机械毕业设计英文外文翻译42变速器介绍 (2)
- 格式:docx
- 大小:22.18 KB
- 文档页数:7
毕业设计(论文)外文翻译AUTOMATIC TRANSMISSIONThe modern automatic transmission is by far,the most complicated mechanical component in today’s automobile.It is a type of transmission that sifts itself.A fluid coupling or torque converter is used instead of a manually operated clutch to connect the transmission to the engine.There are two basic types of automatic transmission based on whether the vehicle is rear wheel drive or front wheel drive.On a rear wheel drive car,the transmission is usually mounted to the back of the engine and is located under the hump in the center of the floorboard alongside the gas pedal position.A drive shaft connects the transmission to the final drive which is located in the rear axle and is used to send power to the rear wheels.Power flow on this system is simple and straight forward going from the engine,through the torque converter,then trough the transmission and drive shaft until it reaches the final drive where it is split and sent to the two rear transmission.On a front wheel drive car,the transmission is usually combined with the final drive to form what is called a transaxle.The engine on a front wheel drive car is usually mounted sideways in the car with the transaxle tucked under it on the side of the engine facing the rear of the car.Front axles are connected directly to the transaxle and provide power to front wheels.In this example,power floes from the engine,through the torque converter to a larger chain that sends the power through a 180 degree turn to the transmission that is alongside the engine.From there,the power is routed through the transmission to the final drive where it is split and sent to the two front wheels through the drive axles.There are a number of other arrangements including front drive vehicles where the engine is mounted front to back instead of sideways and there are other systems that drive all four wheels but the two systems described here are by far the most popular.A much less popular rear and is connected by a drive shaft to the torque converter which is still mounted on the engine.This system is found on the new Corvette and is used in order to balance the weight evenly between the front and rear wheels for improved performance and handling.Another rear drive system mounts everything,the engine,transmission and final drive in the rear.This rear engine arrangement is popular on the Porsche。
附录附录ADrive axle/differentialAll vehicles have some type of drive axle/differential assembly incorporated into the driveline. Whether it is front, rear or four wheel drive, differentials are necessary for the smooth application of engine power to the road.PowerflowThe drive axle must transmit power through a 90° angle. The flow of power in conventional front engine/rear wheel drive vehicles moves from the engine to the drive axle in approximately a straight line. However, at the drive axle, the power must be turned at right angles (from the line of the driveshaft) and directed to the drive wheels.This is accomplished by a pinion drive gear, which turns a circular ring gear. The ring gear is attached to a differential housing, containing a set of smaller gears that are splined to the inner end of each axle shaft. As the housing is rotated, the internal differential gears turn the axle shafts, which are also attached to the drive wheels.Fig 1 Drive axleRear-wheel driveRear-wheel-drive vehicles are mostly trucks, very large sedans and many sports car and coupe models. The typical rear wheel drive vehicle uses a front mounted engine and transmission assemblies with a driveshaft coupling the transmission to the rear drive axle. Drive in through the layout of the bridge, the bridge drive shaft arranged vertically in the same vertical plane, and not the drive axle shaft, respectively, in their own sub-actuator with a direct connection, but the actuator is located at the front or the back of the adjacent shaftof the two bridges is arranged in series. Vehicle before and after the two ends of the driving force of the drive axle, is the sub-actuator and the transmission through the middle of the bridge. The advantage is not onlya reduction of the number of drive shaft, and raise the driving axle of the common parts of each other, and to simplify the structure, reduces the volume and quality.Fig 2 Rear-wheel-drive axleSome vehicles do not follow this typical example. Such as the older Porsche or Volkswagen vehicles which were rear engine, rear drive. These vehicles use a rear mounted transaxle with halfshafts connected to the drive wheels. Also, some vehicles were produced with a front engine, rear transaxle setup with a driveshaft connecting the engine to the transaxle, and halfshafts linking the transaxle to the drive wheels.Differential operationIn order to remove the wheel around in the kinematics due to the lack of co-ordination about the wheel diameter arising from a different or the same rolling radius of wheel travel required, inter-wheel motor vehicles are equipped with about differential, the latter to ensure that the car driver Bridge on both sides of the wheel when in range with a trip to the characteristics of rotating at different speeds to meet the requirements of the vehicle kinematics.Fig 3 Principle of differentialThe accompanying illustration has been provided to help understand how this occurs.1.The drive pinion, which is turned by the driveshaft, turns the ring gear.2.The ring gear, which is attached to the differential case, turns the case.3.The pinion shaft, located in a bore in the differential case, is at right angles to the axle shafts and turns with the case.4.The differential pinion (drive) gears are mounted on the pinion shaft and rotate with the shaft .5.Differential side gears (driven gears) are meshed with the pinion gears and turn with the differential housing and ring gear as a unit.6.The side gears are splined to the inner ends of the axle shafts and rotate the shafts as the housing turns.7.When both wheels have equal traction, the pinion gears do not rotate on the pinion shaft, since the input force of the pinion gears is divided equally between the two side gears.8.When it is necessary to turn a corner, the differential gearing becomes effective and allows the axle shafts to rotate at different speeds .Open-wheel differential on each general use the same amount of torque. To determine the size of the wheel torque to bear two factors:equipment and friction. In dry conditions, when a lot of friction, the wheel bearing torque by engine size and gear restrictions are hours in the friction (such as driving on ice), is restricted to a maximum torque, so that vehicles will not spin round. So even if the car can produce more torque, but also need to have sufficient traction to transfer torque to the ground. If you increase the throttle after the wheels slip, it will only make the wheels spin faster.Fig 4 Conventional differential Limited-slip and locking differential operationFig 5 Limited-slip differentialDifferential settlement of a car in the uneven road surface and steeringwheel-driven speed at about the different requirements; but is followed by the existence of differential in the side car wheel skid can not be effective when the power transmission, that is, the wheel slip can not produce the driving force, rather than spin the wheel and does not have enough torque. Good non-slip differential settlement of the car wheels skid on the side of the power transmission when the issue, that is, locking differential, so that no longer serve a useful differential right and left sides of the wheel can be the same torque.Limited-slip and locking differential operation can be divided into two major categories:(1) mandatory locking type in ordinary differential locking enforcement agencies to increase, when the side of the wheel skid occurs, the driver can be electric, pneumatic or mechanical means to manipulate the locking body meshing sets of DIP Shell will be with the axle differential lock into one, thus the temporary loss of differential role. Relatively simple structure in this way, but it must be operated by the driver, and good roads to stop locking and restore the role of differential.(2) self-locking differential installed in the oil viscosity or friction clutch coupling, when the side of the wheel skid occurs when both sides of the axle speed difference there, coupling or clutch friction resistance on the automatic, to make certain the other side of the wheel drive torque and the car continued to travel. When there is no speed difference on both sides of the wheel, the frictional resistance disappeared, the role of automatic restoration of differentials. More complicated structure in this way, but do not require drivers to operate. Has been increasingly applied in the car. About non-slip differential, notonly used for the differential between the wheels, but also for all-wheel drive vehicle inter-axle differential/.Gear ratioThe drive axle of a vehicle is said to have a certain axle ratio. This number (usually a whole number and a decimal fraction) is actually a comparison of the number of gear teeth on the ring gear and the pinion gear. For example, a 4.11 rear means that theoretically, there are 4.11 teeth on the ring gear for each tooth on the pinion gear or, put another way, the driveshaft must turn 4.11 times to turn the wheels once. The role of the final drive is to reduce the speed from the drive shaft, thereby increasing the torque. Lord of the reduction ratio reducer, a driving force for car performance and fuel economy have a greater impact. In general, the more reduction ratio the greater the acceleration and climbing ability, and relatively poor fuel economy. However, if it is too large, it can not play the full power of the engine to achieve the proper speed. The main reduction ratio is more Smaller ,the speed is higher, fuel economy is better, but the acceleration and climbing ability will be poor.附录B驱动桥和差速器所有的汽车都装有不同类型的驱动桥和差速器来驱动汽车行驶。
Manual transmissionManual transmission is the most basic of transmission of a type, its effect is changing, and provide the transmission reverse and neutral. Usually, the pilot on the clutch pedal through manipulation and in any HuanDangGan can choose between gear. There are a few manual transmission, such as motorcycles, cars, some transmission shift transmission allows only sequence, the transmission is called sequence shift transmission. In recent years, along with the electronic control components durability, computerized automatic switching clutch automatic shift of transmission in Europe since the start line are more and more popular, car V olkswagen and ford are sold in the city on the double clutch provide updated generation, transmission from the start with two clutches, every shift automatically switch to another group of clutch engagement, need not as quick as traditional in manual have only one group separated again clutch engagement, shifting speed is faster, more small change gear vibration.Internal structure: shaftDecorate a form of transmission shaft type usually have two and three shaft type two kinds. Usually a rear wheel drive car will adopt three axis type, i.e. input shaft transmission, the output shaft and oart. Input shaft front associated with engine, borrow clutch output shaft back-end through the flange and universal transmission device connected.Input shaft and the output shaft in the same horizontal line, with their oart parallel arrangement. From the input shaft power through the gears to preach to the output shaft oart again. In many input and output shaft transmission shaft could engage in together, so to power, then the gear oart called directly. Direct files through uniaxial transmission, the ratio of 1:1, the highest transmission efficiency. Even in the transmission directly, cannot offer the input shaft, and the output shaft is decorated in a straight line to reduce work needed to inherit the torque transmission.Reversing deviceGenerally speaking, the reverse gear reducer than can alsosynchronizerIn synchronized meshing gears have type synchronizer Settings, can make two gear engagement in the first, before the speed reached synchronizer in all of this manual geartransmission of the car has been usedClutch,The clutch is can make two gear with a separate with mechanical parts, two gear transmission power can be combined, but when to speed, so will depend on the first two gear clutch, change gear ratio, the two gear transmission power, continue again Control:GearIn simple terms, the high speed, low speed ShengDang when the time cameEvery car high speedCompared with automatic transmissionThis refers to the automatic transmission of traditional hydraulic transmission, namely through hydraulic torque converter and planetary gear transmission power automatic transmission.Advantages:transmission efficiency than automatic gearboxes for high, of course, theoretically can compare economical.maintenance will be cheaper than transmission.If you want to higher cost, can begin from both the row of convenience and high power手动变速器手动变速器是汽车变速器中最基本的一种类型,其作用是改变传动比,并提供倒档和空档。
Continuously Variable Transmissions An Overview of CVT Research Past, Present, and FutureKevin R. Lang21W. 732May 3, 2000Table of Contents Introduction (1)CVT Theory & Design (2)Push Belt (2)Toroidal Traction Drive (2)Variable Diameter Elastomer Belt (3)Other CVT Varieties (3)Background & History (3)Inherent Advantages & Benefits (4)Challenges & Limitations (5)Research & Development (6)New CVT Research (7)Future Prospects for CVTs (9)CVTs & Hybrid Electric Vehicles (9)Conclusion (10)Works Cited (11)Figures and TablesFigure 1 – Metal Push Belt CVT (2)Figure 2 – Toroidal CVT (2)Figure 3 – Variable Diameter Belt CVT (3)Figure 4 – GM’s New CVT Design (6)Figure 5 – Audi CVT with link chain (6)Figure 6 – Cutaway of Audi CVT (7)Table 1 – Efficiency vs. Gear Ratio for Automatic Transmission (4)Table 2 – Efficiency of Various CVT Designs (4)AbstractAs the U.S. government enacts new regulations for automotive fuel economy and emissions, the continuously variable transmission, or CVT, continues to emerge as a key technology for improving the fuel efficiency of automobiles with internal combustion (IC) engines. CVTs use infinitely adjustable drive ratios instead of discrete gears to attain optimal engine performance. Since the engine always runs at the most efficient number of revolutions per minute for a given vehicle speed, CVT-equipped vehicles attain better gas mileage and acceleration than cars with traditional transmissions.CVTs are not new to the automotive world, but their torque capabilities and reliability have been limited in the past. New developments in gear reduction and manufacturing have led to ever-more-robust CVTs, which in turn allows them to be used in more diverse automotive applications. CVTs are also being developed in conjunction with hybrid electric vehicles. As CVT development continues, costs will be reduced further and performance will continue to increase, which in turn makes further development and application of CVT technology desirable.This paper evaluates the current state of CVTs and upcoming research and development, set in the context of past development and problems traditionally associated with CVTs. The underlying theories and mechanisms are also discussed.IntroductionAfter more than a century of research and development, the internal combustion (IC) engine is nearing both perfection and obsolescence: engineers continue to explore the outer limits of IC efficiency and performance, but advancements in fuel economy and emissions have effectively stalled. While many IC vehicles meet Low Emissions Vehicle standards, these will give way to new, stricter government regulations in the very near future. With limited room for improvement, automobile manufacturers have begun full-scale development of alternative power vehicles. Still, manufacturers are loath to scrap a century of development and billions or possibly even trillions of dollars in IC infrastructure, especially for technologies with no history of commercial success. Thus, the ideal interim solution is to further optimize the overall efficiency of IC vehicles.One potential solution to this fuel economy dilemma is the continuously variable transmission (CVT), an old idea that has only recently become a bastion of hope to automakers. CVTs could potentially allow IC vehicles to meet the first wave of new fuel regulations while development of hybrid electric and fuel cell vehicles continues. Rather than selecting one of four or five gears, a CVT constantly changes its gear ratio to optimize engine efficiency with a perfectly smooth torque-speed curve. This improves both gas mileage and acceleration compared to traditional transmissions.The fundamental theory behind CVTs has undeniable potential, but lax fuel regulations and booming sales in recent years have given manufacturers a sense of complacency: if consumers are buying millions of cars with conventional transmissions, why spend billions to develop and manufacture CVTs? Although CVTs have been used in automobiles for decades, limited torque capabilities and questionable reliability have inhibited their growth. Today, however, ongoing CVT research has led to ever-more-robust transmissions, and thus ever-more-diverse automotive applications. As CVT development continues, manufacturing costs will be further reduced and performance will continue to increase, which will in turn increase the demand for further development. This cycle of improvement will ultimately give CVTs a solid foundation in the world’s automotive infrastructure.Figure (1) – Metal Push Belt CVTFrom [3]Figure (2) – Toroidal CVTFrom [3]CVT Theory & DesignToday’s automobiles almost exclusively use either a conventional manual or automatictransmission with “multiple planetary gear sets that use integral clutches and bands to achieve discrete gear ratios” [3]. A typical automatic uses four or five such gears, while a manual normally employs five or six. The continuously variable transmission replaces discrete gear ratios with infinitely adjustable gearing through one of several basic CVT designs.Push BeltThis most common type of CVT usessegmented steel blocks stacked on a steel ribbon, asshown in Figure (1). This belt transmits powerbetween two conical pulleys, or sheaves, one fixedand one movable [3]. With a belt drive:In essence, a sensor reads the engine output and then electronically increases or decreases thedistance between pulleys, and thus the tension of the drive belt. The continuously changing distance between the pulleys—their ratio to one another—is analogous to shifting gears. [6]Push-belt CVTs were first developed decades ago, but new advances in belt design have recently drawn the attention of automakers worldwide.Toroidal Traction-DriveThese transmissions use the high shear strength of viscousfluids to transmit torque between an input torus and an outputtorus. As the movable torus slides linearly, the angle of a rollerchanges relative to shaft position, as seen in Figure (2). Thisresults in a change in gear ratio [3].Variable Diameter Elastomer BeltThis type of CVT, as represented in Figure (2), usesa flat, flexible belt mounted on movable supports. Thesesupports can change radius and thus gear ratio. However,the supports separate at high gear ratios to form adiscontinuous gear path, as seen in Figure (3). This can lead to the problems with creep and slip that have plagued CVTs for years [3]. This inherent flaw has directed research and development toward push belt CVTs.Other CVT VarietiesSeveral other types of CVTs have been developed over the course of automotive history, butthese have become less prominent than push belt and toroidal CVTs. A nutating traction drive uses a pivoting, conical shaft to change “gears” in a CVT. As the cones change angle, the inlet radius decreases while the outlet radius increases, or vice versa, resulting in an infinitely variable gear ratio [3]. A variable geometry CVT uses adjustable planetary gearsets to change gear ratios, but this is more akin to a flexible traditional transmission than a conventional