2020高一数学下学期单元测试题
- 格式:doc
- 大小:245.44 KB
- 文档页数:7
高一数学单元测试题(附答案)高一数学单元测试题(附答案)1. 计算下列各题:a) 若 a = 3,b = -5,求 a + b。
b) 若 x = 2,y = 4,求 x² + 2xy + y²。
c) 若 m = 6,n = 2,求 m³ - 3mn + n²。
解答:a) a + b = 3 + (-5) = -2。
b) x² + 2xy + y² = 2² + 2(2)(4) + 4² = 4 + 16 + 16 = 36。
c) m³ - 3mn + n² = 6³ - 3(6)(2) + 2² = 216 - 36 + 4 = 184。
2. 将下列各分数化为最简形式:a) 10/15b) 18/24c) 32/48解答:a) 10/15 = (2 × 5)/(3 × 5) = 2/3。
b) 18/24 = (2 × 3 × 3)/(2 × 2 × 2 × 3) = 3/4。
c) 32/48 = (2 × 2 × 2 × 2)/(3 × 2 × 2 × 2 × 2) = 2/3。
3. 求下列各题的百分数表示:a) 25/100b) 5/8c) 3/5解答:a) 25/100 = 25%b) 5/8 ≈ 62.5%c) 3/5 = 60%4. 解方程:a) 2x - 5 = 7b) 3(x + 2) = 15c) 4 - 5x = 14解答:a) 2x - 5 = 72x = 7 + 52x = 12x = 12/2x = 6b) 3(x + 2) = 153x + 6 = 153x = 15 - 63x = 9x = 9/3x = 3c) 4 - 5x = 14-5x = 14 - 4-5x = 10x = 10/(-5)x = -25. 比较下列各组数的大小:(用>、<或=表示)a) 3²,4³b) 2⁴,3⁴解答:a) 3² = 9,4³ = 649 < 64,所以3² < 4³。
高一数学同步测试(13)—数列单元测试题一、选择题1.若S n 是数列{a n }的前n 项和,且,2n S n =则}{n a 是 ( )A .等比数列,但不是等差数列B .等差数列,但不是等比数列C .等差数列,而且也是等比数列D .既非等比数列又非等差数列2.某种细菌在培养过程中,每20分钟分裂一次(一个分裂为两个),经过3小时,这种细菌由1个可繁殖成 ( )A .511个B .512个C .1023个D .1024个 3.等差数列{a n }中,已知为则n a a a a n ,33,4,31521==+= ( )A .48B .49C .50D .514.已知{a n }是等比数列,且a n >0,a 2a 4+2a 3a 5+a 4a 6=25,那么a 3+a 5的值等于 ( )A .5B .10C .15D .205.等比数列{a n }的首项a 1=1,公比q ≠1,如果a 1,a 2,a 3依次是某等差数列的第1,2,5项,则q 等于 ( ) A .2 B .3 C .-3 D .3或-3 6.等比数列{a n }的前3项的和等于首项的3倍,则该等比数列的公比为( )A .-2B .1C .-2或1D .2或-17.已知方程0)2)(2(22=+-+-n x x m x x 的四个根组成的一个首项为41的等差数列,则=-||n m( )A .1B .43 C .21 D .83 8.数列{a n }中,已知S 1 =1, S 2=2 ,且S n +1-3S n +2S n -1 =0(n ∈N*),则此数列为( ) A .等差数列 B .等比数列C .从第二项起为等差数列D .从第二项起为等比数列9.等比数列前n 项和为54,前2n 项和为60,则前3n 项和为 ( )A .66B .64C .2663 D .260310.设等差数列{a n }的公差为d ,若它的前n 项和S n =-n 2,则( )A .a n =2n -1,d =-2B .a n =2n -1,d =2C .a n =-2n +1,d =-2D .a n =-2n +1,d =211.数列{a n }的通项公式是a n =11++n n (n ∈N*),若前n 项的和为10,则项数为( )A .11B .99C .120D .12112.某人于2000年7月1日去银行存款a 元,存的是一年定期储蓄,计划20XX 年7月1日将到期存款的本息一起取出再加a 元之后还存一年定期储蓄,此后每年的7月1日他都按照同样的方法在银行取款和存款.设银行一年定期储蓄的年利率r 不变,则到20XX 年7月1日他将所有的存款和本息全部取出时,取出的钱共为 ( ) A .a (1+r )4元 B .a (1+r )5元C .a (1+r )6元D .ra[(1+r )6-(1+r )]元 二、填空题:13.设{a n }是公比为q 的等比数列,S n 是它的前n 项和,若{S n }是等差数列, 则q = .14.设数列{}n a 满足121+-=+n n n na a a ,,,3,2,1 =n 当21=a 时, .15.数列{}n a 的前n项的和S n =3n 2+ n +1,则此数列的通项公式a n =__ . 16.在等差数列}{n a 中,当s r a a =)(s r ≠时,}{n a 必定是常数数列.然而在等比数列}{n a中,对某些正整数r 、s )(s r ≠,当s r a a =时,非常数数列}{n a 的一个例子是 ___ ___.三、解答题:17.已知:等差数列{n a }中,4a =14,前10项和18510=S . (1)求n a ;(2)将{n a }中的第2项,第4项,…,第n2项按原来的顺序排成一个新数列,求此数列的前n 项和n G .18.求下面各数列的和:(1)111112123123n++++++++++;(2).21225232132nn -++++19.数列{a n }满足a 1=1,a n =21a n -1+1(n ≥2) (1)若b n =a n -2,求证{b n }为等比数列; (2)求{a n }的通项公式.20.某渔业公司年初用98万元购买一艘捕鱼船,第一年各种费用12万元,以后每年都增加4万元,每年捕鱼收益50万元, (1)问第几年开始获利? (2)若干年后,有两种处理方案:(3)年平均获利最大时,以26万元出售该渔船; (4)总纯收入获利最大时,以8万元出售该渔船. 