 γ-聚谷氨酸的性质1.1吸水特性由于γ-PGA极易溶于水,因此其具有很好的吸水特性,王传海等对γ-PGA 的吸水性能进行了研究,结果表明,γ-PGA的最大自然吸水倍数可达到1108.4倍,比目前市售的聚丙烯酸盐类吸水树脂高1倍以上,对土壤水分的吸收倍数为30-80倍。
γ-PGA的水浸液在土壤中具有一定的保水力和较理想的释放效果,有明显的抗旱促苗效应。
在0.206mol/L浓度的PEG(6000)模拟渗透胁迫条件下,γ-PGA仍有较强的吸水和保水能力,可明显提高小麦和黑麦草的发芽率,用其直接拌种也能显著提高种子的发芽率。
γ-PGA的吸水性和保水性可使γ-PGA 被广泛应用于干旱地区保水以及沙漠绿化。
γ-聚谷氨酸的特性、生产及应用来源:中国化工信息网2009年1月21日γ-聚谷氨酸[y-poly(g1utamic acid),γ-PGA],是由L-谷氨酸[L-Glu]、D-谷氨酸[D-Glu]通过γ-酰胺键结合形成的一种高分子氨基酸聚合物,其结构式如图1(略)。
γ-聚谷氨酸的合成方法较多,有传统的肽合成法、二聚体缩合法、纳豆提取法和微生物发酵法等。
由于化学合成法难度很大,没有工业应用价值,因此对于γ-聚谷氨酸合成方法的研究主要集中在微生物发酵领域。
而对于微生物生产γ-聚谷氨酸的研究,日本一直走在各国的前列,最初是利用纳豆菌对谷氨酸进行聚合而成的。
近年,我国、美国等国家也开展了微生物发酵法合成广聚谷氨酸的研究。
能发酵生产γ-聚谷氨酸的菌种较多,有地衣杆菌、枯草芽孢杆菌等菌种,而以枯草芽孢杆菌发酵生产γ-PGA的研究居多。
在我国,浙江大学、南京工业大学等高校已经开始对微生物发酵法生产广聚谷氨酸进行研究。
γ-聚谷氨酸作为一种高分子聚合物,具有一些独特的物理、化学和生物学特性,如生物可降解性、良好生物相容性、强保水性、对人体无毒害等特性。
这些特性决定了γ-聚谷氨酸在农业、食品、医药、环保、化妆品工业、烟草、皮革制造工业和植物种子保护等领域的广泛用途。
1 γ-聚谷氨酸的性质 1.1吸水特性由于γ-PGA极易溶于水,因此其具有很好的吸水特性,王传海等对γ-PGA的吸水性能进行了研究,结果表明,γ-PGA的最大自然吸水倍数可达到1108.4倍,比目前市售的聚丙烯酸盐类吸水树脂高1倍以上,对土壤水分的吸收倍数为30-80倍。
γ-PGA的水浸液在土壤中具有一定的保水力和较理想的释放效果,有明显的抗旱促苗效应。
在0.206mol/L浓度的PEG(6000)模拟渗透胁迫条件下,γ-PGA仍有较强的吸水和保水能力,可明显提高小麦和黑麦草的发芽率,用其直接拌种也能显著提高种子的发芽率。
γ-PGA的吸水性和保水性可使γ-PGA被广泛应用于干旱地区保水以及沙漠绿化。
2010年第6期郑重等:微生物聚谷氨酸(Y—PGA)合成酶及合成机理的研究进展55酰一A;然后谷氨酰连接到1一PGA片段上,并脱去A,完成1.PGA片段的延伸。
但是,Ashiuchi等¨刮于2001年在一株Bacillussubtil函中发现,该菌在合成.y—PGA时,ATP水解形成的是ADP,而非AMP,而由于capB的表达蛋白CapB属于氨基连接酶¨“,他们提出了另一条合成机制。
首先ATP被ATP水解酶水解为ADP和Pi。
然后磷酸基团结合到小分子7一PGA的c.末端,之后D-或者L.谷氨酸的氨基端与C端磷酸化了的小分子1一PGA发生亲核攻击,生成Pi并延伸^y.PGA链。