CVT.Background & HistoryTo say that the continuously variable transmission (CVT) is nothing new would be a grossunderstatement: Leonardo da Vinci sketched his idea for a CVT in 1490 [1]. In automotive applications,CVTs have been around nearly as long as cars themselves, and certainly as long as conventionalautomatics. General Motors actually developed a fully toroidal CVT in the early 1930s and conducted extensive testing before eventually deciding to implement a conventional, stepped-gear automatic due to cost concerns. General Motors Research worked on CVTs again in the 1960s, but none ever sawproduction [2]. British manufacturer Austin used a CVT for several years in one of its smaller cars, but “it was dropped due to its high cost, poor reliability, and inadequate torque transmission” [2]. Many early CVTs used a simple rubber band and cone system, like the one developed by Dutch firm Daf in 1958 [1].Figure (3) – Variable Diameter Belt CVTFrom [3]However, the Daf CVT could only handle a 0.6 L engine, and problems with noise and rough starts hurt its reputation [1]. Uninspired by these early failures, automakers have largely avoided CVTs until very recently, especially in the United States.Inherent Advantages & BenefitsCertainly, the clunk of a shifting transmission is familiar to all drivers. By contrast, a continuously variable transmission is perfectly smooth—it naturally changes “gears” discreetly and minutely such that the driver or passenger feels only steady acceleration. In theory, a CVT would cause less engine fatigue and would be a more reliable transmission, as the harshness of shifts and discrete gears force the engine to run at a less-than-optimal speed.Moreover, CVTs offer improved efficiency and performance. Table (1) below shows the power transmission efficiency of a typical five-speed automatic, i.e. the percentage of engine power translated through the transmission. This yields an average efficiency of 86%, compared to a typical manual transmission with 97% efficiency [3]. By comparison, Table (2) below gives efficiency ranges for several CVT designs.Table (1) Efficiency vs. Gear Ratio for Automatic Transmission [3] Gear Efficiency Range160-85%260-90%385-95%490-95%585-94%Table (2) Efficiency of Various CVT Designs [3] CVT Mechanism Efficiency Range Rubber Belts90-95%Steel Belts90-97%Toroidal Traction70-94%Nutating Traction75-96%Variable Geometry85-93%These CVTs each offer improved efficiency over conventional automatic transmissions, and their efficiency depends less on driving habit than manual transmissions [3]. Moreover:Because the CVT allows an engine to run at this most efficient point virtuallyindependent of vehicle speed, a CVT equipped vehicle yields fuel economy benefitswhen compared to a conventional transmission (3)Testing by ZF Getriebe GmbH several years ago found that “the CVT uses at least 10% less fuel than a 4-speed automatic transmission” for U.S. Environmental Protection Agency city and highway cycles. Moreover, the CVT was more than one second faster in 0-60 mph acceleration tests [5]. The potential for fuel efficiency gains can also be seen in the CVT currently used in Honda’s Civic. A Civic with atraditional automatic averages 28/35 miles per gallon (mpg) city/highway, while the same car with a CVT gets 34/38 mpg city/highway [4]. Honda has used continuously variable transmissions in the Civic for several years, but these are 1.6 liter cars with limited torque capabilities. Ongoing research and development will inevitably expand the applicability of CVTs to a much broader range of engines and automobiles.Challenges & LimitationsCVT development has progressed slowly for a variety of reasons, but much of the delay in development can be attributed to a lack of demand: conventional manual and automatic transmissions have long offered sufficient performance and fuel economy. Thus, problems encountered in CVT development usually stopped said progress. “Designers have … unsuccessfully tried to develop [a CVT] that can match the torque capacity, efficiency, size, weight, and manufacturing cost of step-ratio transmissions” [6].One of the major complaints with previous CVTs has been slippage in the drive belt or rollers. This is caused by the lack of discrete gear teeth, which form a rigid mechanical connection between to gears; friction drives are inherently prone to slip, especially at high torque. With early CVTs of the 1950s and 1960s, engines equipped with CVTs would run at excessively high RPM trying to “catch up” to the slipping belt. This would occur any time the vehicle was accelerated from a stop at peak torque:“For compressive belts, in the process of transmitting torque, micro slip occurs betweenthe elements and the pulleys. This micro slip tends to increase sharply once thetransmitted torque exceeds a certain value …” [8]For many years, the simple solution to this problem has been to use CVTs only in cars with relativelylow-torque engines. Another solution is to employ a torque converter (such as those used in conventional automatics), but this reduces the CVT’s efficiency [2].Perhaps more than anything else, CVT development has been hindered by cost. Low volume and a lack of infrastructure have driven up manufacturing costs, which inevitably yield higher transmission prices. With increased development, most of these problems can be addressed simply by improvements in manufacturing techniques and materials processing. For example, Nissan’s Extroid “is derived from aFigure (4) – GM’s New CVT designFrom [6]Figure (5) – Audi CVT with link chainFrom [1]century-old concept, perfected by modern technology, metallurgy, chemistry, electronics, engineering,and precision manufacturing” [2].In addition, CVT control must be addressed. Even if a CVT can operate at the optimal gear ratio at any speed, how does it “know” what ratio to select? Manual transmissions have manual controls,where the driver shifts when he or she so desires; automatic transmissions have relatively simple shifting algorithms to accommodate between three and five gears. However, CVTs require far more complex algorithms to accommodate an infinite division of speeds and gear ratios.Research & DevelopmentWhile IC development has slowed in recent years asautomobile manufacturers devote more resources to hybrid electricvehicles (HEVs) and fuel cell vehicles (FEVs), CVT research anddevelopment is expanding quickly. Even U.S. automakers, who havelagged in CVT research until recently, are unveiling new designs:General Motors plans to implement metal-belt CVTs in some vehiclesby 2002 [6].The Japanese and Germans continue to lead the way in CVT development. Nissan has taken a dramatic step with its “Extroid” CVT, offered in the home-market Cedric and Gloria luxury sedans. This toroidal CVT costs more than a conventional belt-driven CVT, but Nissan expects the extra cost to be absorbed by the luxury cars’ prices [2]. The Extroid uses a high viscosity fluid to transmit power between the disks and rollers, rather than metal-to-metal contact. Coupled with a torque converter, this yields“exceptionally fast ratio changes”. Most importantly, though, theExtroid is available with a turbocharged version of Nissan’s 3.0 literV6 producing 285 lb-ft of torque; this is a new record for CVTtorque capacity [2].Audi’s new CVT offers both better fuel mileage than a conventional automatic and better acceleration than even aFigure (6) – Cutaway of Audi CVT From [1]manual transmission. Moreover, Audi claims it can offer the CVT at only a slight price increase [1]. This so-called “multitronic” CVT uses an all-steel link plate chain instead of a V-belt in order to handle up to 280 lb-ft of torque [1]. In addition, “Audi claims that the multitronic A6accelerates from 0-100 km/h (0-62 mph) 1.3 s quicker than a gearedautomatic transmission and is 0.1 s quicker over the same speed than anequivalent model with “optimum” use of a five speed manual gearbox”[1]. If costs were sufficiently reduced, a transmission such as this couldbe used in almost any automobile in the world.Many small cars have used CVTs in recent years, and many more will use them in the near future. Nissan, Honda, and Subaru currently use belt-drive CVTsdeveloped with Dutch company Van Doorne Transmissie (VDT) in some of their smaller cars [7]. Suzuki and Daihatsu are jointly developing CVTs with Japanese company Aichi Machine, using analuminum/plastic composite belt reinforced with Aramid fibers. Their CVT uses an auxiliary transmission for starts to avoid low-speed slip. After about 6 mph, the CVT engages and operates as it normally would[7]. “The auxiliary geartrain’s direct coupling ensures sufficiently brisk takeoff and initial acceleration”[7]. However, Aichi’s CVT can only handle 52 lb-ft of torque. This alone effectively negates itspotential for the U.S. market. Still, there are far more CVTs in production for 2000 than for 1999, and each major automobile show brings more announcements for new CVTs.New CVT ResearchAs recently as 1997, CVT research focused on the basic issues of drive belt design and power transmission. Now, as belts by VDT and other companies become sufficiently efficient, research focuses primarily on control and implementation of CVTs.Nissan Motor Co. has been a leader in CVT research since the 1970s. A recent study analyzing the slip characteristics of a metal belt CVT resulted in a simulation method for slip limits and torque capabilities of CVTs [8]. This has led to a dramatic improvement in drive belt technology, since CVTs can now be modeled and analyzed with computer simulations, resulting in faster development and moreefficient design. Nissan’s research on the torque limits of belt-drive CVTs has also led to the use of torque converters, which several companies have since implemented. The torque converter is designed to allow “creep,” the slow speed at which automatic transmission cars drive without driver-induced acceleration. The torque converter adds “improved creep capability during idling for improved driveability at very low speeds and easy launch on uphill grades” [9]. Nissan’s Extroid uses such a torque converter for “smooth starting, vibration suppression, and creep characteristics” [2].CVT control has recently come to the forefront of research; even a mechanically perfect CVT is worthless without an intelligent active control algorithm. Optimal CVT performance demands integrated control, such as the system developed by Nissan to “obtain the demanded drive torque with optimum fuel economy” [13]. The control system determines the necessary CVT ratio based on a target torque, vehicle speed, and desired fuel economy. Honda has also developed an integrated control algorithm for its CVTs, considering not only the engine’s thermal efficiency but also work loss from drivetrain accessories and the transmission itself [12]. Testing of Honda’s algorithm with a prototype vehicle resulted in a one percent fuel economy increase compared to a conventional algorithm. While not a dramatic increase, Honda claims that its algorithm is fundamentally sound, and thus will it become “one of the basic technologies for the next generation’s powerplant control” [12].Although CVTs are currently in production, many control issues still amount to a “tremendous number of trials and errors” [10]. One study focusing on numerical representation of power transmission showed that “both block tilting and pulley deformation meaningfully effected the pulley thrust ratio between the driving and the driven pulleys” [10]. Thus, the resultant model of CVT performance can be used in future applications for transmission optimization. As more studies are conducted, fundamental research such as this will become the legacy of CVT design, and research can become more specialized as CVTs become more refined.As CVTs move from research and development to assembly line, manufacturing research becomes more important. CVTs require several crucial, high-tolerance components in order to function efficiently; Honda studied one of these, the pulley piston, in 1998. Honda found that prototype pistons“experienced a drastic thickness reduction (32% at maximum) due to the conventional stretch forming method” [11]. A four-step forming process was developed to ensure “a greater and more uniform thickness increase” and thus greater efficiency and performance. Moreover, work-hardening during the forming process further increased the pulley piston’s strength [11].Size and weight of CVTs has long been a concern, since conventional automatics weigh far more than manual transmissions and CVTs outweigh automatics. Most cars equipped with automatic transmissions have a curb weight between 50 and 150 pounds heavier than the same cars with manual transmissions. To solve this problem, Audi is currently developing magnesium gearbox housings, a first for cars in its class. This results in nearly a 16 pound weight reduction over conventional automatics. [1]. Future Prospects for CVTsMuch of the existing literature is quick to admit that the automotive industry lacks a broad knowledge base regarding CVTs. Whereas conventional transmissions have been continuously refined and improved since the very start of the 20th century, CVT development is only just beginning. As infrastructure is built up along with said knowledge base, CVTs will become ever-more prominent in the automotive landscape. Even today’s CVTs, which represent first-generation designs at best, outperform conventional transmissions. Automakers who fail to develop CVTs now, while the field is still in its infancy, risk being left behind as CVT development and implementation continues its exponential growth. Moreover, CVTs are do not fall exclusively in the realm of IC engines.CVTs & Hybrid Electric VehiclesWhile CVTs will help to prolong the viability of internal combustion engines, CVTs themselves will certainly not fade if and when IC does. Several companies are currently studying implementation of CVTs with HEVs. Nissan recently developed an HEV with “fuel efficiency … more than double that of existing vehicles in the same class of driving performance” [14]. The electric motor avoids the low-speed/high torque problems often associated with CVTs, through an innovative double-motor system. At low speeds:A low-power traction motor is used as a substitute mechanism to accomplish thefunctions of launch and forward/reverse shift. This has made it possible to discontinueuse of a torque converter as the launch element and a planetary gearset and wet multiplateclutches as the shift mechanism. [14]Thus use of a CVT in a HEV is optimal: the electric portion of the power system avoids the low-speed problems of CVTs, while still retaining the fuel efficiency and power transmission benefits at high speeds.. Moreover, “the use of a CVT capable of handling high engine torque allows the system to be applied to more powerful vehicles” [14]. Obviously, automakers cannot develop individual transmissions for each car they sell; rather, a few robust, versatile CVTs must be able to handle a wide range of vehicles.Korean automaker Kia has proposed a rather novel approach to CVTs and their application to hybrids. Kia recently tested a system where “the CVT allows the engine to run at constant speed and the motor allows the engine to run at constant torque independent of driving conditions” [15]. Thus, both gasoline engine and electric motor always run at their optimal speeds, and the CVT adjusts as needed to accelerate the vehicle. Kia also presented a control system for this unified HEV/CVT combination that optimizes fuel efficiency for the new configuration.ConclusionToday, only a handful of cars worldwide make use of CVTs, but the applications and benefits of continuously variable transmissions can only increase based on today’s research and development. As automakers continue to develop CVTs, more and more vehicle lines will begin to use them. As development continues, fuel efficiency and performance benefits will inevitably increase; this will lead to increased sales of CVT-equipped vehicles. Increased sales will prompt further development and implementation, and the cycle will repeat ad infinitum. Moreover, increasing development will foster competition among manufacturers—automakers from Japan, Europe, and the U.S. are already either using or developing CVTs—which will in turn lower manufacturing costs. Any technology with inherent benefits will eventually reach fruition; the CVT has only just begun to blossom.Works Cited[1]S. Birch: “Audi takes CVT from 15th century to 21st century”. Automotive Engineering International,January 2000.[2]J. Yamaguchi: “Nissan’s Extroid CVT”. Automotive Engineering International, February 2000.[3]M.A. Kluger and D.R. Fussner: “An Overview of Current CVT Mechanisms, Forces andEfficiencies” SAE Paper No. 970688, in SAE SP-1241, Transmission and Driveline SystemsSymposium, pp. 81-88 SAE, 1997.[4]U.S. Environmental Protection Agency, /feg/findacar.htm.Accessed 4/15/00.[5]M. Boos and H. Mozer: “ECOTRONIC – The Continuously Variable ZF Transmission (CVT)” SAEPaper No. 970685, in SAE SP-1241, Transmission and Driveline Systems Symposium, pp. 61-67 SAE, 1997.[6]J.L. Broge: “GM Powertrain’s evolving transmissions”. Automotive Engineering International,November 1999.[7]J. Yamaguchi: “Two new CVTs for mini cars”. Automotive Engineering International, March 1999.[8]D. Kobayashi, Y. Mabuchi and Y. Katoh: “A Study on the Torque Capacity of a Metal Pushing V-Belt for CVTs” SAE Paper No. 980822, in SAE SP –1324, Transmission and Driveline Systems Symposium, pp. 31-39 SAE, 1998.[9]K. Abo, M. Kobayashi and M. Kurosawa: “Development of a Metal Belt Drive CVT Incorporating aTorque Converter for Use with 2-liter Class Engines” SAE Paper No. 980823, in SAE SP-1324, Transmission and Driveline Systems Symposium, pp. 41-48 SAE, 1998.[10]T. Miyazawa, T. Fujii, K. Nonaka and M. Takahashi: “Power Transmitting Mechanism of a DryHybrid V-Belt for a CVT – Advanced Numerical Model Considering Block Tilting and PulleyDeformation” SAE Paper No. 1999-01-0751, in SAE SP-1440, Transmission and Driveline Systems Symposium, pp. 143-153 SAE, 1999.[11]K. Ohya and H. Suzuki: “Development of CVT Pulley Piston Featuring Variable Thickness andWork-Hardening Technologies” SAE Paper No. 980826, in SAE SP-1324, Transmission andDriveline Systems Symposium, pp. 71-79 SAE, 1998.[12]S. Sakaguchi, E. Kimura and K. Yamamoto: “Development of an Engine-CVT Integrated ControlSystem” SAE Paper No. 1999-01-0754, in SAE SP-1440, Transmission and Driveline SystemsSymposium, pp. 171-179 SAE, 1999.[13]M. Yasuoka, M. Uchida, S. Katakura and T. Yoshino: “An Integrated Control Algorithm for anSI Engine and a CVT” SAE Paper No. 1999-01-0752, in SAE SP-1440, Transmission and Driveline Systems Symposium, pp. 155-160 SAE, 1999.[14]N. Hattori, S. Aoyama, S. Kitada and I. Matsuo: “Functional Design of a Motor Integrated CVTfor a Parallel HEV” SAE Paper No. 1999-01-0753, in SAE SP-1440, Transmission and Driveline Systems Symposium, pp. 161-167 SAE, 1999.[15] C. Kim, E. NamGoong, S. Lee, T. Kim and H. Kim: “Fuel Economy Optimization for ParallelHybrid Vehicles with CVT” SAE Paper No. 1999-01-1148, in SAE SP-1440, Transmission and Driveline Systems Symposium, pp. 337-343 SAE, 1999.。