问哪种方案合算.21.已知数列{}n a 是等差数列,且.12,23211=++=a a a a (1)求数列{}n a 的通项公式;(2)令).(R x x a b n n n ∈=求数列{}n b 前n 项和的公式.22.某房地产公司推出的售房有两套方案:一种是分期付款的方案,当年要求买房户首付3万元,然后从第二年起连续十年,每年付款8000元;另一种方案是一次性付款,优惠价为9万元,若一买房户有现金9万元可以用于购房,又考虑到另有一项投资年收益率为5%,他该采用哪种方案购房更合算?请说明理由.(参考数据 1.059≈1.551,1.0510≈1.628)参考答案一、选择题:BBCAB CCDDC CD 二、填空题:13.1.14.1+=n a n )1(≥n .15.⎪⎩⎪⎨⎧≥-==)2(26)1(5n n n a n.16、)0(,,,,≠--a a a a a ,r 与s 同为奇数或偶数.三、解答题:17.解析:(1)由41014185a S =⎧⎨=⎩ ∴11314,1101099185,2a d a d +=⎧⎪⎨+⋅⋅⋅=⎪⎩ 153a d =⎧⎨=⎩ 由23,3)1(5+=∴⋅-+=n a n a n n(1)设新数列为{n b },由已知,223+⋅=n nb.2)12(62)2222(3321n n G n n n +-=+++++=∴ *)(,62231N n n G n n ∈-+⋅=∴+ 18.解析:(1)12)]111()3121()211[(2)111(2)1(23211+=+-++-+-=+-=+=++++=n n n n S n n n n n a n n 故(本题用到的方法称为“裂项法”,把通项公式化为a n =f (n +1)-f (n )的形式)(2)通项.)21()12(212nnn n n a ⨯-=-=呈“等差×等比”的形式, nn n n S 212)21(231---=-19.解析: (1)由a n =21a n -1+1得a n -2=21(a n -1-2)即21221=---n n a a ,(n ≥2)∴{b n }为以-1为首项,公比为21的等比数列 (2)b n =(-1)( 21)n -1,即a n -2=-(21)n -1∴a n =2-(21)n -120.解析:(1)由题设知每年费用是以12为首项,4为公差的等差数列,设纯收入与年数的关系为()f n ,∴[]9824098)48(161250)(2--=-++++-=n n n n n f ,获利即为()f n >0, ∴04920,09824022<+->--n n n n 即,解之得:1010 2.217.1n n <<<<即,又n ∈N , ∴n =3,4,…,17, ∴当n =3时即第3年开始获利;(1)(i)年平均收入=)49(240)(nn n n f +-= ∵n n 49+≥14492=⨯nn ,当且仅当n =7时取“=”, ∴nn f )(≤40-2×14=12(万元)即年平均收益,总收益为12×7+26=110万元,此时n =7. (ii)102)10(2)(2+--=n n f ,∴当102)(,10max ==n f n总收益为102+8=110万元,此时n =10,比较两种方案,总收益均为110万元,但第一种方案需7年,第二种方案需10年,故选择第一种.21.解析:设数列}{n a 公差为d ,则 ,12331321=+=++d a a a a 又.2,21==d a所以.2n a n =(Ⅱ)解:令,21n n b b b S +++= 则由,2n n n n nx x a b ==得 ,2)22(4212n n n nx x n x x S +-++=- ① ,2)22(42132++-+++=n n n nx x n x x xS ② 当1≠x 时,①式减去②式,得 ,21)1(22)(2)1(112++---=-++=-n n n nn nx xx x nxx x x S x所以.12)1()1(212xnx x x x S n n n ----=+当1=x 时, )1(242+=+++=n n n S n ,综上可得当1=x 时,)1(+=n n S n当1≠x 时,.12)1()1(212x nx x x x S n n n ----=+ 22.解析:如果分期付款,到第十一年付清后看其是否有结余,设首次付款后第n 年的结余数为a n , ∵a 1=(9-3)×(1+0.5%)-0.8=6×1.05-0.8 a 2=(6×1.05-0.8)×1.05-0.8=6×1.052-0.8×(1+1.05) …… a 10=6×1.0510-0.8(1+1.05+…+1.059)=6×1.0510-0.8×105.1105.110--=6×1.0510-16×(1.0510-1) =16-10×1.0510≈16-16.28=-0.28(万元) 所以一次性付款合算.。
高一数学(必修二)立体几何初步单元测试卷及答案一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.如图所示,己知正方形O A B C ''''的边长为1,它是水平放置的一个平面图形的直观图,则其原图形的周长为( )A.8B.22C.4D.223+2.下列说法正确的是( ) A.三点确定一个平面B.圆心和圆上两个点确定一个平面C.如果两个平面相交有一个交点,则必有无数个公共点D.如果两条直线没有交点,则这两条直线平行3.正方体1111ABCD A B C D -中,P ,Q ,R 分别是AB ,AD ,11B C 的中点,那么正方体中过P ,Q ,R 的截面图形是( ) A.三角形B.四边形C.五边形D.六边形4.某圆柱的高为2,其正视图如图所示,圆柱上下底面圆周及侧面上的点A ,B ,D ,F ,C 在正视图中分别对应点A ,B ,E ,F ,C ,且3AE EF =,2BF BC =,异面直线AB ,CD 所成角的正弦值为45,则该圆柱的外接球的表面积为( )A.20πB.16πC.12πD.10π5.在《九章算术·商功》中将正四面形棱台体(棱台的上、下底面均为正方形)称为方亭.在方亭1111ABCD A B C D -中,1124AB A B ==,四个侧面均为全等的等腰梯形且面积之和为122( ) 282B.283142D.1436.异面直线是指( ) A.空间中两条不相交的直线B.分别位于两个不同平面内的两条直线C.平面内的一条直线与平面外的一条直线D.不同在任何一个平面内的两条直线7.如图,在正方体1111ABCD A B C D -中,E ,F 分别是11A D ,11B C 的中点,则与直线CF 互为异面直线的是( )A.1CCB.11B CC.DED.AE8.下列说法中正确的是( ) A.三点确定一个平面 B.四边形一定是平面图形 C.梯形一定是平面图形D.两个不同平面α和β有不在同一条直线上的三个公共点二、多选题(本题共4小题,每小题5分,共20分。
