求:
(3)运动员落到A点时的动能。
题型二
用动能定理求解曲线运动问题 之 圆周运动
例题2:如图所示,一小球通过不可伸长的轻绳悬于点,现从最低点B给小球一水
平向左的初速度,使小球恰好能在竖直平面内做圆周运动,当小球经过A点时,其
速度为最高点速度的2倍,不计空气阻力,则在点轻绳与竖直方向的夹角等于( )
圆形轨道的半径R=0.5m.(空气阻力可忽略,重力加速度g=10m/s2 ,sin53°=0.8,
cos53°=0.6)求:
(1)B点速度大小;
(2)当滑块到达传感器上方时,传感器的示数为多大;
(3)水平外力作用在滑块上的时间t.
题型五
用动能定理求解曲线运动问题 之 多过程问题
例题7:如图所示,一质量m=0.5kg的滑块(可视为质点)静止于动摩擦因数μ=0.2的
为上述正方形线圈)从轨道起点由静止出发,进入右边的匀强磁场区域ABCD ,BC长
d=0.2m,磁感应强度B=1T,磁场方向竖直向上.整个运动过程中不计小车所受的摩擦
及空气阻力,小车在轨道连接处运动时无能量损失.求:
(2)在第(1)问,小车进入磁场后做减速运动,当小车末端到达AB边界时速度刚好
减为零,求此过程中线圈产生的热量;
(1)当试验小车从h=1.25m高度无初速度释放,小车前端刚进入AB边界时产生感应
电动势的大小;
(2)在第(1)问,小车进入磁场后做减速运动,当小车末端到达AB边界时速度刚好
减为零,求此过程中线圈产生的热量;
(3)再次改变小车释放的高度,使得小车尾端
题型四
用动能定理求解曲线运动问题 之 安培力做功
水平轨道上的A点.现对滑块施加一水平外力,使其向右运动,外力的功率恒为