〔副变速器〕变速杆range selector按钮控制finger-tip control半自动换档机械式变速器semi-automatic mechanical transmission 半自动液力变速器semiautomatic transmission包角scroll泵轮impeller边斜角〔进出口〕bias(entrance and exit)变矩比torque ratio变矩范围torque conversion range变矩系数torque ratio变容式液力变矩器variable capacity converter变速叉shifting fork (gear shift fork)变速齿轮transmission gear变速齿轮比〔变速比〕transmission gear ratio变速齿轮组change gear set变速杆stick shift(gear shift lever)变速轨〔拨叉道轨〕shift rail变速器transmission (gearbox)变速器输出轴transmission output shaft变速器输入轴transmission input shaft变速器中间轴transmission countershaft变速器轴的刚度rigidity of shaft变速器主动齿轮轴transmission drive gear shaft变速器主轴transmission main shaft变速踏板gear shift pedal操纵杆control lever槽导变速gate change长行星齿轮long planet gear常啮齿轮constant mesh gear常啮合齿轮传动constant mesh transmission常压式同步器constant pressure synchronizer超速档变速器over drive transmission超限换档overrun shift传动比gear ratio带主减速器的变速器final driving transmission单向离合器one-way clutch单向离合器换档freewheel shift导轮可反转的变矩器torque converter with reversal reactor 倒档reverse gear倒档中间齿轮reverse idler gear低速档bottom gear(low speed gear)第二档second gear第一档first gear电磁阀调压阀solenoid regulator valve电液式自动换档系统electronic -hydraulic automatic电子同步变速装置electronically synchronized transmission assembly 调压阀pressure -regulator valve调制压力modulated pressure定输入扭矩特性constant input torque performance定轴式液力变速器countershaft transmission定子stator动力换档power shift动力换档过程timing动力相似dynamic similarity动力助力换档变速器power assisted shift transmission短行星齿轮short planet gear多级变速器multi-speed transmission多中间轴变速器multi-countershaft transmission反拖特性coast performance方向盘式变速column shift (handle change)分动齿轮〔分动机构〕transfer gear分动箱〔分动器〕transfer case分动箱控制杆transfer gear shift fork分段式多档变速器sectional type multi-speed transmission分流式液力变速器split torque drive transmission辅助变速器auxiliary gear box副变速器splitter副轴counter shaft副轴齿轮counter shaft gear高速档top gear(high gear)固定轴式变速器fixed shaft transmission 惯性式同步器inertial type of synchronizer 过载系数overloading ratio后油泵gear pump (output pump )滑差slip滑动齿轮sliding gear滑动齿轮变速器sliding gear transmission 滑动齿轮传动sliding -gear transmission 缓冲压力compensator or trimmer pressure 换档shift换档点shift point换档定时property of automatic shift换档阀shift valve换档规律process of power shift换档机构gearshift换档循环shift schedule换档元件engaging element换档指令发生器shift pattern generator回油泵scavenge oil pump机械式变速器mechanical transmission 级stage几何相似geometry similarity继动阀relay valve。
附录外文文献Dual clutch transmissionFrom Wikipedia, the free encyclopediaA dual clutch transmission, commonly abbreviated to hoop DCT (sometimes informally referred to as a twin-clutch gearbox, double clutch transmission, or similar variations thereof), is a differing type of semi-automatic or automated manual automotive transmission. It utilises two separate clutches for odd and even gear sets. It can fundamentally be described as two separate manual transmissions (with their respective clutches) contained within one housing, and working as one unit. They are usually operated in a fully automatic mode, and many also have the ability to allow the driver to manually shift gears, albeit still carried out by the transmission's electro-hydraulics.This type of transmission was invented by Frenchman Adolphe Kégresse just prior to World War II but he never developed a working model. The first actual DCTs arrived from Porsche in-house development, for Porsche racing cars in the 1980s, when computers to control the transmission became compact enough: the Porsche Doppelkupplungsgetriebe (English: dual clutch gearbox) (PDK) used inthe Porsche 956 and 962 Le Mans race cars from 1983, and the Audi Sport Quattro S1 rally car.A dual clutch transmission eliminates the torque converter as used in conventional epicyclic-geared automatic transmissions. Instead, dual clutch transmissions that are currently on the market primarily use two oil-bathed wet multi-plate clutches, similar to the clutches used in most motorcycles, though dry clutch versions are also available. The first series production road car to be fitted with a DCT was the 2003 Volkswagen Golf Mk4 R32.As of 2009, the largest number of sales of DCTs in Western Europe are by various marques of the German Volkswagen Group, though this is anticipated to lessen as other transmission makers and vehicle manufacturers make DCTs available in series production automobiles. In 2010, on BMW Canada's website for the 3 Series Coupe, it is described both as a 7-speed double clutch transmission and as a 7-speed automatic transmission. It is actually a dual clutch semi-automatic.In DCTs where the two clutches are arranged concentrically, the larger outer clutch drives the odd numbered gears, whilst the smaller inner clutch drives the even numbered gears. Shifts can be accomplished without interrupting torque distribution to the driven roadwheels, by applying the engine's torque to one clutch at thesame time as it is being disconnected from the other clutch. Since alternate gear ratios can pre-select an odd gear on one gear shaft whilst the vehicle is being driven in an even gear, (and vice versa), DCTs are able to shift more quickly than other cars equipped with single-clutch automated-manual transmissions (AMTs), a.k.a. single-clutch semi-automatics. Also, with a DCT, shifts can be made more smoothly than with an AMT, making a DCT more suitable for conventional road cars.Characteristic of Dual clutch gearboxAdvantages:1. Compared with the traditional planetary gear type automatic gearbox fuel economy is more advantageous to the ascension can reduce fuel consumption about 15 percent2. During the shift, almost no damage3. When high-grade gear is already in preparation condition, rise against extremely fast, achieve astonishing 8 millisecond4. No matter what is running mode accelerator or condition, can reach 600 shift time (at least from the odd block to millisecond odd block, or even block drop from even when it took about block, for 900 milliseconds, for example from the first five block to 3 block)Faults:1. The electric control system and hydraulic system due to the existence of gearbox efficiency, double clutch than traditional manual gearbox still used to deliver big torque, especially the wet dual clutch gearbox is even more so2. Dual clutch gearbox cost is higher, the development of precision and complex double clutch, resulting in higher prices3. When need to switch gears in preparation condition, not shift time relatively long, in some cases even more than 1 second4. Dual clutch gearbox, compared with the traditional manual gearbox heavier5. Dual clutch the biggest transfer torque transmission on the low side, restrain the engine of space6. Early dual clutch gearbox reliability poor7. Gearbox lubricant need according to factories require change regularly, and replacement costs is not cheap附录外文文献翻译双离合变速器双离合变速器是当前发展最迅速的新型变速箱,它以传统手动变速箱为基础加入双和电控组件,获得优异的性能表现和良好的燃油经济性。
Transmission (mechanics)A transmission or gearbox provides speed and torque conversions from a rotating power source to another device using gear ratios. In British English the term transmission refers to the whole drive train, including gearbox, clutch, prop shaft (for rear-wheel drive), differential and final drive shafts. The most common use is in motor vehicles, where the transmission adapts the output of the internal combustion engine to the drive wheels. Such engines need to operate at a relatively high rotational speed, which is inappropriate for starting, stopping, and slower travel. The transmission reduces the higher engine speed to the slower wheel speed, increasing torque in the process. Transmissions are also used on pedal bicycles, fixed machines, and anywhere else rotational speed and torque needs to be adapted.Often, a transmission will have multiple gear ratios (or simply "gears"), with the ability to switch between them as speed varies. This switching may be done manually (by the operator), or automatically. Directional (forward and reverse) control may also be provided. Single-ratio transmissions alsoexist, which simply change the speed and torque (and sometimes direction) of motor output.In motor vehicle applications, the transmission will generally be connected to the crankshaft of the engine. The output of the transmission is transmitted via driveshaft to one or more differentials, which in turn drive the wheels. While a differential may also provide gear reduction, its primary purpose is to change the direction of rotation.Conventional gear/belt transmissions are not the only mechanism for speed/torque adaptation. Alternative mechanisms include torque converters and power transformation (e.g., diesel-electric transmission, hydraulic drive system, etc.). Hybrid configurations also exist.ExplanationEarly transmissions included the right-angle drives and other gearing in windmills, horse-powered devices, and steam engines, in support of pumping, milling, and hoisting.Most modern gearboxes are used to increase torque while reducing the speed of a prime mover output shaft (e.g. a motor crankshaft). This means that the output shaft of a gearbox willrotate at slower rate than the input shaft, and this reduction in speed will produce a mechanical advantage, causing an increase in torque. A gearbox can be setup to do the opposite and provide an increase in shaft speed with a reduction of torque. Some of the simplest gearboxes merely change the physical direction in which power is transmitted.Many typical automobile transmissions include the ability to select one of several different gear ratios. In this case, most of the gear ratios (often simply called "gears") are used to slow down the output speed of the engine and increase torque. However, the highest gears may be "overdrive" types that increase the output speed.UsesGearboxes have found use in a wide variety of different—often stationary—applications, such as wind turbines.Transmissions are also used in agricultural, industrial, construction, mining and automotive equipment. In addition to ordinary transmission equipped with gears, such equipment makes extensive use of the hydrostatic drive and electrical adjustable-speed drives.SimpleThe simplest transmissions, often called gearboxes to reflect their simplicity (although complex systems are also called gearboxes in the vernacular), provide gear reduction (or, more rarely, an increase in speed), sometimes in conjunction with a right-angle change in direction of the shaft (typically in helicopters, see picture). These are often used on PTO-powered agricultural equipment, since the axial PTO shaft is at odds with the usual need for the driven shaft, which is either vertical (as with rotary mowers), or horizontally extending from one side of the implement to another (as with manure spreaders, flail mowers, and forage wagons). More complex equipment, such as silage choppers and snowblowers, have drives with outputs in more than one direction.The gearbox in a wind turbine converts the slow, high-torque rotation of the turbine into much faster rotation of the electrical generator. These are much larger and more complicated than the PTO gearboxes in farm equipment. They weigh several tons and typically contain three stages to achieve an overall gear ratio from 40:1 to over 100:1, depending on the size of the turbine. (For aerodynamic and structuralreasons, larger turbines have to turn more slowly, but the generators all have to rotate at similar speeds of several thousand rpm.) The first stage of the gearbox is usually a planetary gear, for compactness, and to distribute the enormous torque of the turbine over more teeth of the low-speed shaft. Durability of these gearboxes has been a serious problem for a long time.Regardless of where they are used, these simple transmissions all share an important feature: the gear ratio cannot be changed during use. It is fixed at the time the transmission is constructed.For transmission types that overcome this issue, see Continuously Variable Transmission, also known as CVT.Multi-ratio systemsMany applications require the availability of multiple gear ratios. Often, this is to ease the starting and stopping of a mechanical system, though another important need is that of maintaining good fuel efficiency.Automotive basicsThe need for a transmission in an automobile is aconsequence of the characteristics of the internal combustion engine. Engines typically operate over a range of 600 to about 7000 revolutions per minute (though this varies, and is typically less for diesel engines), while the car's wheels rotate between 0 rpm and around 1800 rpm.Furthermore, the engine provides its highest torque outputs approximately in the middle of its range, while often the greatest torque is required when the vehicle is moving from rest or traveling slowly. Therefore, a system that transforms the engine's output so that it can supply high torque at low speeds, but also operate at highway speeds with the motor still operating within its limits, is required. Transmissions perform this transformation.Many transmissions and gears used in automotive and truck applications are contained in a cast iron case, though more frequently aluminium is used for lower weight especially in cars. There are usually three shafts: a mainshaft, a countershaft, and an idler shaft.The mainshaft extends outside the case in both directions: the input shaft towards the engine, and the output shaft towards the rear axle (on rear wheel drive cars- front wheel drives generally have the engine and transmission mountedtransversely, the differential being part of the transmission assembly.) The shaft is suspended by the main bearings, and is split towards the input end. At the point of the split, a pilot bearing holds the shafts together. The gears and clutches ride on the mainshaft, the gears being free to turn relative to the mainshaft except when engaged by the clutches.Types of automobile transmissions include manual, automatic or semi-automatic transmission.ManualMain article: Manual transmissionManual transmission come in two basic types:a simple but rugged sliding-mesh or unsynchronized / non-synchronous system, where straight-cut spur gear sets are spinning freely, and must be synchronized by the operator matching engine revs to road speed, to avoid noisy and damaging "gear clash", and the now common constant-mesh gearboxes which can include non-synchronised, or synchronized / synchromesh systems, where diagonal cut helical (and sometimes double-helical) gear sets are constantly "meshed" together, and a dog clutch is used for changing gears. On synchromesh boxes, friction cones or "synchro-rings" are used in addition to the dog clutch.The former type is commonly found in many forms of racing cars, older heavy-duty trucks, and some agricultural equipment.Manual transmissions are the most common type outside North America and Australia. They are cheaper, lighter, usually give better performance, and fuel efficiency (although the latest sophisticated automatic transmissions may yield results slightly better than the ones yielded by manual transmissions). It is customary for new drivers to learn, and be tested, on a car with a manual gear change. In Malaysia, Denmark and Poland all cars used for testing (and because of that, virtually all those used for instruction as well) have a manual transmission. In Japan, the Philippines, Germany, Italy, Israel, the Netherlands, Belgium, New Zealand, Austria, Bulgaria, the UK, Ireland, Sweden, Estonia, France, Spain, Switzerland, the Australian states of Victoria and Queensland, Finland and Lithuania, a test pass using an automatic car does not entitle the driver to use a manual car on the public road; a test with a manual car is required.Manual transmissions are much more common than automatic transmissions in Asia, Africa, South America and Europe.Most manual transmissions include both synchronized andunsynchronized gearing, such as a reverse gear and a low-speed "granny gear", both of which can only be shifted into when stopped. Shifting from granny gear to a low synchronized gear is generally available while in motion, while shifting out of reverse to any other gear typically requires the vehicle to be stopped.Non-synchronousMain article: Non-synchronous transmissionsThere are commercial applications engineered with designs taking into account that the gear shifting will be done by an experienced operator. They are a manual transmission, but are known as non-synchronized transmissions. Dependent on country of operation, many local, regional, and national laws govern the operation of these types of vehicles (see Commercial Driver's License). This class may include commercial, military, agricultural, or engineering vehicles. Some of these may use combinations of types for multi-purpose functions. An example would be a PTO, or power-take-off gear. The non-synchronous transmission type requires an understanding of gear range, torque, engine power, and multi-functional clutch and shifter functions. Also see Double-clutching, and Clutch-brakesections of the main article at non-synchronous transmissionsAutomaticMain article: Automatic transmissionEpicyclic gearing or planetary gearing as used in an automatic transmission.Most modern North American and Australian and many larger, high specification European and Japanese cars have an automatic transmission that will select an appropriate gear ratio without any operator intervention. They primarily use hydraulics to select gears, depending on pressure exerted by fluid within the transmission assembly. Rather than using a clutch to engage the transmission, a fluid flywheel, or torque converter is placed in between the engine and transmission. It is possible for the driver to control the number of gears in use or select reverse, though precise control of which gear is in use may or may not be possible.Automatic transmissions are easy to use. However, in the past, automatic transmissions of this type have had a number of problems; they were complex and expensive, sometimes had reliability problems (which sometimes caused more expenses in repair), have often been less fuel-efficient than their manualcounterparts (due to "slippage" in the torque converter), and their shift time was slower than a manual making them uncompetitive for racing. With the advancement of modern automatic transmissions this has changed.Attempts to improve the fuel efficiency of automatic transmissions include the use of torque converters which lock up beyond a certain speed, or in the higher gear ratios, eliminating power loss, and overdrive gears which automatically actuate above certain speeds; in older transmissions both technologies could sometimes become intrusive, when conditions are such that they repeatedly cut in and out as speed and such load factors as grade or wind vary slightly. Current computerized transmissions possess very complex programming to both maximize fuel efficiency and eliminate any intrusiveness.For certain applications, the slippage inherent in automatic transmissions can be advantageous; for instance, in drag racing, the automatic transmission allows the car to be stopped with the engine at a high rpm (the "stall speed") to allow for a very quick launch when the brakes are released; in fact, a common modification is to increase the stall speed of the transmission. This is even more advantageous forturbocharged engines, where the turbocharger needs to be kept spinning at high rpm by a large flow of exhaust in order to keep the boost pressure up and eliminate the turbo lag that occurs when the engine is idling and the throttle is suddenly openedSemi-automaticMain article: Semi-automatic transmissionThe creation of computer control also allowed for a sort of cross-breed transmission where the car handles manipulation of the clutch automatically, but the driver can still select the gear manually if desired. This is sometimes called a "clutchless manual," or "automated manual" transmission. Many of these transmissions allow the driver to give full control to the computer. They are generally designed using manual transmission "internals", and when used in passenger cars, have synchromesh operated helical constant mesh gear sets.Specific type of this transmission includes: Easytronic, and Geartronic.A "dual-clutch" transmission uses two sets of internals which are alternately used, each with its own clutch, so that only the clutches are used during the actual "gearchange".Specific type of this transmission includes: Direct-ShiftGearbox.There are also sequential transmissions which use the rotation of a drum to switch gears.Bicycle gearingMain articles: Bicycle gearing, Derailleur gears, and Hub gear Bicycles usually have a system for selecting different gear ratios. There are two main types: derailleur gears and hub gears. The derailleur type is the most common, and the most visible, using sprocket gears. Typically there are several gears available on the rear sprocket assembly, attached to the rear wheel. A few more sprockets are usually added to the front assembly as well. Multiplying the number of sprocket gears in front by the number to the rear gives the number of gear ratios, often called "speeds".Hub gears use epicyclic gearing