2019—2020学年高一年级下学期期末冲刺满分训练卷第十章 立体几何初步 期末单元测试卷(范围:新教材人教B 版 必修四 考试时间:90分钟 满分:150分)一、选择题(本题共12道小题,每小题5分,共60分)1.以下命题(其中a 、b 表示直线,α表示平面)中,正确的命题是( )A. 若//a b ,b α⊂,则//a αB. 若//a α,//b α,则//a bC. 若//a b ,b α⊥,则a α⊥D. 若//a α,b α⊂,则//a b答案及解析:1.C【分析】根据线线、线面有关定理对选项逐一分析,由此确定正确选项.【详解】对于A 选项,直线a 可能含于平面α,所以A 选项错误.对于B 选项,,a b 可能异面,所以B 选项错误.对于C 选项,由于//a b ,b α⊥,所以a α⊥,所以C 选项正确.对于D 选项,,a b 可能异面,所以D 选项错误.故选:C【点睛】本小题主要考查空间线线、线面位置关系的判断,属于基础题.2.下列命题正确的是( )A. 有两个面平行,其余各面都是四边形的几何体叫棱柱。
B. 有两个面平行,其余各面都是四边形,且每相邻两个四边形的公共边都互相平行的几何体叫棱柱。
C. 绕直角三角形的一边旋转所形成的几何体叫圆锥。
D. 用一个面去截棱锥,底面与截面之间的部分组成的几何体叫棱台。
答案及解析:2.B【分析】根据课本中的相关概念依次判断选项即可.【详解】对于A 选项,几何体可以是棱台,满足有两个面平行,其余各面都是四边形,故选项不正确;对于B ,根据课本中棱柱的概念得到是正确的;对于C ,当绕直角三角形的斜边旋转时构成的几何体不是圆锥,故不正确;对于D ,用平行于底面的平面截圆锥得到的剩余的几何体是棱台,故不正确.故答案为:B.【点睛】这个题目考查了几何体的基本概念,属于基础题.3.在正方体ABCD - A 1B 1C 1D 1中,动点E 在棱BB 1上,动点F 在线段A 1C 1上,O 为底面ABCD 的中心,若1,BE x A F y ==,则四面体O-AEF 的体积( )A. 与x ,y 都有关B. 与x ,y 都无关C. 与x 有关,与y 无关D. 与y 有关,与x 无关答案及解析:3.B【分析】 根据等体积法以及锥体体积公式判断选择.【详解】因为V O -AEF =V E -OAF ,所以,考察△AOF 的面积和点E 到平面AOF 的距离的值,因为BB 1∥平面ACC 1A 1,所以,点E 到平面AOE 的距离为定值,又AO ∥A 1C 1,所以,OA 为定值,点F 到直线AO 的距离也为定值,即△AOF 的面积是定值,所以,四面体O-AEF 的体积与x ,y 都无关,选B 。
2022-2023学年高一下学期高教版(2021)中职数学基础模块下册 指数函数与对数函数单元测试卷一 选择题1.下列运算结果中,错误的是( )A.a 3·a 4=a 7B.(-a 2)3=a 6C.√a 88=|a|D.√(-π)55=-π 2.下列函数中指数函数的个数是( ) ①23xy =⋅ ②13x y += ③3x y =④()21xy a =-(a 为常数,12a >,1a ≠) ⑤3y x = ⑥4x y =- ⑦()4xy =-A .1B .2C .3D .43. 给出下列函数:①y=log 23x 2; ②y=log 3(x-1); 4. ③y=log (x+1)x; ④y=log πx. 其中对数函数的个数为( )A.1B.2C.3D.44.若指数函数f(x)=(a −1)x是R 上的减函数,则a 的取值范围( )A.a>1B.1<a <2C.a>12且a ≠1D.a ≥125.已知0.3m >0.3n,则m ,n 的大小关系为( )A .m>nB .m<nC .m =nD .不能确定 6.函数y =log a (x +2)+1(a >0且a ≠1)图象过定点( )A .(1,2)B .(2,1)C .(-2,1)D .(-1,1) 7.函数()10,1xy a a a =+>≠的图象必经过点( )A .(0,1)B .(1,1)C .()0,2D .(2,2) 8.若log 32=x ,则3x+9x的值为( )A .6B .3 C.52 D.12解析:选A 由log 32=x 得3x =2,因此9x =(3x )2=4,所以3x +9x=2+4=6,故选A.9.设a =0.60.6,b =0.61.5,c =1.50.6,则a ,b ,c 的大小关系是( )A.a <b <cB.a <c <bC.b <a <cD.b <c <a 10.已知a =log 23,b =log 2e ,c =ln 2,则a ,b ,c 的大小关系为( )A .c >a >bB .c >b >aC .b >a >cD .a >b >c 11.青少年视力是社会普遍关注的问题,视力情况可借助视力表测量.通常用五分记录法和小数记录法记录视力数据,五分记录法的数据L 和小数记录法的数据V 满足L =5+lg V .已知某同学视力的五分记录法的数据为 4.9,则其视力的小数记录法的数据约为(1010≈1.259)( ) A .1.5 B .1.2 C .0.8 D .0.612.函数(x)f =2,01,0x x x x ⎧>⎨-⎩,若 ()(2)0f a f +=,则实数a 的值等于A .3B .1C .1-D .3-二 填空题13. a m·a n== (a m )n= 1a m n=log a (MN)= log aMNlog naM14.求值:lg 100=_____ ;lg 0.001=_____;log 2(lg10)= .15.函数()2xy a a =-是指数函数,则 .16.若10x =3,10y =4,则102x -y=________.17.方程lg(2x -3)=1的解为________.方程lg(2x -3)=0的解为________.18.