但是该机制仍待证明,比如引物分子是否是小分子'一PGA,其反应位置具体在何处等。
3.3^y.PGA合成酶各组分的功能目前,仍然不知道Y—PGA合成酶如何催化合成上述一系列反应。
虽然已经得知^y—PGA合成的必需基因(即pgsBCAE和capBCAE),但是其合成的各个蛋白(PgsBCAE和CapBCAE)的具体功能,仍待考察。
在Y-PGA生物合成过程中,可以人为将其分为两个部分,^y.PGA的聚合与1.PGA的转运。
1997年,Eveland¨刊对CapB/PgsB蛋白进行序列分析,发现其拥有一段序列与ATP酶相似度很高,可能含有ATP酶的活性并含有ATP结合位点(图4)。
Urush.ibata嵋叫于2002年称,PgsB能够在试管中单独催化聚合1一PGA,但是PgsB的两种形式(33kD和44kD)必须同时存在,并且该酶很稳定,对变性剂有一定抵御能力。
但是Ashiuehi等旧1于2003年用Uru.shibata¨u的方法进行验证性试验,却发现没有1.PGA。
以上试验,说明PgsB是否具有ATP酶活性,仍待研究。
但是他们都报道了¨毛驯PgsB和魄sC的混合物具有ATP酶活性,说明PgsB和PgsC很可能形成~种复合物,进而催化1.PGA的聚合。
题目聚谷氨酸的生物合成及应用姓名学号曹明乐 **********专业年级化工1201聚谷氨酸的生物合成及应用摘要:本文主要介绍了绿色高分子材料γ-聚谷氨酸的在工业上的生物合成及其在生活与工农业方面的应用。
关键词:γ-聚谷氨酸;微生物合成;应用引言随着材料科学和聚合物化学等相关高分子材料的快速发展,在其重要性日益凸现的同时,人们发现了它的不足之处,即大部分人工合成的高分子材料在自然界难以降解,也就是人们愈发关注的“白色污染”。
为了解决这个问题,人们开展了各种研究工作,制成了各种可降解材料,聚合氨基酸系列产品的开发也由此崭露头角。
近年来日本从一种常用食品----纳豆的黏液中提取出的γ-聚谷氨酸,开始引起人们的重视。
其最早发现于1913年,是一些芽孢杆菌的荚膜结构的主要成分,是一种生物自然合成的聚酰胺原料。
由于γ-聚谷氨酸具有增稠、成膜、保湿、黏合、无毒、水溶及生物可降解等性能,适用于食品、化妆品、生物医学和环境保护等领域,特别是近年来随着对γ-聚谷氨酸的深入研究,γ-聚谷氨酸作为一种高分子生物制品,愈来愈显现出广阔的研究及应用前景。
1 γ-聚谷氨酸的生物合成1.1分子结构1.2制备方法γ-聚谷氨酸的制备方法主要有三种,即化学合成法、提取法和微生物发酵法。
较之前两种,微生物发酵法简单方便,容易控制和操作,并且γ-聚谷氨酸的产率高,适于工业大规模生产。
因此本文主要介绍微生物发酵法。
1.2.1γ-聚谷氨酸的制备微生物发酵法在近几年得到了快速的发展和广泛的应用,主要体现在菌种的多样化、发酵方式与底物的多样化和添加剂的多样化。
目前应用于γ-聚谷氨酸生产的菌种主要是枯草芽孢杆菌、地衣芽孢杆菌和纳豆芽孢杆菌。
随着分子生物学及基因工程的发展,菌种筛选不仅停留在从自然界中获得高产菌,基因工程和诱变育种也得到了广泛的使用。
比如采用紫外、亚硝基胍以及γ射线对其进行复合诱变获得一株γ-聚谷氨酸高产突变株,在基础培养基中产量约是出发菌株的 3.11 倍。