and are enclosed within the axle of the rear wheel. Because of the small space, they typically offer fewer different speeds, although at least one has reached 14 gear ratios and Fallbrook Technologies manufactures a transmission with technically infinite ratios.Causes for failure of bicycle gearing include: worn teeth, damage caused by a faulty chain, damage due to thermal expansion,broken teeth due to excessive pedaling force, interference by foreign objects, and loss of lubrication due to negligence.Uncommon typesDual clutch transmissionMain article: Dual clutch transmissionThis arrangement is also sometimes known as a direct shift gearbox or powershift gearbox. It seeks to combine the advantages of a conventional manual shift with the qualities of a modern automatic transmission by providing different clutches for odd and even speed selector gears. When changing gear, the engine torque is transferred from one gear to the other continuously, so providing gentle, smooth gear changes without either losing power or jerking the vehicle. Gear selection may be manual, automatic (depending on throttle/speed sensors), or a 'sports' version combining both options.Continuously variableMain article: Continuously variable transmissionThe Continuously Variable Transmission (CVT) is a transmission in which the ratio of the rotational speeds of twoshafts, as the input shaft and output shaft of a vehicle or other machine, can be varied continuously within a given range, providing an infinite number of possible ratios.The continuously variable transmission (CVT) should not be confused with the Infinitely Variable Transmission (IVT) (See below).The other mechanical transmissions described above only allow a few different gear ratios to be selected, but this type of transmission essentially has an infinite number of ratios available within a finite range. The continuously variable transmission allows the relationship between the speed of the engine and the speed of the wheels to be selected within a continuous range. This can provide even better fuel economy if the engine is constantly running at a single speed. The transmission is in theory capable of a better user experience, without the rise and fall in speed of an engine, and the jerk felt when poorly changing gears.Infinitely variableThe IVT is a specific type of CVT that has an infinite range of input/output ratios in addition to its infinite number of possible ratios; this qualification for the IVT implies thatits range of ratios includes a zero output/input ratio that can be continuously approached from a defined 'higher' ratio. A zero output implies an infinite input, which can be continuously approached from a given finite input value with an IVT. [Note: remember that so-called 'low' gears are a reference to low ratios of output/input, which have high input/output ratios that are taken to the extreme with IVT's, resulting in a 'neutral', or non-driving 'low' gear limit.] Most (if not all) IVT's result from the combination of a CVT with an epicyclic gear system (which is also known as a planetary gear system) that facilitates the subtraction of one speed from another speed within the set of input and planetary gear rotations. This subtraction only needs to result in a continuous range of values that includes a zero output; the maximum output/input ratio can be arbitrarily chosen from infinite practical possibilities through selection of extraneous input or output gear, pulley or sprocket sizes without affecting the zero output or the continuity of the whole system. Importantly, the IVT is distinguished as being 'infinite' in its ratio of high gear to low gear within its range; high gear is infinite times higher than low gear. The IVT is always engaged, even during its zero output adjustment.The term 'infinitely variable transmission' does not imply reverse direction, disengagement, automatic operation, or any other quality except ratio selectability within a continuous range of input/output ratios from a defined minimum to an undefined, 'infinite' maximum. This means continuous range from a defined output/input to zero output/input ratio.Electric variableThe Electric Variable Transmission (EVT) is a transmission that achieves CVT action and in addition can use separate power inputs to produce one output. An EVT usually is executed in design with an epicyclic differential gear system (which is also known as a planetary gear system). The epicyclic differential gearing performs a "power-split" function, directly connecting a portion of the mechanical power directly through the transmission and splitting off a portion for subsequent conversion to electrical power via a motor/generator. Hence, the EVT is called a Power Split Transmission (PST) by some.The directly connected portion of the power travelling through the EVT is referred to as the "mechanical path". The remaining power travels down the EVT's "electrical path". Thatpower may be recombined at the output of the transmission or stored for later, more opportune use via a second motor/generator (and energy storage device) connected to the transmission output.The pair of motor/generators forms an Electric Transmission in its own right, but at a lower capacity, than the EVT it is contained within. Generally the Electric Transmission capacity within the EVT is a quarter to a half of the capacity of the EVT. Good reasons to use an EVT instead of an equivalently-sized Electrical transmission is that the mechanical path of the EVT is more compact and efficient than the electrical path.The EVT is the essential method for transmitting power in some hybrid vehicles, enabling an Internal Combustion Engine (ICE) to be used in conjunction with motor/generators for vehicle propulsion, and having the ability to control the portion of the mechanical power used directly for propelling the vehicle and the portion of mechanical power that is converted to electric power and recombined to drive the vehicle.The EVT and power sources are controlled to provide a balance between the power sources that increases vehicle fueleconomy while providing advantageous performance when needed. The EVT may also be used to provide electrically generated power to charge large storage batteries for subsequent electric motor propulsion as needed, or to convert vehicle kinetic energy to electricity through 'regenerative braking' during deceleration. Various configurations of power generation, usage and balance can be implemented with a EVT, enabling great flexibility in propelling hybrid vehicles.The Toyota single mode hybrid and General Motor 2 Mode hybrid are production systems that use EVTs. The Toyota system is in the Prius, Highlander, and Lexus RX400h and GS450h models. The GM system is the Allison Bus hybrid powertrains and are in the Tahoe and Yukon models. The Toyota system uses one power-split epicyclic differential gearing system over all driving conditions and is sized with an electrical path rated at approximately half the capacity of the EVT. The GM system uses two different EVT ranges: one designed for lower speeds with greater mechanical advantage, and one designed for higher speeds, and the electrical path is rated at approximately a quarter of the capacity of the EVT. Other arrangements are possible and applications of EVT's are growing rapidly in number and variety.EVT's are capable of continuously modulating output/input speed ratios like mechanical CVT's, but offer the distinct difference and benefit of being able to also apportion power from two different sources to one output.HydrostaticSee also Continuously variable transmission > Hydrostatic CVTs Hydrostatic transmissions transmit all power hydraulically, using the components of hydraulic machinery. Hydrostatic transmissions do not make use of the hydrodynamic forces of the fluid flow. There is no solid coupling of the input and output. The transmission input drive is a central hydraulic pump and final drive unit(s) is/are a hydraulic motor, or hydraulic cylinder (see:swashplate. Both components can be placed physically far apart on the machine, being connected only by flexible hoses. Hydrostatic drive systems are used on excavators, lawn tractors, forklifts, winch drive systems, heavy lift equipment, agricultural machinery, etc. An arrangement for motor-vehicle transmission was probably used on the Ferguson F-1 P99 racing car in about 1961.The Human Friendly Transmission of the Honda DN-01 is hydrostatic.HydrodynamicIf the hydraulic pump and/or hydraulic motor make use of the hydrodynamic effects of the fluid flow, i.e. pressure due to a change in the fluid's momentum as it flows through vanes in a turbine. The pump and motor usually consist of rotating vanes without seals and are typically placed in close proximity. The transmission ratio can be made to vary by means of additional rotating vanes, an effect similar to varying the pitch of an airplane propeller.The torque converter in most automotive automatic transmissions is, in itself, a hydrodynamic transmission.It was possible to drive the Dynaflow transmission without shifting the mechanical gears.Hydrodynamic transmissions are used in many passenger rail vehicles. In this application the advantage of smooth power delivery may outweigh the reduced efficiency caused by turbulence energy losses in the fluid.ElectricElectric transmissions convert the mechanical power of the engine(s) to electricity with electric generators and convertit back to mechanical power with electric motors. Electrical or electronic adjustable-speed drive control systems are used to control the speed and torque of the motors. If the generators are driven by turbines, such arrangements are called turbo-electric. Likewise installations powered by diesel-engines are called diesel-electric. Diesel-electric arrangements are used on many railway locomotives, ships and large mining trucks.。
英文原文Stepless speed technologyStepless spee d tee 加ology USES belt and the work of the Lord diameters driven pulley, cooperated with the power to deliver, can realize the TRANSMISSION ratio of the continuous change, and get the TRANSMISSION and engine condition the best match between. Common step-l ess transmission have hydraulic mech 皿cal step-less transmission and belt type step-less transmission, the current domestic market of the vehicles already more and more. Editor this section step-less transmission and the origin of the automatic transmissionAutomatic transmission i s easy to operate, reduce fatigue driving, born of the gear drive system, the control method, it can be divided into the hydraulic controlled hydraulic and electric automatic transmission hydraulic automatic transmission; According to the change of the transmission way and can be divided into have levels o f automatic transmission and no levels of automatic transmission. Ther efore, step-less transmission is actually a kind of automatic transmission, but it than common automatic transmission is much more complex, more advanced tec 血ol ogi es. Step-less transmission and common hydraulic automatic transmission of the biggest differences is on the structure, the latter is by hydraulic control gear 如ve system structure, still have the gears, it can be realized in betwe en the two block is continuously variable transmission, and is two groups plate and a belt speed o f than traditional automatic transmission, simple structure, smaller. In addition, it is free to change gear ratios, so as to realize the full speed stepless speed change, make more smoothly, without the traditional transmission shift at the'"'feeling. Editor this section step-l ess transmission classificationTo realize stepless speed, 如ving mode can be adopted according to the liquid transmission, power transmission and mech皿cal drive three ways.Liquid transmissionLiquid transmission is divided into two kinds: one kind is hydraulic, mainly is composed by the pump and motor or the valve and pump v缸able speed of transmission device, apply to small and medium-sized power transmission. Another kind is hydraulic type, adopts hydraulic coupler or hydraulic torque of variable speed drive, used in high power(kw)To hundreds of thousands of Th e main characteristics of liquid transmission is: spee d range, can absorb the impact and big to prevent transmission efficiency high, overload, long life, easy to realize automation: manufacturing precision demand is high, the price is more expensive, output characteristics for constant torque, sliding rate is bigger, running vulnerable to leak.Po wer transmissionPo wer transmission basically is divided into three categories: one kind is electromagnetic sliding type, it is in the asynchronous motor installed in electromagnetic clutch, sliding by changing i ts exciter current to speed, this belongs to a kind of relatively bac kwardspeed adjustment way. T hecharacteristics of simple structure, low cost, convenient operation and maintenance, sliding, low efficiency, biggest fever, not suitable for long-term serious load operation, the general used only for small power transmission. Second is the dc motor type, changes in the magnetic flux or change the armature voltage realize the speed. Its characteristic is speed range, high precision, large and comp l ex, high cost but equipment, maintenance difficu l ties, are used for medium power range (dozens to hundreds of kw), has gradually been ac motor type instead. T hree kinds of ac motor type is, through the change pole, pressure control and frequency conversion for the speed. The most practical application for variable frequency speed regulation, namely deserve using a horns, and then get l uffing power drive motor variable speed. Its characteristic is the speed performance is good, range, high efficiency, it can automatic control, small volume, it is suitable for a wide range of power: mechanical properties in single reducing speed constant torque, low efficiency and low speed running smooth enough, the price is higher, maintenance should be professional. In recent years, frequency converter as an advanced, excellent variab l e speed device rapid development of machinery, step-less transmission produced a certain impactMechanical transmissionThe main characteristic of the mechanical transmission is stable, rotate speed sliding rate, reliable, and has small constant power mechanical properties, the transmission efficiency is high, and simp l e structure, convenient maintenance, the price is relatively cheap; B ut parts processing and lubrication to demand higher bearing capacity, low resistance, resistance to 皿pact overload and poor, so general suitable for medium and small power transmission.1, MTThe manual transmission(MT: Manua l Transmission) gearset, because the number of teeth of each gear is fixed, each gear ratio is a fixed value (that is, the so-called "level"). For example, a block ratio of 3.455, the second gear is 2.056 to the five-speed 0.85, these figures are multiplied by the main reduction ratio is the total transmission ratio of the power train, 5-speed transmission 5 value (ie 5 level), so it is a step-variable transmission. The manual transmission is the most common transmission, composed of relatively AT and CVT, its structure is simple, the main axis of the input shaft, output shaft and the intermediate shaft, the shaft bearings, each gear, the synchronizer, the shift operating mechanism. Manual transmission failure rate is relatively low, the use of lower cost.2,ATAutomatic transmission (A T: Automatic Transmission) automatic upshifts and downs皿s lifting gear control, computer based primarily on speed and load (throttle pedal stroke), but also refer to a variety of signal transmission oil temperature, shift mode. The same point of the AT and MT both step-variable transmission, only that the A T has a continuous speed ratio variation in the respective gear, and the speed according to the vehicle speed automatically to achieve a gear change for hand can be eliminated block cars "frustrated" variable block feeling. (1) AT structure: Compared with manual wave, hydraulic automatic transmission (AT) are very different in structure and use.Manually waves mainly composed of gears and shafts, v 印able speed torque generated by different gear combinations; AT by the torque converter, a planetary gear and the hydraulic steering system, to achieve a v印able speed hydraulic transmission and gear combination moment. Wherein the torque converter is the most characteristic parts of the A T, it is composed by the pump impeller, turbine and guide wheel member, directly enter the engine power transmitting torque and clutch effect. (2) A T advantages and disadvantages: AT without a clutch shift, gear changes less stable connection, so the operation is easy, both to car, bring comfort to the car. B ut the disadvantage is also one of the speed changes in response to slow, there is no manual transmission is sensitive, so many play car owners like to open a manual transmission car; Second, the economic cost of oil, the transmission efficiency is lo w variable torque range is limited, in recent years, the introduction of electronic control tec 血ology improve 伽s problem; institutional comp l ex, difficult to repair. High-Speed circula血g within the to rque converter hydraulic oil 邓11 generate heat, so as to use the specified high temper ature hydraulic oil. In addition, if the car can not be started due to battery power shortage, you can not start with a truck or trailer bed. Hauling fault car, pay attention to the drive wheels off the ground to protect the Automatic gear from damage. (3) AMT AMT transformation, major changes in the mechanical transmission (manual transmission) based on the original manual shift control section. In the case o f the overall transmission structure constant through the installation o f computer-contro ll ed robotic systems to achieve the automation of the shift. AMT is actually a robo t system to complete the two movements opera 血g the clutch and the gear selector. AMT is the production of manual wave based on the transformation, production inheritance, investment responsibility with lower production plant. AMT's core tec 加ology is computer-controlled, electronic tec 血ology and quality 呻directly detennine the quality of the performance and operation of the AMT3, the CVTThe continuously variable transmission (CVT: Continuous Variable T ransmission) with a step-type main difference in that: it is the speed ratio is not interrupted, but a series o f 山screte values, for example, has been changing from 3.455 to 0.85. CV T structure is simpler than conventional automatic transmission, smaller, neither many manual transmission gear pair, there is no automatic transmission complex planetary gear set, i t depends mainly on the main driven w heel and metal band or wheel dial to achieve the speed ratio stepless change. Its principle is as several sets of gear sizes watched under the control of an aggregate with a common gearbox, and a d 市erent speed ratio, like a bic ycle pedal driven by the size of the wheel and the chain wheels to rotate at different speeds. Also changes due to the different strength of the thrust generated by each group gear sizes, resul血g in the transmission output speed, in order to achieve the brad ycardia rotation, regardless of grade. CVT be l ts and variable-width ratchet power transmission, i.e., w hen the ratchet wheel changes the groove width of the elbow, corresponding to the shift change the contact radius of the drive wheel and the driven w heel on the driving belt, a bel t ships with a rubber band, metal band and meta l chain. CVT is truly stepless, i t is light we igh t, small size, fewer parts, and AT has a highoperating efficiency, lower fue l consumption. CV T disadvantage is obvious, is the transmission belt can be easily damaged, can not withstand a greater load, low power and low torque vehicles can only be restricte d to about 1 liter o扭splacement,so the share of the automatic transmiss i on 4. A代er the major car companies vigorously research in recent years, the situation has improved CVT will be the d evelopment direction of the automatic transmission. D omestic vehicle models equ i pped w ith the CV T, such as the Nissan T eana, Sylphy, X-T rail full range of models, FAW-Volkswagen, Audi, the Guangqi Honda F it, South F iat Siena, P a B aclofen, Chery Cowin The main structure and working principle of the CVT (1) stee l belt CV TThe CVT is a combination of pulleys and a steel strip, power is transmitted to rep l ace the conventional gear device. The main components of the basic member of the inclu 血g capstan group, a driven wheel set, a metal band, and a hydraulic pump, etc.. Meta l band by the two beams of metal rings and hundreds of sheet metal. Capstan group and a driven wheel set by the movable disc and the fixed rent, close to one side of the pulley and the cylinder can slide on the shaft, the other side is fixed. Movable plate and the fixed plate cone structure, the cone forming a V-groove to engage with the V-shaped metal transmission belt. The power output of the engine output shaft is first passed to the capstan of the CVT, and then is transmitted to the driven wheel through aV-type power transmission belt, and finally via the gear unit, the differential is transmitted to the wheels to drive the car. Through the capstan and the driven whee l when the movable disc for axial movement to change the working radius of the capstan and the tapered surface of the driven pulley with a V-type drive belt engaging, thereby changing the transmission ratio. T he amount of axial movement of the movable p l aten is needed by the driver through the control system to adjust the capstan, the follower wheel cylinder of the hydraulic pump pressure to achieve. Continuously adjusted in order to achieve a continuously variab l e transmission can be achieved due to the working radius of drive pulley and driven pulley. In the the CV T hydraulic system, the role of the slave cylinder to control the tension of the metal band, in order to ensure the efficient and reliable delivery of power from the engine. Active cylinder to control the position of the driving bevel wheel moves axially along the V-groove move in the the capstan group metal band, due to the constant length of the metal strip, a group of the driven wheel in the opposite direction on the metal strip along the V-groove changes. Change the radius of gyration of the metal strip in the the capstan group and a driven wheel set on the continuous variation of the speed ratio. When the car is started, the small working radius of the driving wheel, the transmission can get a l arger gear ratio, thus ensuring the drive axle to have enough torque to ensure the car has a higher acceleration As the speed increases, the capstan working radius is gradually reduced, the working radius of the driven wheel increases according l y, and the CV T transmission is decreased so that the car can travel at higher speeds.