设函数f(x)=22,4log ,44x x x x x ⎧≤⎨⎩-+>,求f(f (8))的值是________.19.若函数f(x)=log a x(a >1)在⎣⎢⎡⎦⎥⎤12,4上的最大值为2,最小值为m ,则a=________,m=________.20.若不等式()24210x xm m -++>在(],1x ∈-∞-上恒成立,则实数m 的取值范围是________.三 解答题21.把下列指数式化为对数式,对数式化为指数式. (1)2-3=18; (2)(13)a =b ;(3)lg 11 000=-3; (4)ln 10=x.22.求下列函数的定义域和值域: (1)142x y -=; (2)y =(3)f(x)=log 2(2x-2) (4)f(x)=log 2x +16-4x23.比较下列各题中的两个值的大小.1.72.5_____1.730.8—1_____0.8—2(1π)−π_____ 1 1.70.5_____ 0.82.5log 230.5_____ log 230.6; log 1.51.6_____ log 1.51.4;log 0.57_____ log 0.67; log 31.25_____ log 20.8.24.用lg x,lg y,lg z(x>0,y>0,z>0)表示下列各式: (1)lg(xyz); (2)lgxy 2z; (3)lg3√z;(4)已知log 23=a,log 27=b,试用a,b 表示log 4256.25.(1)已知对数函数的图象过点M(9,2),求此对数函数的解析式;(2)已知函数f(x)=a x(a>0,且a ≠1), f(2)=4,求函数f(x)的解析式;26.计算:(1) (√2)0+2×940.5-0.001-13;(2)(3)2lg 5+lg 12-lg 3 (4)log 25×lo g 154+(lg 5)2+lg 2×(lg 5+1).27.解不等式 (1)23-2x<0.53x -4(2) log 2x <328.已知函数f(x)=a +22x -1.(1)求f(x)的定义域;(2)若f(x)为奇函数,求a 的值及f(x)的解析式.29.已知函数f(x)=log a ⎝ ⎛⎭⎪⎫1-2x +1(a >0,且a ≠1). (1)求定义域(2)判断函数f(x)的奇偶性并说明理由.。
第二章单元测试题一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中只有一个是符合题目要求的)1.若直线a和b没有公共点,则a与b的位置关系是() A.相交B.平行C.异面D.平行或异面2.平行六面体ABCD-A1B1C1D1中,既与AB共面也与CC1共面的棱的条数为()A.3B.4C.5D.63.已知平面α和直线l,则α内至少有一条直线与l() A.平行B.相交C.垂直D.异面4.长方体ABCD-A1B1C1D1中,异面直线AB,A1D1所成的角等于() A.30°B.45°C.60°D.90°5.对两条不相交的空间直线a与b,必存在平面α,使得() A.a⊂α,b⊂α B.a⊂α,b∥α C.a⊥α,b⊥α D.a⊂α,b⊥α6.下面四个命题:①若直线a,b异面,b,c异面,则a,c异面;②若直线a,b相交,b,c相交,则a,c相交;③若a∥b,则a,b与c所成的角相等;④若a⊥b,b⊥c,则a∥c.其中真命题的个数为()A.4B.3C.2D.17.在正方体ABCD-A1B1C1D1中,E,F分别是线段A1B1,B1C1上的不与端点重合的动点,如果A1E=B1F,有下面四个结论:①EF⊥AA1;②EF∥AC;③EF与AC异面;④EF∥平面ABCD.其中一定正确的有()A.①②B.②③C.②④D.①④8.设a,b为两条不重合的直线,α,β为两个不重合的平面,下列命题中为真命题的是()A.若a,b与α所成的角相等,则a∥b B.若a∥α,b∥β,α∥β,则a∥bC.若a⊂α,b⊂β,a∥b,则α∥βD.若a⊥α,b⊥β,α⊥β,则a⊥b9.已知平面α⊥平面β,α∩β=l,点A∈α,A∉l,直线AB∥l,直线AC⊥l,直线m∥α,n∥β,则下列四种位置关系中,不一定成立的是()A.AB∥m B.AC⊥m C.AB∥βD.AC⊥β10.已知正方体ABCD-A1B1C1D1中,E、F分别为BB1、CC1的中点,那么直线AE与D1F所成角的余弦值为()A.-45 B. .35C.34D.-3511.已知三棱锥D-ABC的三个侧面与底面全等,且AB=AC=3,BC=2,则以BC为棱,以面BCD与面BCA为面的二面角的余弦值为() A.33 B.13C.0D.-1212.如图所示,点P在正方形ABCD所在平面外,P A⊥平面ABCD,P A=AB,则PB与AC所成的角是()A.90°B.60°C.45°D.30°二、填空题(本大题共5小题,每小题5分,共25分.把答案填在题中的横线上)13.下列图形可用符号表示为________.14.正方体ABCD-A1B1C1D1中,二面角C1-AB-C的平面角等于________.15.设平面α∥平面β,A,C∈α,B,D∈β,直线AB与CD交于点S,且点S位于平面α,β之间,AS=8,BS=6,CS=12,则SD=________. 16.将正方形ABCD沿对角线BD折成直二面角A-BD-C,有如下四个结论:①AC⊥BD;②△ACD是等边三角形;③AB与平面BCD成60°的角;④AB与CD所成的角是60°.其中正确结论的序号是________.三、解答题(本大题共6个大题,共70分,解答应写出文字说明,证明过程或演算步骤)17.(10分)如下图,在三棱柱ABC-A1B1C1中,△ABC与△A1B1C1都为正三角形且AA1⊥面ABC,F、F1分别是AC,A1C1的中点.求证:(1)平面AB1F1∥平面C1BF;(2)平面AB1F1⊥平面ACC1A1.18.(本小题满分12分)如图所示,在四棱锥P-ABCD中,P A⊥平面ABCD,AB=4,BC=3,AD=5,∠DAB=∠ABC=90°,E是CD的中点.(1)证明:CD⊥平面P AE;(2)若直线PB与平面P AE所成的角和PB与平面ABCD所成的角相等,求四棱锥P-ABCD的体积.19.(12分)如图所示,边长为2的等边△PCD所在的平面垂直于矩形ABCD所在的平面,BC=22,M为BC的中点.(1)证明:AM⊥PM;(2)求二面角P -AM -D 的大小.20.