(2) wheel rotary C VTCan be used to deliver more power and torque applicable in a larger displacement automobiles加s CVT combination of turntable and roller transfer drive torque and change the transmission ratio. I t is changed by moving the power roller transmission ratio, input clial to the power roller force is applied in a timely manner, so that CV T gear ratio change of the reaction faster than the strip-type CV T, in order to achieve the 如ver's accelerator input of the transmission ratio changes linearly. In addition, similar to the strip-drive CV T, the continuous change of the transmiss i on ratio so that the driver can enjoy seamless smooth shifting, without any shi:ftshock.E ngine power trans皿tted to an input dial input 知al to the rotational movement of the trans皿tting power to the wheel, and then passed through the rollers to the output of the turntable. B y continuously changing the inc 血ation ang l e of the power roller, CV T performs a smooth and continuous gear ratio changes. The size of the contact circle between the points of contact between the input wheel and the power roller circle size and the output of the 如al and the power roller is changed accor 恤g to the change of the inclination ang l e of the power roller. The size ratio of the circle correspon 血g to the input the turntable and output rotational speed ratio of the turntable, the rotational speed ratio is equal to the drive ratio. When the the output dial circle is l arger, the rotation of the output clial slower than the input dial, which is equivalent to the traclitional low-endof the trans 皿ssion. Conversely, output 中al circle small, the rotation of the output 山al faster than the input clial, which is equivalent to the high-end of the traditional transmission.The momentum wheel is supported on the truimion connected above and below the assembly and the hydraulic servo piston can move up and down.P ower roller, this configuration allows each roller rotating around the trunnion.When the power roller axis through the wheel center, does not produce the force of the tilt of the wheel. Accordingly, since the wheel tilt remains unchanged, it is no change in the trans血ssion ratio.Since the high-speed rotation of the turntable, as long as the wheel moves up or down. 0.1mm to 1.0mm, can be tilted. This immediate response to a gear ratio change instruction, the EXT R O ID CVT cause p血cularly rapid transmission ratio change.The inclination angle of the power roller hydraulic mechanism for manipulation. D espite the transmission ratio is changed by tilting the power roller, but not directly to the whee l afterburner. Instead, the force generated using the turntable so that the inclined roller when the vertical movement of the wheel from the center axis, the turntable on the roller ti l t. As the high-speed rotary dial, 如1 the forces generated by the wheel movement and force the hours imme小ate l y tilt, so we can quickly feel the transmission ratio changes significantly. When the driver's accelerator input, and the linear acceleration and deceleration.中文译文无级变速器无级变速技术,它采用传动带和工作直径可变的主、从动轮相配合来传递动力,可以实现传动比的连续改变,从而得到传动系与发动机工况的最佳匹配。
本科毕业设计(论文)英文资料翻译*****指导教师:孙飞豹(副教授)学科、专业:车辆工程沈阳理工大学应用技术学院2011年12月20日transmission used in automobilesA standard transmission or manual transmission is the traditional type of transmission used in automobiles. The manual or standard transmission consists of a series of gears, synchros, roller bearings, shafts and gear selectors. The main clutch assembly is used to engage and disengage the engine from the transmission. Heliacal cut gears are used to select the ratio desired the sector fork move gears from one to another by using the gearshift knob. Synchros are used to slow the gear to a stop before it is engaged to avoid gear grinding, the counter shaft hold the gears in place and against the main input and output shaft. A stick shift transmission has no torque converter so there is no need for a transmission cooler. A stick shift transmission needs a simple fluid change for proper service. (there is no transmission filter in a stick shift transmission).Transmission ShifterMost manual transmissions have one reverse gear and four to six forward gears. Some cars also have eight forward gears while thirteen to twenty-four gears are present in semi trucks. To differentiate among the available standard transmissions, they are addressed by the number of forward gears. For example, if the standard transmission has five gears, it will be referred to as 5-speed standard transmission or 5-speed standard.Typical Standard Transmission ConfigurationInside the transmission shafts contain all forward and reverse gears. Most transmissions contain three shafts: input shaft, output shaft and counter or lay shaft. Other than standard transmission, there are other transmissions like continuously variable transmission, automatic transmission and semi-automatic transmission. In the manual transmission, a pair of gears inside the transmission selects the gear ratios. Whereas, in an automatic transmission, combination of brake bands and clutch packs control the planetary gear which selects the gear ratio.If there is a provision to select a gear ratio manually in automatic transmissions, the system is called a semi-automatic transmission. The driver can select from any of the gears at any pointof time. In some automobiles like racing cars and motorcycles that have standard transmissions, the driver can select the preceding or the following gear ratio with no clutch operation needed. This type of standard transmission is known as sequential transmission. In this transmission the clutch is still used for initial take off.Clutch and Flywheel AssemblyThe main clutch plays the role of a coupling device which separates the transmission and the engine. If the clutch is absent and the car comes to a stop the engine will stall. In automobiles, the clutch can be operated with the help of a pedal located on the floor of the vehicle. In an automatic transmission instead of a clutch, a torque converter is used to separate the transmission and engine.Typical Stick Shift PatternsA desired gear can be selected by a lever which is usually located on the floor in between the driver and passenger seat. This selector lever is called the gear lever or gear selector or gear shift or shifter. This gear stick can be made to move in right, left, forward and backward direction. When the gear is placed on the N position or neutral position, no gear will be selected. To move the car in the backward direction, the R gear or reverse gear should be selected.Standard transmissions are more efficient and less expensive to produce than automatic transmissions. A Standard transmission is about 15% more efficient compared to an automatic transmission. Standard transmissions are generally stronger than automatic transmissions and off road vehicles take advantage of a direct gear selection so they can withstand rough conditions. Less active cooling is also required in manual transmission system because less power is wasted.●Popular Problem ChecksCar will not go into gearClutch disc is broken completelyInternal transmission damageFailed clutch master cylinderSeized clutch slave cylinderBroken clutch fork pivotBroken clutch cableCar goes into gear but it fades out or is slippingClutch is worn out and needs replacementClutch is oil soaked from a external engine oil leakCar makes grinding noise while operating or shifting gearsOne of the roller or thrust bearings has failedThe gear synchro is worn out not forcing the gear stop before it is engaged causing a grinding gear.A counter or main shaft bearing has failed causing misalignment of the gears●Troubleshooting Noise and ProblemsIf the vehicle is running and a whirring sound is heard, then it goes away when the clutch is depressed, the transmission input bearing has failed.If the transmission is quiet in neutral but when you depress the clutch a squeaking noise is observed, a clutch throw out bearing has failed.Tips:Never let little noises go unattended; a small noise can cause a large noise and transmission operation failure. Never overload a vehicle or tow beyond the capacity this can cause premature transmission failure.汽车变速器汽车传统变速器是那种标准的手动变速器。
毕业设计(论文)外文文献翻译文献、资料中文题目:汽车变速器设计文献、资料英文题目:Transmission design文献、资料来源:文献、资料发表(出版)日期:院(部):专业:机械设计制造及其自动化班级:姓名:学号:指导教师:翻译日期: 2017.02.14毕业论文(设计)外文文献翻译汽车变速器设计我们知道,汽车发动机在一定的转速下能够达到最好的状态,此时发出的功率比较大,燃油经济性也比较好。
因此,我们希望发动机总是在最好的状态下工作。
但是,汽车在使用的时候需要有不同的速度,这样就产生了矛盾。
这个矛盾要通过变速器来解决。
汽车变速器的作用用一句话概括,就叫做变速变扭,即增速减扭或减速增扭。
为什么减速可以增扭,而增速又要减扭矩呢?设发动机输出的功率不变,功率可以表示为N=wT,其中w是转动的角速度,T是扭矩。
当N固定的时候,w与T是成反比的。
所以增速必减扭矩,减速必增扭矩。
汽车变速器齿轮传动就根据变速变扭的原理,分成各个档位对应不同的传动比,以适应不同的运行状况。
一般的手动变速器内设置输入轴、中间轴和输出轴,又称三轴式,另外还有倒档轴。
三轴式是变速器的主体结构,输入轴的转速也就是发动机的转速,输出轴转速则是中间轴与输出轴之间不同齿轮啮合所产生的转速。
不同的齿轮啮合就有不同的传动比,也就有了不同的转速。
例如郑州日产ZN6481W2G型SUV车手动变速器,它的传动比分别是:1档3.704:1;2档2.202:1;3档1.414:1;4档1:1;5档(超速档)0.802:1。
当汽车启动司机选择1档时,拨叉将1/2档同步器向后接合1档齿轮并将它锁定输出轴上,动力经输入轴、中间轴和输出轴上的1档齿轮,1档齿轮带动输出轴,输出轴将动力传递到传动轴上(红色箭头)。
典型1档变速齿轮传动比是3:1,也就是说输入轴转3圈,输出轴转1圈。
当汽车增速司机选择2档时,拨叉将1/2档同步器与1档分离后接合2档齿轮并锁定输出轴上,动力传递路线相似,所不同的是输出轴上的1档齿轮换成2档齿轮带动输出轴。
外文原文:TransmissionsTransmissions have to compromise on either ride comfort or efficiency, but a new approach to the dog engagement gearbox could improve both.With tightening emissions regulations, carmakers are not just confining their efforts to improving combustion and after-treatment. Many are finding that modern engines are so advanced that the benefits of some engine technologies are small compared to the huge development costs involved.It's important to look at the whole vehicle in order to improve emissions. As the second most expensive piece of kit in the car, the transmission is the logical next place to look.Of all transmission technologies, the manual gearbox is the most efficient; around 96percent of the energy that is put in comes out of the other end. But not everyone can drive one or wants to. Because you have to dip the clutch pedal, it's less comfortable to drive in heavy traffic. It makes the driver tired and the torque interruptions' head-nod effect on passengers can be wearing.The driver's clutch control and corresponding torque interruptions are also the manual's weak point. When accelerating up through the gearbox, each up-shift requires the driver to cut the torque momentarily by lifting the gas pedal and dipping the clutch. It may just take a second to complete the operation, but during this time the vehicle is losing speed and acceleration.At the opposite and of the spectrum is the traditional automatic. Its shift quality is good thanks to its torque converter, but efficiency is relatively poor despite recent advances. Because of this ,a lot of the current research is trying to find an efficient alternative to the conventional automatic.The main technologies are continuously variable transmissions (CVTs); dual clutch transmissions(DCTs) and automated manual transmissions(AMTs).They all offer different benefits over the conventional planetary automatic.The CVT uses a belt chain or toroidal shaped dish drive to vary an infinite number of gear ratios. It has improved efficiency and cost when compared to conventional automatics.Its advantage comes from its simplicitu. It consists of very few components; usually a rubber or metal-link belt; a hydraulically operated driving pulley, a mechanical torque-sensing driving pulley, microprocessors and some sensors.The transmissions works by varying the distance between the faces of the two main pulleys.The pulleys have V-shaped grooves in which the connecting belt rides. One side of the pulley is fixed axially; the other side moves, actuated by hydraulics.When actuatec, the cylinder can increase or reduce the amount of space between the two sides of the pulley. This allows the belt to ride lower or higher along the walls ofthe pulley, depending on driving conditions. This changes the gear ratio. A torodial-type design works in a similar way but runs on discs and power-rollers.The "stepless" nature of its design is CVT's biggest draw for automotive engineers. Because of this, a CVT can work to keep the engine in its optimum power range, thereby increasing efficiency and mileage. A CVT can convert every point on the engine's operating curve to a corresponding point on its own operating curve.The transmission is most popular with Japanese carmakers and Japanese supplier JATCO is a major producer. But in the US and Europe driving styles are different. Uptake has been slow despite Audi and other manufacturers having offered CVT otions on their ranges.The DCT is, in effect, two manual gearboxes coupled together. Gear shifts are made by switching from one clutch on one gearbox to another clutch on the other. The shift quality is equal to a conventional automatic, but slip, fluid drag and lydraulic losses in the system result in only slightly improved efficiency and acceleration over the conventional planetary automatic. Developing the control strategy is costly too."Recent advances in conventional automatic technology have weakened the argument to develop and set up production for CVT or DCT." says Bill Martin, managing director of transmission firm zeroshift. "Some carmakers have cancelled DCT projects because of the cost."The cheapest way to build an automatic is with an AMT. AMTs use actuators to replace the clutch pedal and gear stick of a conventional manual. They keep the high efficiency and acceleration of a manual gearbox, but the shift quality on some models is lacking. Torque interruptions and the head-nod effect are the most common complaint.so what is the alternative? There are always new ideas in transmissions, but Zeroshift says that its technology has efficiency benefits over a manual, delivering fuel economy improvements to city driving. Shift quality can also be equal to that of a refined automatic.Zeroshift's approach is an upgrade to the AMT. The synchromesh is replaced with an advanced dog enqaqement system.Dog engagement has been used for many years in motor sport to allow fast shifts. Conventional dog boxes are unsuitable for road use as the large spaces between the drive lugs or "dogs" create backlash, an uncomfortable shunt caused by the sudden change in torque direction.Zeroshift's technology solves this problem by adding a second set of drive dogs. It has also made each of the two sets of dogs only capable of transmitting torque in one or other opposing directions. "By controlling the engagement and disengagement of the two sets you can shift into the new gear befor disengaging the previous gear, "says Martin. "The shift quality is smoother than a typical modern six-speed automatic luxury car."The shift is instant and the torque is not interrupted.This philosophy is used for both up and down shifts."In conventional AMT there is an emissions spike during a shift due to the need to back off and reintroduce throttle, this is eliminated by going seamless, "says Martin. "This also reduces fuel consumption."It is a relative newcomer to the transmission sector, but the firm says that it is already attracting the attention of major European and US carmakers. The big draw is as a low-cost alternative to DCT, says Martin.Because the manual gearbox architecture is largely maintained, production costs and complexity are not greater than for a conventional AMT. Development of the controls side is also considerably cheaper. Music to the ears of engineers trying to cut emissions and costs."Most of the carmakers have seen the system at least once," says Martion. "Some signed us immediately. Some have said not yet. None have said no. "That may be the clearest sign yet that when it comes to powertrain developments, carmakers are starting to focus on the transmission.HOW ZWROSHIFT WORKSThe hardware consists of two sets of bullets. mounted and actuated on two independent bullet rings. both sets of bullets run on the common hub, which is attached to the shaft with splines.Each bullet has a special profile. On one side they have an angled face for engagement. These are diagonally opposed, allowing the bullet to have a drive function for one gear and an overrun function for the other gear. The engagement faces taper backwards slightly to ensure the bullet latches onto the engaged gear under load.the opposite corners have a ramp, which pushes the bullet out of the previous gear once the new gear has been engaged.In neutral both bullet rings are positioned midway between the ratios. To select first gear, the bullets are moved into mesh with the engagement dogs.The bullets are actuated via shift forks conected to the shift actuators.The driving bullets lock first gear to the output shaft and transfer torque from the gearwheel onto the output shaft. The first gear overrun bullets are also moved into gear to lock the wheel to the output shaft in the opposite direction. This transfrs torque from the gearwheel onto the output shaft when the throttle closes and the engine overruns. This eliminates the backlash you'd expect from a dog engagement gearbox.To shift up with an open throttle, first gear's overrun bullets are unloaded and move in to engage second gear. This is followed by the previous driving ring which becomes unloaded when second gear is taken up.If the bullet is stopped from engaging fully-dog-face to dog-face-the second gear wheel opens an engagement window due to the relative speed difference. With the bullet pushed against