(本小题满分12分)(2010·辽宁文,19)如图,棱柱ABC -A 1B 1C 1的侧面BCC 1B 1是菱形,B 1C ⊥A 1B .(1)证明:平面AB 1C ⊥平面A 1BC 1;(2)设D 是A 1C 1上的点,且A 1B ∥平面B 1CD ,求A 1D DC 1的值.21.(12分)如图,△ABC 中,AC =BC =22AB ,ABED 是边长为1的正方形,平面ABED ⊥底面ABC ,若G ,F 分别是EC ,BD 的中点.(1)求证:GF∥底面ABC;(2)求证:AC⊥平面EBC;(3)求几何体ADEBC的体积V.22.(12分)如下图所示,在直三棱柱ABC-A1B1C1中,AC=3,BC=4,AB=5,AA1=4,点D是AB的中点.(1)求证:AC⊥BC1;(2)求证:AC1∥平面CDB1;(3)求异面直线AC1与B1C所成角的余弦值.详解答案1[答案] D2[答案] C[解析]AB与CC1为异面直线,故棱中不存在同时与两者平行的直线,因此只有两类:第一类与AB平行与CC1相交的有:CD、C1D1与CC1平行且与AB相交的有:BB1、AA1,第二类与两者都相交的只有BC,故共有5条.3[答案] C[解析]1°直线l与平面α斜交时,在平面α内不存在与l平行的直线,∴A错;2°l⊂α时,在α内不存在直线与l异面,∴D错;3°l∥α时,在α内不存在直线与l相交.无论哪种情形在平面α内都有无数条直线与l垂直.4[答案] D[解析]由于AD∥A1D1,则∠BAD是异面直线AB,A1D1所成的角,很明显∠BAD=90°.5[答案] B[解析]对于选项A,当a与b是异面直线时,A错误;对于选项B,若a,b不相交,则a与b平行或异面,都存在α,使a⊂α,b ∥α,B正确;对于选项C,a⊥α,b⊥α,一定有a∥b,C错误;对于选项D,a⊂α,b⊥α,一定有a⊥b,D错误.6[答案] D[解析]异面、相交关系在空间中不能传递,故①②错;根据等角定理,可知③正确;对于④,在平面内,a∥c,而在空间中,a与c 可以平行,可以相交,也可以异面,故④错误.7[答案] D[解析]如图所示.由于AA1⊥平面A1B1C1D1,EF⊂平面A1B1C1D1,则EF⊥AA1,所以①正确;当E,F分别是线段A1B1,B1C1的中点时,EF∥A1C1,又AC∥A1C1,则EF∥AC,所以③不正确;当E,F分别不是线段A1B1,B1C1的中点时,EF与AC异面,所以②不正确;由于平面A1B1C1D1∥平面ABCD,EF⊂平面A1B1C1D1,所以EF∥平面ABCD,所以④正确.8[答案] D [解析] 选项A 中,a ,b 还可能相交或异面,所以A 是假命题;选项B 中,a ,b 还可能相交或异面,所以B 是假命题;选项C 中,α,β还可能相交,所以C 是假命题;选项D 中,由于a ⊥α,α⊥β,则a ∥β或a ⊂β,则β内存在直线l ∥a ,又b ⊥β,则b ⊥l ,所以a ⊥b .9[答案] C[解析] 如图所示:AB ∥l ∥m ;AC ⊥l ,m ∥l ⇒AC ⊥m ;AB ∥l ⇒AB ∥β.10[答案] 35 命题意图] 本试题考查了正方体中异面直线的所成角的求解的运用.[解析] 首先根据已知条件,连接DF ,然后则角DFD 1即为 异面直线所成的角,设边长为2,则可以求解得到5=DF =D 1F ,DD 1=2,结合余弦定理得到结论.11[答案] C[解析]取BC中点E,连AE、DE,可证BC⊥AE,BC⊥DE,∴∠AED为二面角A-BC-D的平面角又AE=ED=2,AD=2,∴∠AED=90°,故选C.12[答案] B[解析]将其还原成正方体ABCD-PQRS,显见PB∥SC,△ACS 为正三角形,∴∠ACS=60°.13[答案]α∩β=AB14[答案]45°[解析]如图所示,正方体ABCD-A1B1C1D1中,由于BC⊥AB,BC1⊥AB,则∠C1BC是二面角C1-AB-C的平面角.又△BCC1是等腰直角三角形,则∠C1BC=45°.15[答案]9[解析] 如下图所示,连接AC ,BD ,则直线AB ,CD 确定一个平面ACBD .∵α∥β,∴AC ∥BD ,则AS SB =CS SD ,∴86=12SD ,解得SD =9.16[答案] ①②④[解析] 如图所示,①取BD 中点,E 连接AE ,CE ,则BD ⊥AE ,BD ⊥CE ,而AE ∩CE =E ,∴BD ⊥平面AEC ,AC ⊂平面AEC ,故AC ⊥BD ,故①正确.②设正方形的边长为a ,则AE =CE =22a .由①知∠AEC =90°是直二面角A -BD -C 的平面角,且∠AEC =90°,∴AC =a ,∴△ACD 是等边三角形,故②正确. ③由题意及①知,AE ⊥平面BCD ,故∠ABE 是AB 与平面BCD 所成的角,而∠ABE =45°,所以③不正确.④分别取BC ,AC 的中点为M ,N ,连接ME ,NE ,MN .则MN ∥AB ,且MN =12AB =12a ,ME ∥CD ,且ME =12CD =12a ,∴∠EMN 是异面直线AB ,CD 所成的角.在Rt △AEC 中,AE =CE =22a ,AC =a ,∴NE =12AC =12a .∴△MEN 是正三角形,∴∠EMN =60°,故④正确. 17[证明] (1)在正三棱柱ABC -A 1B 1C 1中,∵F 、F 1分别是AC 、A 1C 1的中点,∴B 1F 1∥BF ,AF 1∥C 1F .又∵B 1F 1∩AF 1=F 1,C 1F ∩BF =F ,∴平面AB 1F 1∥平面C 1BF .(2)在三棱柱ABC -A 1B 1C 1中,AA 1⊥平面A 1B 1C 1,∴B 1F 1⊥AA 1. 又B 1F 1⊥A 1C 1,A 1C 1∩AA 1=A 1,∴B 1F 1⊥平面ACC 1A 1,而B 1F 1⊂平面AB 1F 1,∴平面AB 1F 1⊥平面ACC 1A 1.18[解析](1)如图所示,连接AC ,由AB =4,BC =3,∠ABC =90°,得AC =5.又AD =5,E 是CD 的中点,所以CD ⊥AE .∵P A ⊥平面ABCD ,CD ⊂平面ABCD ,所以P A ⊥CD .而P A ,AE 是平面P AE 内的两条相交直线,所以CD ⊥平面P AE .(2)过点B 作BG ∥CD ,分别与AE ,AD 相交于F ,G ,连接PF . 由(1)CD ⊥平面P AE 知,BG ⊥平面P AE .于是∠BPF 为直线PB 与平面P AE 所成的角,且BG ⊥AE .由P A ⊥平面ABCD 知,∠PBA 为直线PB 与平面ABCD 所成的角. AB =4,AG =2,BG ⊥AF ,由题意,知∠PBA =∠BPF ,因为sin ∠PBA =P A PB ,sin ∠BPF =BF PB ,所以P A =BF .由∠DAB =∠ABC =90°知,AD ∥BC ,又BG ∥CD ,所以四边形BCDG 是平行四边形,故GD =BC =3.于是AG =2.在Rt △BAG 中,AB =4,AG =2,BG ⊥AF ,所以BG =AB 2+AG 2=25,BF =AB 2BG =1625=855.于是P A =BF =855.又梯形ABCD 的面积为S =12×(5+3)×4=16,所以四棱锥P -ABCD 的体积为V =13×S ×P A =13×16×855=128515.19[解析] (1)证明:如图所示,取CD 的中点E ,连接PE ,EM ,EA ,∵△PCD为正三角形,∴PE⊥CD,PE=PD sin∠PDE=2sin60°= 3.∵平面PCD⊥平面ABCD,∴PE⊥平面ABCD,而AM⊂平面ABCD,∴PE⊥AM.∵四边形ABCD是矩形,∴△ADE,△ECM,△ABM均为直角三角形,由勾股定理可求得EM =3,AM=6,AE=3,∴EM2+AM2=AE2.∴AM⊥EM.又PE∩EM=E,∴AM⊥平面PEM,∴AM⊥PM.(2)解:由(1)可知EM⊥AM,PM⊥AM,∴∠PME是二面角P-AM-D的平面角.∴tan∠PME=PEEM=33=1,∴∠PME=45°.∴二面角P-AM-D的大小为45°. 20[解析](1)因为侧面BCC1B1是菱形,所以B1C⊥BC1,又已知B1C⊥A1B,且A1B∩BC1=B,所以B1C⊥平面A1BC1,又B1C⊂平面AB1C所以平面AB1C⊥平面A1BC1 .(2)设BC1交B1C于点E,连接DE,则DE是平面A1BC1与平面B1CD的交线.因为A1B∥平面B1CD,A1B⊂平面A1BC1,平面A1BC1∩平面B1CD =DE,所以A1B∥DE.又E是BC1的中点,所以D为A1C1的中点.即A1D DC1=1.21[解](1)证明:连接AE,如下图所示.∴AE∩BD=F,且F是AE的中点,又G 是EC 的中点,∴GF ∥AC ,又AC ⊂平面ABC ,GF ⊄平面ABC ,∴GF ∥平面ABC .(2)证明:∵ADEB 为正方形,∴EB ⊥AB ,又∵平面ABED ⊥平面ABC ,平面ABED ∩平面ABC =AB ,EB ⊂平面ABED ,∴BE ⊥平面ABC ,∴BE ⊥AC .又∵AC =BC =22AB ,∴CA 2+CB 2=AB 2,∴AC ⊥BC .又∵BC ∩BE =B ,∴AC ⊥平面BCE .(3)取AB 的中点H ,连GH ,∵BC =AC =22AB =22,∴CH ⊥AB ,且CH =12,又平面ABED ⊥平面ABC∴GH ⊥平面ABCD ,∴V =13×1×12=16.22[解析] (1)证明:在直三棱柱ABC -A 1B 1C 1中,底面三边长AC =3,BC =4,AB =5,∴AC ⊥BC .又∵C 1C ⊥AC .∴AC ⊥平面BCC 1B 1.∵BC 1⊂平面BCC 1B ,∴AC ⊥BC 1.(2)证明:设CB 1与C 1B 的交点为E ,连接DE ,又四边形BCC 1B 1为正方形.∵D 是AB 的中点,E 是BC 1的中点,∴DE ∥AC 1.∵DE ⊂平面CDB 1,AC 1⊄平面CDB 1,∴AC 1∥平面CDB 1.(3)解:∵DE ∥AC 1,∴∠CED 为AC 1与B 1C 所成的角.在△CED 中,ED =12AC 1=52,CD =12AB =52,CE =12CB 1=22,∴cos ∠CED =252=225.∴异面直线AC 1与B 1C 所成角的余弦值为225.。
第八章 立体几何初步考试时间120分钟,满分150分.一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.给出下列命题:①在圆柱的上、下底面的圆周上各取一点,则这两点的连线是圆柱的母线; ②有一个面是多边形,其余各面都是三角形的几何体是棱锥; ③棱台的上、下底面可以不相似,但侧棱长一定相等. 其中真命题的个数是( ) A .0 B .1 C .2D .32.以长为8 cm ,宽为6 cm 的矩形的一边为旋转轴旋转而成的圆柱的底面面积为( ) A .64π cm 2B .36π cm 2C .64π cm 2或36π cm 2D .48π cm 23.梯形ABCD 中,AB ∥CD ,AB ⊂平面α,CD ⊄平面α,则直线CD 与平面α内的直线的位置关系只能是( )A .平行B .平行或异面C .平行或相交D .异面或相交4.空间四点A ,B ,C ,D 共面而不共线,那么这四点中( ) A .必有三点共线 B .必有三点不共线 C .至少有三点共线D .不可能有三点共线5.如图所示,正方形ABCD 中,E ,F 分别是AB ,AD 的中点,将此正方形沿EF 折成直二面角后,异面直线AF 与BE 所成角的余弦值为( )A .22 B .3 C .12D .326.E ,F ,G 分别是空间四边形ABCD 的棱BC ,CD ,DA 的中点,则此四面体中与过E ,F ,G 的截面平行的棱的条数是( )A .0B .1C .2D .37.正四棱锥的顶点都在同一球面上.若该棱锥的高为4,底面边长为2,则该球的表面积为( )A .81π4 B .16π C .9πD .27π48.如图,在直三棱柱ABC -A 1B 1C 1中,D 为A 1B 1的中点,AB =BC =BB 1=2,AC =25,则异面直线BD 与AC 所成的角为( )A .30°B .45°C .60°D .90°二、多项选择题(本大题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多个选项是符合题目要求的,全部选对的得5分,选对但不全的得2分,有选错的得0分)9.以下关于空间几何体特征性质的描述,错误的是( )A .以直角三角形一边所在直线为旋转轴,其余两边旋转形成的曲面所围成的几何体是圆锥B .有两个面互相平行,其余各面都是四边形的几何体是棱柱C .有一个面是多边形,其余各面都是三角形的几何体是棱锥D .两底面互相平行,其余各面都是梯形,侧棱延长线交于一点的几何体是棱台 10.