the engagement dog compliance between the fork and actuator allows the stored energyto fire the bullet into the window.The first gear overrun bullets have now become the second gear drive bullets. As second gear takes over, the load is removed from the first gear drive bullets. These bullets are now no longer held by their retention angie and can be either moved out ofgear by actuators or pushed out of gear by contact with the ramp face of the bullet.The first gear drive bullets then move across into engagement with second gear. In second gear, the roles of the bullets are reversed.Audi RoadjetAudi plans to add comfort, luxury and practicality without increasing emissions The Roadjet concept, first shown at Detroit in January 2006,indicates a number of technical directions that Audi going to take in the coming year. The firm is focusing on interior design, powertrain, chassis, electronics and safety innovations.These new directions will help Audi strengthen its position in the sub-luxury market that it previously had to itself. Audi has two main tactics to attract new customers in the US. It is breaking into the sports utility vehicle(SUV)and compact utility vehicle(CUV)markets.It also introduces new luxury and lifestyle features to strengthen its position in the US; sales there still lag behind those of BMW, Lexus and Mercedes-Benz. The recently launched Q7 off-road luxury vehicle is a late bid to capitalise on the SUV boom.In Europe, the carmaker's technical innovations such as aluminium construction, four-wheel-drive, and novel powertrain technologies have been successful. But if Audi wants to increase its US market share, it needs to innovate in those areas valued by American customers: comfort, luxury and practicality.Audi's designers have focused on this in the interior. They have devised a new wrap-around instrument panel shape to replace the more functional design in existing models. They have expanded the vehicle's multi-media interface (MMI)control system, used for cruise control, suspension, climate and entertainment separate controls. Combined with an upgraded climate system, occupants can set their own individual climate settings.Soft, warm, earthy colours are used in the Roadjet to create a feeling of well-being. The concept uses high quality functional materials: the upholstery is fine leather; the floor is neoprene. The space between the rear seats can house a range of optional equipment: the show car featured an espresso coffee machine. Storage boxes and baby carriers are more realistic alternatives.To enhance practicality, the rear seats slide backwards and forwards diagonally to increase shoulder and leg-room or rear load space. When the rear seats are in their most forward position, an oblique-facing child seat can be used behind the seats.Roadjet's load bay features an eletrically extending load floor to ease loading, offering unmerous lashing points to secure luggage items. The sliding seats and extending load floor are very likely to enter production on Audi's Q5 and A4 models.To heighten the sense of luxury, the concept uses a costly 1,000W Bang & Olufsen sound system with 14-speakers.This incorporates a "digital voice support" function that uses microphones and the car's speakers to pick up and amplify passengers' voices to ensure clear conversation even at high speeds.In a bid to improve road safety, convenience and traffic management, carmakers are working to common standards to develop a new in-car system to talk to other cars androadside wireless olcal area networks. In traffic jams, bad weather or accident situations, cars send information to emergency services, other cars and traffic computers. The Roadjet concept featres previews such a system.The weight of all the new electronics and luxury equipment in this segment, combined with customers' growing demand for power is having a negative effect on exhaust emissions and fuel consumption. Audi is looking at sophisticated technical solutions to balance the equation.Roadjet's 3.2-litre gasoline direct injection engine is based on an existing engine but features a new fixed intake manifold with an integral vacuum reservoir to increase its output. This is combined with a two-stage cam operated variable valve lit technology to increase output.Despite the sports car performance, the Roadjet's overall fuel consumption is slightly lower than the current A4 Quattro 3.2FSI.The valve train technology, due to enter production later in 2006,lets the engine perform economically and smoothly during normal driving, switching automatically to more responsive, more powerful characteristics when the driver demands.Roadjet also has the first Audi application of speeddependent variable ratio dynamic steering for a stable highspeed motorway ride but with enhanced control on twisty country roads. Electronically-controlled variable rate dampers automatically adjust from soft and comfortable to firm and sporty to enhance safety and handling.Audi's engineers have electronically linked all of these systems to create three driver-selectable programmes: dynamic, comfort and sport. Each programme adjusts the dampers, steering, gearbox and engine eletronics to give different driving experiences.Roadjet's body styling marks a new direction for the carmaker.At 1.55m high with a wheelbase 4.7m long and 2.85m wide, the concept is roomy. The firm has used a combination of sharp feature lines and careully-sculpted concave-section doors to disguise the height. While the trademark LED tail lights are likely to enter production unchanged, steerable xenon gas discharge lights will replace the LEDs in the headlamps.Around the end of 2007 Audi will launch the Q5 CUV, based on the next A4 platform. Smaller and lighter than the Q7,it will be well placed to compete in the profitable CUV segment in the US. The Roadjet previews elements of the interior and exterior styling of this model.The Q5 will need to be more rugged to match the outdoor lifestyle image of the CUVsegment. At the same time, for the European market, the Roadjet's sharp style previews the next A4 model range, which may produce a new hatchback body in 2007 to join the conventional saloon and Avant estate. The dashboard and other new interior refinements are likely to spread across the rest of the Audi range over the next 24 months.中文译文:变速器变速箱通常不得不在舒适性和效率之间做出选择,但一种新型的“犬牙啮合式”变速箱可以同时改善这两种性能。
附录附录A 英语科技文献Manual Transmission BasicsIt's no secret that cars with manual transmissions are usually more fun to drive than their automatic-equipped counterparts. If you have even a passing interest in the act of driving, then chances are you also appreciate a fine-shifting manual gearbox. But how does a manual trans actually work? With our primer on automatics(or slushboxes, as detractors call them) available for your perusal, we thought it would be a good idea to provide a companion overview on manual trannies, too.A brief history lesson shows that manual transmissions preceded automatics by several decades. In fact, up until General Motors offered an automatic in 1938, all cars were of the shift-it-yourself variety. While it's logical for many types of today's vehicles to be equipped with an automatic -- such as a full-size sedan, SUV or pickup -- the fact remains that nothing is more of a thrill to drive than a tautly suspended sport sedan, sport coupe or two-seater equipped with a precise-shifting five- or six-speed gearbox. It's what makes cars such as a Corvette, Mustang,Miata or any BMW sedan or coupe some of the most fun-to-drive cars available today.We know which types of cars have manual trannies. Now let's take a look at how they work. From the most basic four-speed manual in a car from the '60s to the most high-tech six-speed in a car of today, the principles of a manual gearbox are the same. The driver must shift from gear to gear. Normally, a manual transmission bolts to a clutch housing (or bell housing) that, in turn, bolts to the back of the engine. If the vehicle has front-wheel drive, the transmission still attaches to the engine in a similar fashion but is usually referred to as a transaxle. This is because the transmission, differential and drive axles are one complete unit. In a front-wheel-drive car, the transmission also serves as part of the front axle for the front wheels. In the remaining text, a transmission and transaxle will both be referred to using the term transmission.The function of any transmission is transferring engine power to the driveshaft and rear wheels (or axle halfshafts and front wheels in a front-wheel-drive vehicle). Gears inside the transmission change the vehicle's drive-wheel speed and torque in relation to engine speed and torque. Lower (numerically higher) gear ratios serve as torque multipliersand help the engine to develop enough power to accelerate from a standstill.Initially, power and torque from the engine comes into the front of the transmission and rotates the main drive gear (or input shaft), which meshes with the cluster or counter shaft gear -- a series of gears forged into one piece that resembles a cluster of gears. The cluster-gear assembly rotates any time the clutch is engaged to a running engine, whether or not the transmission is in gear or in neutral.There are two basic types of manual transmissions. The sliding-gear type and the constant-mesh design. With the basic -- and now obsolete -- sliding-gear type, nothing is turning inside the transmission case except the main drive gear and cluster gear when the trans is in neutral. In order to mesh the gears and apply engine power to move the vehicle, the driver presses the clutch pedal and moves the shifter handle, which in turn moves the shift linkage and forks to slide a gear along the mainshaft, which is mounted directly above the cluster. Once the gears are meshed, the clutch pedal is released and the engine's power is sent to the drive wheels. There can be several gears on the mainshaft of different diameters and tooth counts, and the transmission shift linkage is designed so the driver has to unmesh one gear before being able to mesh another.With these older transmissions, gear clash is a problem because the gears are all rotating at different speeds.All modern transmissions are of the constant-mesh type, which still uses a similar gear arrangement as the sliding-gear type. However, all the mainshaft gears are in constant mesh with the cluster gears. This is possible because the gears on the mainshaft are not splined to the shaft, but are free to rotate on it. With a constant-mesh gearbox, the main drive gear, cluster gear and all the mainshaft gears are always turning, even when the transmission is in neutral.Alongside each gear on the mainshaft is a dog clutch, with a hub that's positively splined to the shaft and an outer ring that can slide over against each gear. Both the mainshaft gear and the ring of the dog clutch have a row of teeth. Moving the shift linkage moves the dog clutch against the adjacent mainshaft gear, causing the teeth to interlock and solidly lock the gear to the mainshaft.To prevent gears from grinding or clashing during engagement, a constant-mesh, fully "synchronized" manual transmission is equipped with synchronizers. A synchronizer typically consists of an inner-splined hub, an outer sleeve, shifter plates, lock rings (or springs) and blocking rings. The hub is splined onto the mainshaft between a pair of main drive gears. Held in place by the lock rings, the shifter plates position thesleeve over the hub while also holding the floating blocking rings in proper alignment.That's the basics on the inner workings of a manual transmission. As for advances, they have been extensive over the years, mainly in the area of additional gears. Back in the '60s, four-speeds were common in American and European performance cars. Most of these transmissions had 1:1 final-drive ratios with no overdrives. Today, overdriven five-speeds are standard on practically all passenger cars available with a manual gearbox.Overdrive is an arrangement of gearing that provides more revolutions of the driven shaft (the driveshaft going to the wheels) than the driving shaft (crankshaft of the engine). For example, a transmission with a fourth-gear ratio of 1:1 and a fifth-gear ratio of 0.70:1 will reduce engine rpm by 30 percent, while the vehicle maintains the same road speed. Thus, fuel efficiency will improve and engine wear will be notably reduced. Today, six-speed transmissions are becoming more and more common. One of the first cars sold in America with a six-speed was the '89 Corvette. Designed by Chevrolet and Zahnradfabrik Friedrichshafen (ZF) and built by ZF in Germany, this tough-as-nails six-speed was available in the Corvette up to the conclusion of the '96 model year.Today, the Corvette uses a Tremec T56 six-speed mounted at the back of the car.Many cars are available today with six-speeds, including the Mazda Miata, Porsche Boxster S and 911, Dodge Viper, Mercedes-Benz SLK350, Honda S2000, BMW 3-Series and many others. Some of these gearboxes provide radical 50-percent (0.50:1) sixth-gear overdrives such as in the Viper and Corvette, while others provide tightly spaced gear ratios like in the S2000 and Miata for spirited backroad performance driving. While the bigger cars mentioned above such as the Viper and Vette often have two overdrive ratios (fifth and sixth) the smaller cars like the Celica and S2000 usually have one overdriven gear ratio (sixth) and fifth is 1:1.Clearly a slick-shifting manual transmission is one of the main components in a fun-to-drive car, along with a powerful engine, confidence-inspiring suspension and competent brakes. For more information on a manual transmission's primary partner component, check out our basic primer on clutches and clutch operation.附录B 文献翻译手动变速器基础汽车手动变速器相比于自动变速器的驾驶装备来说,在驾驶方面拥有更多的乐趣,这已不再是什么秘密了。
附录附录A英文科技文献Transmission OverviewTransmission gearbox's function the engine's output rotational speed is high, the maximum work rate and the maximum torque appears in certain rotational speed area. In order to display engine's optimum performance, must have a set of variable speed gear, is coordinated the engine the rotational speed and wheel's actual moving velocity. The transmission gearbox may in the automobile travel process, has the different gear ratio between the engine and the wheel, through shifts gears may cause the engine work under its best power performance condition. Transmission gearbox's trend of development is more and more complex, the automaticity is also getting higher and higher, the automatic transmission will be future mainstream.Automotive Transmission's mission is to transfer power, and in the process of dynamic change in the transmission gear ratio in order to adjust or change the characteristics of the engine, at the same time through the transmission to adapt to different driving requirements. This shows that the transmission lines in the automotive transmission plays a crucial role. With the rapid development of science and technology, people's car is getting higher and higher performance requirements, vehicle performance, life, energyconsumption, such as vibration and noise transmission depends largely on the performance, it is necessary to attach importance to the study of transmission.Transmission gearbox's pattern the automobile automatic transmission common to have three patterns: Respectively is hydraulic automatic transmission gearbox (AT), machinery stepless automatic transmission (CVT), electrically controlled machinery automatic transmission (AMT). At present what applies is most widespread is, AT becomes automatic transmission's pronoun nearly.AT is by the fluid strength torque converter, the planet gear and the hydraulic control system is composed, combines the way through the fluid strength transmission and the gear to realize the speed change bending moment. And the fluid strength torque converter is the most important part, it by components and so on pump pulley, turbine wheel and guide pulley is composed, has at the same time the transmission torque and the meeting and parting function.And AT compare, CVT has omitted complex and the unwieldy gear combination variable transmission, but is two groups of band pulleys carries on the variable transmission. Through changes the driving gear and the driven wheel transmission belt's contact radius carries on the speed change. Because has cancelled the gear drive,therefore its velocity ratio may change at will, the speed change is smoother, has not shifted gears kicks the feeling.AMT and the hydraulic automatic transmission gearbox (AT) is the having steps automatic transmission equally. It in the ordinary manual transmission gearbox's foundation, through installs the electrically operated installment which the microcomputer controls, the substitution originally coupling's separation which, the joint and the transmission gearbox completes by the manual control elects to keep off, to shift gears the movement, realizes fluid drive.Manual transmission gear mainly uses the principle of deceleration. Transmission within the group have different transmission ratio gear pair, and the car at the time of shift work, that is, through the manipulation of institutions so that the different transmission gear pair work. Manual transmission, also known as manual gear transmission, with axial sliding in the gears, the meshing gears through different speed to achieve the purpose of torque variation. Manual shift transmission can operate in full compliance with the will of the driver, and the simple structure, the failure rate is relatively low, value for money.Automatic transmission is based on speed and load (throttle pedal travel) for two-parameter control gear in accordance with the above two parameters to automatically take-off and landing.Automatic transmission and manual transmission in common, that is, there are two-stage transmission, automatic transmission can only speed the pace to automatically shift, manual transmission can be eliminated, "setback" of the shift feel.Automatic transmission is a torque converter, planetary gears and hydraulic manipulation of bodies, through the hydraulic transmission and gear combination to achieve the purpose of variable-speed torque variation.Also known as CVT-type continuously variable CVT. This transmission and automatic transmission gear generally the biggest difference is that it eliminates the need of complex and cumbersome combination of variable-speed gear transmission, and only two groups to carry out variable-speed drive pulley.CVT transmission than the traditional structure of simple, smaller and it is not the number of manual gear transmission, no automatic transmission planetary gear complex group, mainly rely on the driving wheel, the driven wheel and the transmission ratio brought about by the realization of non-class change.Widely used in automotive internal combustion engine as a power source, the torque and speed range is very small, and complex conditions require the use of motor vehicles and the speed of the driving force in the considerable changes in the scope. Toresolve this contradiction, in the transmission system to set up the transmission to change transmission ratio, the expansion of the driving wheel torque and speed range in order to adapt to constantly changing traffic conditions, such as start, acceleration, climbing and so on, while the engine in the most favorable conditions to work under the scope; in the same direction of rotation of the engine under the premise of the automobile can be driven back; the use of neutral, interruption of power transmission, in order to be able to start the engine, idle speed, and ease of transmission or power shift . Transmission is designed to meet the above requirements, so that the conditions in a particular vehicle stability.In addition to transmission can be used to meet certain requirements, but also to ensure that it and the car can have a good match, and can improve the car's power and economy to ensure that the engine in a favorable condition to increase the scope of the work of the use of motor vehicles life, reduce energy consumption, reduce noise, such as the use of motor vehicles.Today the world's major car companies CVT are very active in the study. The near future, with electronic control technology to further improve, electronically controlled Continuously VariableTransmission-type is expected to be a wide range of development and application.附录B文献翻译变速器概述发动机的输出转速非常高,最大功率及最大扭矩在一定的转速区出现。
附录 AThe output of the engine speed is very high, the maximum power and the maximum torque in a certain speed area appears. In order to bring into full play the best performance engine, it must have a variable speed device, to coordinate the speed of the engine and the actual speed. Transmission can be in the course of driving in the car, and the engine between different ratios of produce, through the shift can make the engine to the best in the dynamic properties of state. The three main transmission function1. On a wide range of vehicle driving speed change the size of the car and the size of the torque on the drive wheels. As the car driving conditions, car speeds of the different requirements and drive torque to a wide range of change. For example in the way to speed should be able to 100 km/h, and in the urban district, speed in 50 km/h often to the left. Empty car in a flat roads, driving resistance is very small, then, when the carrying the uphill, driving resistance and very big. And the car engine is the characteristic of speed range, and small torque range can't meet the actual need more road conditions.2. Achieve drive backward. The car engine crankshaft are generally only to a direction, and the car sometimes need to be able to drive back, therefore, often used in the transmission of setting reverse to realize the car drive backward.3. Achieve gap when clutch engaging, gearbox can not power output. For example can guarantee the engine when cut loose from the clutch driver's seat. Transmission speed transmission mechanism and variable speed by operation of two parts. Variable speed transmission's main function is to change the torque and speed of numerical and direction; Operation's main function is to control the transmission mechanism, realize the transmission ratio of the transformation, namely transmission shift to realize speed torque.Mechanical transmission main application the gear transmission principle of slow down. Say simply, there are a number of different transmission ratio of gear, and the car down the behavior of the shift, that is through manipulation institutions make the different gear shift work. As in low speed, let the transmission ratio of big gear pair work, at high speed, let small gear transmission ratio.From now on the market have different models of transmission to see, the main configuration can be divided into: the manual transmission (MT), automatic transmission (AT), manual/automatic transmission (AMT), step-less transmission (CVT).1. The manual transmission (MT) manual transmission contains array gear according to different driving conditions, drivers through the transmission control mechanisms to manually choose which a group of gear transmission, change the transmission ratio, to change speed and purpose. Because there is a shift change when gear synchronous "problem", now a lot of gearbox are adopting synchronizer, in order to improve the smooth shift. Characteristics: the shift to direct, for drivers to provide more driving enjoyment. Is purely mechanical transmission, not there is too large a power loss, fuel economy performance is higher. Manual transmission structure simple, maintenance costs less.2. Automatic transmission (AT) automatic transmission mechanism of planetary gear speed. It can according to the accelerator pedal degree and the speed change to automatic variable speed, and drivers but simply to control the accelerator control can reduce the speed, the difficulty of driving. Will tell commonly, car commonly used automatic transmission has the following kinds of types: hydraulic automatic transmission, hydraulic transmission automatic transmission, power transmission automatic transmission, etc. Among them, the most common is by the hydraulic torque converter and a variable transmission gear type of hydraulic automatic transmission, the transmission ratio can be in maximum and minimum values of between several continuous do within the scope of the stepless change. Because the hydraulic torque converter have power transmission loss, the relation between the transmission efficiency of automatic transmission usually only 85%. Features: power transmission shift smoothly, and natural transition. But the complex structure, maintenance cost is higher, power have certain loss, at the same time, reduce the fuel economy performance.3. Step-less transmission (CVT) step-less transmission is composed of two groups of variable speed the plate and a belt of. Therefore, it is simple in structure than traditional automatic transmission, smaller. In addition, it is free to change gear ratios, so as to realize the full speed stepless speed change of the vehicle to make smooth, without the traditional transmission shift at the "" feeling. Features: the realization ofuninterrupted power output, the dynamic performance and economic performance are better than traditional have high level automatic transmission.附录B发动机的输出转速非常高,最大功率及最大扭矩在一定的转速区出现。
一.Introduction to How Automatic Transmissions Work If you have ever driven a car with an automatic transmission, then you know that there are two big differences between an automatic transmission and a manual transmission:There is no clutch pedal in an automatic transmission car.There is no gear shift in an automatic transmission car. Once you put the transmission into drive, everything else is automatic.Both the automatic transmission (plus its torque converter) and a manual transmission(with its clutch) accomplish exactly the same thing, but they do it in totally different ways. It turns out that the way an automatic transmission does it is absolutely amazing!Purpose of an Automatic TransmissionJust like that of a manual transmission, the automatic transmission's primary job is to allow the engine to operate in its narrow range of speeds while providing a wide range of output speeds.Without a transmission, cars would be limited to one gear ratio, and that ratio would have to be selected to allow the car to travel at the desired top speed. If you wanted a top speed of 80 mph, then the gear ratio would be similar to third gear in most manual transmission cars.Y ou've probably never tried driving a manual transmission car using only third gear. If you did, you'd quickly find out that you had almost no acceleration when starting out, and at high speeds, the engine would be screaming along near the red-line. A car like this would wear out very quickly and would be nearly undriveable.So the transmission uses gears to make more effective use of the engine's torque, and to keep the engine operating at an appropriate speed. When towing or hauling heavy objects, your vehicle's transmission can get hot enough to burn up the transmission fluid. In order to protect the transmission from serious damage, drivers who tow should buy vehicles equipped with transmission coolers.The key difference between a manual and an automatic transmission is that the manual transmission locks and unlocks different sets of gears to the output shaft to achieve the various gear ratios, while in an automatic transmission, the same set of gears produces all of the different gear ratios. The planetary gearset is the device that makes this possible in an automatic transmissionThe Planetary GearsetFrom left to right: the ring gear, planet carrier, and two sun gearsWhen you take apart and look inside an automatic transmission, you find a huge assortment of parts in a fairly small space. Among other things, you see:An ingenious planetary gearsetA set of bands to lock parts of a gearsetA set of three wet-plate clutches to lock other parts of the gearsetAn incredibly odd hydraulic system that controls the clutches and bandsA large gear pump to move transmission fluid aroundThe center of attention is the planetary gearset. About the size of a cantaloupe, this one part creates all of the different gear ratios that the transmission can produce. Everything else in the transmission is there to help the planetary gearset do its thing.An automatic transmission contains two complete planetary gearsets folded together into one component. See How Gear Ratios Work for an introduction to planetary gearsets.Any planetary gearset has three main components:The sun gearThe planet gears and the planet gears' carrierThe ring gearEach of these three components can be the input, the output or can be held stationary. Choosing which piece plays which role determines the gear ratio for the gearset. Clutches and Bands in an Automatic TransmissionIn this transmission, when overdrive is engaged, a shaft that is attached to the housing of the torque converter (which is bolted to the flywheel of the engine) is connected by clutch to the planet carrier. The small sun gear freewheels, and the larger sun gear is held by the overdrive band. Nothing is connected to the turbine; the only input comes from the converter housing.To get the transmission into overdrive, lots of things have to be connected and disconnected by clutches and bands. The planet carrier gets connected to the torque converter housing by a clutch. The small sun gets disconnected from the turbine by a clutch so that it can freewheel. The big sun gear is held to the housing by a band so that it could not rotate. Each gear shift triggers a series of events like these, withdifferent clutches and bands engaging and disengaging.BandsIn this transmission there are two bands. The bands in a transmission are, literally, steel bands that wrap around sections of the gear train and connect to the housing. They are actuated by hydraulic cylinders inside the case of the transmission.One of the bandsIn the figure above, you can see one of the bands in the housing of the transmission The gear train is removed. The metal rod is connected to the piston, which actuates the band.Above you can see the two pistons that actuate the bands. Hydraulic pressure, routed into the cylinder by a set of valves, causes the pistons to push on the bands, locking that part of the gear train to the housing.The clutches in the transmission are a little more complex. In this transmission there are four clutches. Each clutch is actuated by pressurized hydraulic fluid that enters a piston inside the clutch. Springs make sure that the clutch releases when the pressure is reduced. Below you can see the piston and the clutch drum. Notice the rubber seal on the piston -- this is one of the components that is replaced when your transmission gets rebuilt.The next figure shows the alternating layers of clutch friction material and steel plates.The friction material is splined on the inside, where it locks to one of the gears. The steel plate is splined on the outside, where it locks to the clutch housing. These clutch plates are also replaced when the transmission is rebuilt.The clutch platesThe pressure for the clutches is fed through passageways in the shafts. The hydraulic system controls which clutches and bands are energized at any given moment. Automatic Transmissions: Hydraulics, Pumps and the GovernorHydraulicsThe automatic transmission in your car has to do numerous tasks. Y ou may not realize how many different ways it operates. For instance, here are some of the features of an automatic transmission:. If the car is in overdrive (on a four-speed transmission), the transmission will automatically select the gear based on vehicle speed and throttle pedal position..If you accelerate gently, shifts will occur at lower speeds than if you accelerateat full throttle..If you floor the gas pedal, the transmission will downshift to the next lower gear..If you move the shift selector to a lower gear, the transmission will downshift unless the car is going too fast for that gear. If the car is going too fast, it willwait until the car slows down and then downshift..If you put the transmission in second gear, it will never downshift or upshiftout of second, even from a complete stop, unless you move the shift lever.Y ou've probably seen something that looks like this before. It is really the brain of the automatic transmission, managing all of these functions and more. The passagewaysyou can see route fluid to all the different components in the transmission. Passageways molded into the metal are an efficient way to route fluid; without them, many hoses would be needed to connect the various parts of the transmission. First, we'll discuss the key components of the hydraulic system; then we'll see how they work together.The PumpAutomatic transmissions have a neat pump, called a gear pump. The pump is usually located in the cover of the transmission. It draws fluid from a sump in the bottom of the transmission and feeds it to the hydraulic system. It also feeds the transmission cooler and the torque converter.The inner gear of the pump hooks up to the housing of the torque converter, so it spins at the same speed as the engine. The outer gear is turned by the inner gear, and as the gears rotate, fluid is drawn up from the sump on one side of the crescent and forced out into the hydraulic system on the other side.The GovernorThe governor is a clever valve that tells the transmission how fast the car is going. It is connected to the output, so the faster the car moves, the faster the governor spins. Inside the governor is a spring-loaded valve that opens in proportion to how fast the governor is spinning -- the faster the governor spins, the more the valve opens. Fluid from the pump is fed to the governor through the output shaft.The governorAutomatic Transmissions: V alves and ModulatorsTo shift properly, the automatic transmission has to know how hard the engine is working. There are two different ways that this is done. Some cars have a simple cable linkage connected to a throttle valve in the transmission. The further the gas pedal is pressed, the more pressure is put on the throttle valve. Other cars use a vacuum modulator to apply pressure to the throttle valve. The modulator senses the manifold pressure, which increases when the engine is under a greater load.The manual valve is what the shift lever hooks up to. Depending on which gear isselected, the manual valve feeds hydraulic circuits that inhibit certain gears. For instance, if the shift lever is in third gear, it feeds a circuit that prevents overdrive from engaging.hift valves supply hydraulic pressure to the clutches and bands to engage each gear. The valve body of the transmission contains several shift valves. The shift valve determines when to shift from one gear to the next. For instance, the 1 to 2 shift valve determines when to shift from first to second gear. The shift valve is pressurized with fluid from the governor on one side, and the throttle valve on the other. They are supplied with fluid by the pump, and they route that fluid to one of two circuits to control which gear the car runs in.The shift valve will delay a shift if the car is accelerating quickly. If the car accelerates gently, the shift will occur at a lower speed. Let's discuss what happens when the car accelerates gently.As car speed increases, the pressure from the governor builds. This forces the shift valve over until the first gear circuit is closed, and the second gear circuit opens. Since the car is accelerating at light throttle, the throttle valve does not apply much pressure against the shift valve.When the car accelerates quickly, the throttle valve applies more pressure against the shift valve. This means that the pressure from the governor has to be higher (and therefore the vehicle speed has to be faster) before the shift valve moves over far enough to engage second gear.Each shift valve responds to a particular pressure range; so when the car is going faster, the 2-to-3 shift valve will take over, because the pressure from the governor is high enough to trigger that valve.Electronically Controlled TransmissionsElectronically controlled transmissions, which appear on some newer cars, still use hydraulics to actuate the clutches and bands, but each hydraulic circuit is controlled by an electric solenoid. This simplifies the plumbing on the transmission and allows for more advanced control schemes.Electronically controlled transmissions have even more elaborate control schemes.In addition to monitoring vehicle speed and throttle position, the transmission controller can monitor the engine speed, if the brake pedal is being pressed, and even the anti-lock braking system.Using this information and an advanced control strategy based on fuzzy logic -- a method of programming control systems using human-type reasoning -- electronically controlled transmissions can do things like:Downshift automatically when going downhill to control speed and reduce wear on the brakesUpshift when braking on a slippery surface to reduce the braking torque applied by the engineInhibit the upshift when going into a turn on a winding roadLet's talk about that last feature -- inhibiting the upshift when going into a turn on a winding road. Let's say you're driving on an uphill, winding mountain road. When you are driving on the straight sections of the road, the transmission shifts into secondgear to give you enough acceleration and hill-climbing power. When you come to a curve you slow down, taking your foot off the gas pedal and possibly applying the brake. Most transmissions will upshift to third gear, or even overdrive, when you take your foot off the gas. Then when you accelerate out of the curve, they will downshift again. But if you were driving a manual transmission car, you would probably leave the car in the same gear the whole time. Some automatic transmissions with advanced control systems can detect this situation after you have gone around a couple of the curves, and "learn" not to upshift again.。