如图,在平行六面体ABCD -A 1B 1C 1D 1中,点M ,P ,Q 分别为棱AB ,CD ,BC 的中点,若平行六面体的各棱长均相等,则下列说法正确的是( )A .A 1M ∥D 1PB .A 1M ∥B 1QC .A 1M ∥平面DCC 1D 1 D .A 1M ∥平面D 1PQB 111.如图,在四面体ABCD 中,截面PQMN 是正方形,则在下列命题中,一定正确的为( )A .AC ⊥BDB .AC ∥截面PQMN C .AC =BDD .异面直线PM 与BD 所成的角为45°12.正方体ABCD -A 1B 1C 1D 1的棱长为1,E ,F ,G 分别为BC ,CC 1,BB 1的中点.则( )A .直线D 1D 与直线AF 垂直B .直线A 1G 与平面AEF 平行C .平面AEF 截正方体所得的截面面积为98D .点C 与点G 到平面AEF 的距离相等三、填空题(本大题共4小题,每小题5分,共20分)13.一个圆柱的侧面展开图是一个边长为1的正方形,则该圆柱的体积是___.14.一个直径为32厘米的圆柱形水桶中放入一个铁球,球全部没入水中后,水面升高9厘米,则此球的半径为____厘米.15.已知a ,b 表示直线,α,β,γ表示平面.①若α∩β=a ,b ⊂α,a ⊥b ,则α⊥β;②若a ⊂α,a 垂直于β内任意一条直线,则α⊥β;③若α⊥β,α∩β=a ,α∩γ=b ,则a ⊥b ;④若a ⊥α,b ⊥β,a ∥b ,则α∥β.上述命题中,正确命题的序号是____.16.(2020·全国Ⅰ卷理)如图,在三棱锥P -ABC 的平面展开图中,AC =1,AB =AD =3,AB ⊥AC ,AB ⊥AD ,∠CAE =30°,则cos ∠FCB = ____.四、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(本小题满分10分)某高速公路收费站入口处的安全标识墩如图所示,墩的上半部分是正四棱锥P-EFGH,下半部分是长方体ABCD-EFGH.长方体的长、宽、高分别是40 cm、40 cm、20 cm,正四棱锥P-EFGH的高为60 cm.(1)求该安全标识墩的体积;(2)求该安全标识墩的侧面积.18.(本小题满分12分)如图所示,一个圆锥形的空杯子上面放着一个半球形的冰淇淋,如果冰淇淋融化了,会溢出杯子吗?请用你的计算数据说明理由.19.(本小题满分12分)如图所示,在四棱锥P-ABCD中,侧面PAD⊥底面ABCD,侧棱PA⊥PD,底面ABCD是直角梯形,其中BC∥AD,∠BAD=90°,AD=3BC,O是AD上一点.(1)若CD∥平面PBO,试指出点O的位置;(2)求证:平面PAB⊥平面PCD.20.(本小题满分12分)(2020·江苏卷)在三棱柱ABC-A1B1C1中,AB⊥AC,B1C⊥平面ABC,E,F分别是AC,B1C的中点.(1)求证:EF∥平面AB1C1;(2)求证:平面AB1C⊥平面ABB1.21.(本小题满分12分)在三棱锥S-ABC中,SA⊥底面ABC,AB⊥BC,DE垂直平分SC 且分别交AC,SC于D,E,又SA=AB,SB=BC.(1)求证:BD⊥平面SAC;(2)求二面角E-BD-C的大小.22.(本小题满分12分)如图,在三棱柱ABC-A1B1C1中,AA1⊥平面ABC,AC=BC,AB =2A1A=4,以AB,BC为邻边作平行四边形ABCD,连接A1D,DC1.(1)求证:DC1∥平面A1ABB1;(2)若二面角A1-DC-A为45°.①求证:平面A1C1D⊥平面A1AD;②求直线AB1与平面A1AD所成角的正切值.第八章立体几何初步考试时间120分钟,满分150分.一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.给出下列命题:①在圆柱的上、下底面的圆周上各取一点,则这两点的连线是圆柱的母线;②有一个面是多边形,其余各面都是三角形的几何体是棱锥;③棱台的上、下底面可以不相似,但侧棱长一定相等.其中真命题的个数是(A)A.0B.1C.2D.3[解析]①不一定,只有当这两点的连线平行于轴时才是母线;②不一定,因为“其余各面都是三角形”并不等价于“其余各面都是有一个公共顶点的三角形”,如图所示;③错误,棱台的上、下底面相似且是对应边平行的多边形,各侧棱延长线交于一点,但是侧棱长不一定相等.2.以长为8 cm ,宽为6 cm 的矩形的一边为旋转轴旋转而成的圆柱的底面面积为( C ) A .64π cm 2B .36π cm 2C .64π cm 2或36π cm 2D .48π cm 2[解析] 分别以长为8 cm ,宽为6 cm 的边所在的直线为旋转轴,即可得到两种不同大小的圆柱,显然C 选项正确.3.梯形ABCD 中,AB ∥CD ,AB ⊂平面α,CD ⊄平面α,则直线CD 与平面α内的直线的位置关系只能是( B )A .平行B .平行或异面C .平行或相交D .异面或相交[解析] 由直线与平面平行的判定定理,可知CD ∥α,所以CD 与平面α内的直线没有公共点.4.空间四点A ,B ,C ,D 共面而不共线,那么这四点中( B ) A .必有三点共线 B .必有三点不共线 C .至少有三点共线D .不可能有三点共线[解析] ∵A ,B ,C ,D 共面而不共线,这四点可能有三点共线,也可能任意三点不共线,A 错.如果四点中没有三点不共线,则四点共线,矛盾,B 正确.当任意三点不共线时,也满足条件,C 错.当其中三点共线,第四个点不共线时,也满足条件,D 错.5.如图所示,正方形ABCD 中,E ,F 分别是AB ,AD 的中点,将此正方形沿EF 折成直二面角后,异面直线AF 与BE 所成角的余弦值为( C )A .22 B .3 C .12D .32[解析] 过点F 作FH ∥DC ,交BC 于H ,过点A 作AG ⊥EF ,交EF 于G ,连接GH ,AH ,则∠AFH 为异面直线AF 与BE 所成的角.设正方形ABCD 的边长为2,在△AGH 中,AH =52+24=3,在△AFH 中,AF =1,FH =2,AH =3,∴cos ∠AFH =12.6.E ,F ,G 分别是空间四边形ABCD 的棱BC ,CD ,DA 的中点,则此四面体中与过E ,F ,G 的截面平行的棱的条数是( C )A .0B .1C .2D .3[解析] 在△ACD 中,∵G ,F 分别为AD 与CD 的中点,∴GF ∥AC .而GF ⊂平面EFG ,AC ⊄平面EFG ,∴AC ∥平面EFG .