TRANSMISSIONEngine output speed is very high, the power and the maximum torque in certain areas of the speed. In order to exert the engine, you must have the best performance, to coordinate the speed of the engine and the actual speeds. Transmission in automobile driving process between the engine and wheels, in different ratios, through the shift in the engine can work under the condition of the best performance. The development trend of the transmission is more complex, more and more is also high automation degree, automatic transmission is the mainstream of the future.Car engines in certain speed can reach the best state, the output power of the bigger, fuel economy and better. Therefore, we hope in the best condition engine always work. But, in the use of the car to have different speed, the contradictions. This contradiction through the transmission to solve.Auto transmission function in a single sentence, is called the speed change, which reduced growth slowing or thickening twist. Why can increase twist, and slowing growth and to reduce twist? Put the power output unchanged, the engine power can be expressed as N = wT, w is turning, T is the angular torque. When N fixed, w and T is inversely proportional to the. So the growth will be reduced, slow increase twist. Auto transmission gear transmission is based on the principle of variable twist, each corresponding to different into gear transmission, in order to adapt to the different operating conditions.General manual transmission shaft set the input and output shaft, and say, another three axis reverse axis. Three main transmission shaft type is the speed of the input shaft structure, the speed of the engine, is also the output shaft speed is presented. By output shaft gear generated between different speeds. The gear is different with different ratio, also have different speed. Such as Zhen Zhou Nissan ZN6481W2G type SUV driver’s dynamic transmission, it is respectively: 1 ratio of 1:3.704 gears, 2.202 2:1, 3:1; 1.414 4 gears, - 5 (1): overdrive dependent.When the car started when the driver choose 1 files, dial 1 1/2 shift fork synchronizer backward joints and 1 shift gear lock on the output shaft, and the power input shaft, and the output shaft shift gears, 1 shift gear drive output shaft, output shaft will power to transmission (red arrows). The typical one shift gear ratio is 3:1, i.e. input shaft turn 3 laps, output shaft turn 1 lap.When the car growth drivers choose 2 files, dial 1 1/2 shift fork synchronizer and 1 separateness from 2 after mating locking output shaft gear and power transmission line, which is similar to the output shaft gear with 2, 1 files output shaft gear. The typical 2 shift gear ratio is 2.2:1, input, output shaft turning 2.2 pivot, 1-1 RPMincreases, torque shift.When gas growth drivers choose 3, dial 1 1/2 shift fork to synchronizer, and back to space three/four file synchronizer will move until 3 gear lock in the output shaft, make the power from the first shaft -- -- on the output shaft transmission gears, 3 through the output shaft gear shifting speed. The typical 3 ratio was 1.7:1, the input shaft turning circle, the output shaft 1.7 turn 1 ring, is further growth.When gas growth drivers choose 4 gears, fork will 3/4 file synchronizer from 3 gear directly with the input shaft driving gear engagement, power transmission directly from the input shaft to the output shaft, and the output shaft is 1:1 ratio and the input shaft speed. Due to the force, and the direct oart shift, the gear transmission efficiency ratio. Cars run most time in order to achieve the best directly file fuel economy.Shift to go into space, transmission in the transmission gears have locked in the output shaft, they cannot drive the output shaft rotation, no power output.General car manual transmission ratio main points above 1-4, usually designers to first identify the lowest (1) and (4) transmission, the ratio between after general distribution according to form. In addition, there is a reverse and overdrive, overdrive called 5 files.When the car to accelerate whether isolated car drivers choose more than 5, 5 gear transmission is typical 0.87:1, namely with big gear drive pinion gear turns, when active 0.87 lap, passive gear has turned over one lap.When the reverse in the opposite direction to the output shaft rotation. If a gear when reverse rotation, plus a gear will become a positive spin. Using this principle, will add a reverse gear do "medium", the direction of rotation axis, so has reversed a reverse axis. Reverse transmission shaft independent in housing, and parallel axis, when oart in gear and gear and oart output shaft gear, output shaft to will instead.Usually the reverse synchronizer is controlled by the jointing, so May 5 files and reverse position is in the same side. Due to the middle, reverse gear transmission is generally greater than 1 gear transmission ratio, twist, some cars met with forward instead of steep open up in reverse.From driving gear transmission is smooth; more is better, more adjacent gear shift between the transmission ratio, shift easy and smooth. But the gear transmission fault is more complex structure, big volume and light auto transmission is now commonly 4-5. At the same time, the transmission ratio is not an integer, but with the decimal point, this is not the whole number of meshing gears, two gear ratio is the euploid number will lead to two gear surface non-uniform wear, tooth surface quality of differences.Manual transmission and synchronizerManual transmission is one of the most common transmissions, referred to as MT. Its basic structure in a single sentence is a central axis, two input shaft, namely, the axial and axial oart, they constituted the transmission of the subject, and, of course, a reverse axis. Manual transmission gear transmission and manual, contain can in axial sliding gears, through different meshing gears to change gear of torsional purpose. The typical structure and principle of the manual transmission.Input shaft also says, it's in front of the spline shaft directly with clutch platen, thus the spline set by the engine relay of torque. The first shaft gear meshing gears, often with oart as input shaft, and the gear on oart will turn. Also called shaft, because even more solid shaft of gear. The output shaft, and the second shaft position have the drive shaft gear, may at any time and under the influence of the control devices and the corresponding oart gear, thus changing the speed and torque itself. The output shaft is associated with tail spline shaft torque transmission shaft, through to drive to gear reducer.Predictably, transmission gear drive forward path is: input shaft gear - oart gnaws gear - because the second shaft gear - corresponding gear. Pour on the axle gear can also control device, by moving axis in the strike, and the output shaft gear and oart gear, in the opposite direction.Most cars have five forward and reverse gear, each one has certain ratio, the majority of gear transmission more than 1, 4 gears transmission is 1, called directly, and ratio is less than 1 of article 5 gear shift accelerated called. The output axis gear in the mesh position, can accept power transmission.Due to the gearbox output shaft to input shaft and the speed of their gear rotating, transform a "synchronization problem". Two rotating speed different meshing gears forcibly inevitable impact and collision damage gear. Therefore, the old transmission shift to use "two feet on-off" method, accelerate in neutral position shift to stay for a while, in the space location on the door, in order to reduce gear speed. But this operation is more complex, difficult to grasp accurately. Therefore designers to create "synchronizer", through the synchronizer will make the meshing gears reach speed and smooth.Currently the synchronous transmission adopts is inertial synchronizer, it mainly consists of joints, synchronizer lock ring etc, it is characteristic of the friction effect on achieving synchronization. Mating, synchronizer and mating locking ring gear tooth circle have chamfering (locking horns), the synchronizer lock ring inside surface of gear engagement ring and the friction surface contact. The lock horns with cone when designing the proper choice, has been made to the surface friction of meshinggears with gear synchronous, also can rapid produces a locking function, prevent the synchronous before meshing gears. When synchronous lock ring of gear engagement with surface contact surface, the outer circle in friction torque under the action of gear speed rapid decrease (increase) or to synchronous speed equal, both locking ring spun concurrent, relative to lock ring gear synchronous speed is zero, thus inertia moment also disappear, then in force, driven by the junction of unimpeded with synchronous lock ring gear engagement, and further to engagement with the engagement ring gear tooth and complete shift process变速器发动机的输出转速非常高,最大功率及最大扭矩在一定的转速区出现。
附录附录A 英文文献Transmission descriptionTransmission gearbox's function the engine's output rotational speed is high, the maximum work rate and the maximum torque appears in certain rotational speed area. In order to display engine's optimum performance, must have a set of variable speed gear, is coordinated the engine the rotational speed and wheel's actual moving velocity. The transmission gearbox may in the automobile travel process, has the different gear ratio between the engine and the wheel, through shifts gears may cause the engine work under its best power performance condition. Transmission gearbox's trend of development is more and more complex, the automaticity is also getting higher and higher, the automatic transmission will be future mainstream.Automotive Transmission's mission is to transfer power, and in the process of dynamic change in the transmission gear ratio in order to adjust or change the characteristics of the engine, at the same time through the transmission to adapt to different driving requirements. This shows that the transmission lines in the automotive transmission plays a crucial role. With the rapid development of science and technology, people's car is getting higher and higher performance requirements, vehicle performance, life, energy consumption, such as vibration and noise transmission depends largely on the performance, it is necessary to attach importance to the study of transmission.Transmission gearbox's pattern the automobile automatic transmission common to have three patterns: Respectively is hydraulic automatic transmission gearbox (AT), machinery stepless automatic transmission (CVT), electrically controlled machinery automatic transmission (AMT). At present what applies is most widespread is, AT becomes automatic transmission's pronoun nearly.AT is by the fluid strength torque converter, the planet gear and the hydraulic control system is composed, combines the way through the fluid strength transmission and the gear to realize the speed change bending moment. And the fluid strength torque converter is the most important part, it by components and so on pump pulley, turbine wheel and guide pulley is composed, has at the same time the transmission torque and the meeting and parting function.And AT compare, CVT has omitted complex and the unwieldy gear combination variable transmission, but is two groups of band pulleys carries on the variable transmission. Through changes the driving gear and the driven wheel transmission belt's contact radius carries on the speed change. Because has cancelled the gear drive, therefore its velocity ratio may change at will, the speed change is smoother, has not shifted gears kicks the feeling.AMT and the hydraulic automatic transmission gearbox (AT) is the having steps automatic transmission equally. It in the ordinary manual transmission gearbox's foundation, through installs the electrically operated installment whichthe microcomputer controls, the substitution originally coupling's separation which, the joint and the transmission gearbox completes by the manual control elects to keep off, to shift gears the movement, realizes fluid drive.Manual transmission gear mainly uses the principle of deceleration. Transmission within the group have different transmission ratio gear pair, and the car at the time of shift work, that is, through the manipulation of institutions so that the different transmission gear pair work. Manual transmission, also known as manual gear transmission, with axial sliding in the gears, the meshing gears through different speed to achieve the purpose of torque variation. Manual shift transmission can operate in full compliance with the will of the driver, and the simple structure, the failure rate is relatively low, value for money.Automatic transmission is based on speed and load (throttle pedal travel) for two-parameter control gear in accordance with the above two parameters to automatically take-off and landing. Automatic transmission and manual transmission in common, that is, there are two-stage transmission, automatic transmission can only speed the pace to automatically shift, manual transmission can be eliminated, "setback" of the shift feel.Automatic transmission is a torque converter, planetary gears and hydraulic manipulation of bodies, through the hydraulic transmission and gear combination to achieve the purpose of variable-speed torque variation.Also known as CVT-type continuously variable CVT. This transmission and automatic transmission gear generally the biggest difference is that it eliminates the need of complex and cumbersome combination of variable-speed gear transmission, and only two groups to carry out variable-speed drive pulley.CVT transmission than the traditional structure of simple, smaller and it is not the number of manual gear transmission, no automatic transmission planetary gear complex group, mainly rely on the driving wheel, the driven wheel and the transmission ratio brought about by the realization of non-class change.Widely used in automotive internal combustion engine as a power source, the torque and speed range is very small, and complex conditions require the use of motor vehicles and the speed of the driving force in the considerable changes in the scope. To resolve this contradiction, in the transmission system to set up the transmission to change transmission ratio, the expansion of the driving wheel torque and speed range in order to adapt to constantly changing traffic conditions, such as start, acceleration, climbing and so on, while the engine in the most favorable conditions to work under the scope; in the same direction of rotation of the engine under the premise of the automobile can be driven back; the use of neutral, interruption of power transmission, in order to be able to start the engine, idle speed, and ease of transmission or power shift . Transmission is designed to meet the above requirements, so that the conditions in a particular vehicle stability.In addition to transmission can be used to meet certain requirements, but also to ensure that it and the car can have a good match, and can improve the car's power and economy to ensure that the engine in a favorable condition to increase thescope of the work of the use of motor vehicles life, reduce energy consumption, reduce noise, such as the use of motor vehicles.Today the world's major car companies CVT are very active in the study. The near future, with electronic control technology to further improve, electronically controlled Continuously Variable Transmission-type is expected to be a wide range of development and application.。
附录附录A 英文文献Transmission descriptionTransmission gearbox's function the engine's output rotational speed is high, the maximum work rate and the maximum torque appears in certain rotational speed area. In order to display engine's optimum performance, must have a set of variable speed gear, is coordinated the engine the rotational speed and wheel's actual moving velocity. The transmission gearbox may in the automobile travel process, has the different gear ratio between the engine and the wheel, through shifts gears may cause the engine work under its best power performance condition. Transmission gearbox's trend of development is more and more complex, the automaticity is also getting higher and higher, the automatic transmission will be future mainstream.Automotive Transmission's mission is to transfer power, and in the process of dynamic change in the transmission gear ratio in order to adjust or change the characteristics of the engine, at the same time through the transmission to adapt to different driving requirements. This shows that the transmission lines in the automotive transmission plays a crucial role. With the rapid development of science and technology, people's car is getting higher and higher performance requirements, vehicle performance, life, energy consumption, such as vibration and noise transmission depends largely on the performance, it is necessary to attach importance to the study of transmission.Transmission gearbox's pattern the automobile automatic transmission common to have three patterns: Respectively is hydraulic automatic transmission gearbox (AT), machinery stepless automatic transmission (CVT), electrically controlled machinery automatic transmission (AMT). At present what applies is most widespread is, AT becomes automatic transmission's pronoun nearly.AT is by the fluid strength torque converter, the planet gear and the hydraulic control system is composed, combines the way through the fluid strength transmission and the gear to realize the speed change bending moment. And the fluid strength torque converter is the most important part, it by components and so on pump pulley, turbine wheel and guide pulley is composed, has at the same time the transmission torque and the meeting and parting function.And AT compare, CVT has omitted complex and the unwieldy gear combination variable transmission, but is two groups of band pulleys carries on the variable transmission. Through changes the driving gear and the driven wheel transmission belt's contact radius carries on the speed change. Because has cancelled the gear drive, therefore its velocity ratio may change at will, the speed change is smoother, has not shifted gears kicks the feeling.AMT and the hydraulic automatic transmission gearbox (AT) is the having steps automatic transmission equally. It in the ordinary manual transmission gearbox's foundation, through installs the electrically operated installment which the microcomputer controls, the substitution originally coupling's separation which, the joint and the transmission gearbox completes by the manual control elects to keep off, to shift gears the movement, realizes fluid drive.Manual transmission gear mainly uses the principle of deceleration. Transmission within the group have different transmission ratio gear pair, and the car at the time of shift work, that is, through the manipulation of institutions so that the different transmission gear pair work. Manual transmission, also known as manual gear transmission, with axial sliding in the gears, the meshing gears through different speed to achieve the purpose of torque variation. Manual shift transmission can operate in full compliance with the will of the driver, and the simple structure, the failure rate is relatively low, value for money.Automatic transmission is based on speed and load (throttle pedal travel) for two-parameter control gear in accordance with the above two parameters to automatically take-off and landing. Automatic transmission and manualtransmission in common, that is, there are two-stage transmission, automatic transmission can only speed the pace to automatically shift, manual transmission can be eliminated, "setback" of the shift feel.Automatic transmission is a torque converter, planetary gears and hydraulic manipulation of bodies, through the hydraulic transmission and gear combination to achieve the purpose of variable-speed torque variation.Also known as CVT-type continuously variable CVT. This transmission and automatic transmission gear generally the biggest difference is that it eliminates the need of complex and cumbersome combination of variable-speed gear transmission, and only two groups to carry out variable-speed drive pulley.CVT transmission than the traditional structure of simple, smaller and it is not the number of manual gear transmission, no automatic transmission planetary gear complex group, mainly rely on the driving wheel, the driven wheel and the transmission ratio brought about by the realization of non-class change.Widely used in automotive internal combustion engine as a power source, the torque and speed range is very small, and complex conditions require the use of motor vehicles and the speed of the driving force in the considerable changes in the scope. To resolve this contradiction, in the transmission system to set up the transmission to change transmission ratio, the expansion of the driving wheel torque and speed range in order to adapt to constantly changing traffic conditions, such as start, acceleration, climbing and so on, while the engine in the most favorable conditions to work under the scope; in the same direction of rotation of the engine under the premise of the automobile can be driven back; the use of neutral, interruption of power transmission, in order to be able to start the engine, idle speed, and ease of transmission or power shift . Transmission is designed to meet the above requirements, so that the conditions in a particular vehicle stability.In addition to transmission can be used to meet certain requirements, but also to ensure that it and the car can have a good match, and can improvethe car's power and economy to ensure that the engine in a favorable condition to increase the scope of the work of the use of motor vehicles life, reduce energy consumption, reduce noise, such as the use of motor vehicles.Today the world's major car companies CVT are very active in the study. The near future, with electronic control technology to further improve, electronically controlled Continuously Variable Transmission-type is expected to be a wide range of development and application.附录B 文献翻译变速器介绍发动机的输出转速非常高,最大功率及最大扭矩在一定的转速区出现。