同理,BD ∥平面EFG .故选C .7.正四棱锥的顶点都在同一球面上.若该棱锥的高为4,底面边长为2,则该球的表面积为( A )A .81π4 B .16π C .9πD .27π4[解析] 如图所示,设球的半径为R ,球心为O ,正四棱锥的底面中心为O ′.∵正四棱锥P -ABCD 中AB =2,∴AO ′= 2.∵PO ′=4,∴在Rt △AOO ′中,AO 2=AO ′2+OO ′2,∴R 2=(2)2+(4-R )2,解得R =94,∴该球的表面积为4πR 2=4π×⎝⎛⎭⎫942=81π4,故选A .8.如图,在直三棱柱ABC -A 1B 1C 1中,D 为A 1B 1的中点,AB =BC =BB 1=2,AC =25,则异面直线BD 与AC 所成的角为( C )A .30°B .45°C .60°D .90°[解析] 如图,取B 1C 1的中点E ,连接BE ,DE ,则AC ∥A 1C 1∥DE ,则∠BDE 即为异面直线BD 与AC 所成的角.由条件可知BD =DE =EB =5,所以∠BDE =60°,故选C .二、多项选择题(本大题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多个选项是符合题目要求的,全部选对的得5分,选对但不全的得2分,有选错的得0分) 9.以下关于空间几何体特征性质的描述,错误的是(ABC)A.以直角三角形一边所在直线为旋转轴,其余两边旋转形成的曲面所围成的几何体是圆锥B.有两个面互相平行,其余各面都是四边形的几何体是棱柱C.有一个面是多边形,其余各面都是三角形的几何体是棱锥D.两底面互相平行,其余各面都是梯形,侧棱延长线交于一点的几何体是棱台[解析]以直角三角形的一个直角边所在直线为旋转轴,其余两边旋转形成的曲面所围成的几何体是圆锥,可得A错误;有两个面互相平行,其余各面都是四边形的几何体可能是棱台,不一定是棱柱,故B错误;有一个面是多边形,其余各面都是有公共顶点三角形的几何体叫棱锥,故C错误;根据棱台的定义,可得D正确.故选ABC.10.如图,在平行六面体ABCD-A1B1C1D1中,点M,P,Q分别为棱AB,CD,BC的中点,若平行六面体的各棱长均相等,则下列说法正确的是(ACD)A.A1M∥D1P B.A1M∥B1QC.A1M∥平面DCC1D1D.A1M∥平面D1PQB1[解析]连接PM,因为M、P为AB、CD的中点,故PM平行且等于AD.由题意知AD 平行且等于A1D1,故PM平行且等于A1D1,所以PMA1D1为平行四边形,所以A1M∥D1P.故A正确;显然A1M与B1Q为异面直线,故B错误;由A知A1M∥D1P,由于D1P既在平面DCC1D1内,又在平面D1PQB1内,且A1M即不在平面DCC1D1内,又不在平面D1PQB1内,故C、D正确.故选ACD.11.如图,在四面体ABCD中,截面PQMN是正方形,则在下列命题中,一定正确的为(ABD)A .AC ⊥BDB .AC ∥截面PQMN C .AC =BDD .异面直线PM 与BD 所成的角为45°[解析] ∵QM ∥PN ,∴QM ∥平面ABD ,∴QM ∥BD ,同理可得AC ∥MN ,∵QM ∥BD ,AC ∥MN ,MN ⊥QM ,∴AC ⊥BD ,A 正确;∵AC ∥MN ,∴AC ∥截面PQMN ,B 正确;∵QM ∥BD ,AC ∥MN ,∴MN AC +QMBD =1,C 不一定正确;∵QM ∥BD ,∴异面直线PM 与BD 所成的角为∠PMQ =45°,D 正确.故选ABD .12.正方体ABCD -A 1B 1C 1D 1的棱长为1,E ,F ,G 分别为BC ,CC 1,BB 1的中点.则( BC )A .直线D 1D 与直线AF 垂直B .直线A 1G 与平面AEF 平行C .平面AEF 截正方体所得的截面面积为98 D .点C 与点G 到平面AEF 的距离相等[解析] 取DD 1中点M ,则AM 为AF 在平面AA 1D 1D 上的射影,∵AM 与DD 1不垂直,∴AF 与DD 1不垂直,故A 选项错误;∵A 1G ∥D 1F ,A 1G ⊄平面AEFD 1,∴A 1G ∥平面AEFD 1,故B 选项正确;平面AEF 截正方体所得截面为等腰梯形AEFD 1,易知梯形面积为98,故C 选项正确;假设C 与G 到平面AEF 的距离相等,即平面AEF 将CG 平分,则平面AEF 必过CG 中点,连接CG 交EF 于H ,而H 不是CG 中点,则假设不成立.故D 选项错误.故选BC .三、填空题(本大题共4小题,每小题5分,共20分)13.一个圆柱的侧面展开图是一个边长为1的正方形,则该圆柱的体积是__14π__. [解析] ∵圆柱的侧面展开图是边长为1的正方形, ∴该圆柱的高h =1,底面周长2πr =1,∴底面半径r =12π, ∴该圆柱的体积V =π×14π2×1=14π.14.一个直径为32厘米的圆柱形水桶中放入一个铁球,球全部没入水中后,水面升高9厘米,则此球的半径为__12__厘米.[解析] V =Sh =πr 2h =43πR 3,R =364×27=12(cm).15.已知a ,b 表示直线,α,β,γ表示平面.①若α∩β=a ,b ⊂α,a ⊥b ,则α⊥β;②若a ⊂α,a 垂直于β内任意一条直线,则α⊥β;③若α⊥β,α∩β=a ,α∩γ=b ,则a ⊥b ;④若a ⊥α,b ⊥β,a ∥b ,则α∥β.上述命题中,正确命题的序号是__②④__.[解析] 对①可举反例,如图,需b ⊥β才能推出α⊥β;对③可举反例说明,当γ不与α,β的交线垂直时,即可知a ,b 不垂直;根据面面、线面垂直的定义与判定知②④正确.16.(2020·全国Ⅰ卷理)如图,在三棱锥P -ABC 的平面展开图中,AC =1,AB =AD =3,AB ⊥AC ,AB ⊥AD ,∠CAE =30°,则cos ∠FCB = __-14__.[解析] ∵AB ⊥AC ,AB =3,AC =1,由勾股定理得BC =AB 2+AC 2=2,同理得BD =6,∴BF =BD =6,在△ACE 中,AC =1,AE =AD =3,∠CAE =30°, 由余弦定理得CE 2=AC 2+AE 2-2AC ·AE cos30°=1+3-2×1×3×32=1,∴CF =CE =1,在△BCF 中,BC =2,BF =6,CF =1, 由余弦定理得cos ∠FCB =CF 2+BC 2-BF 22CF ·BC=1+4-62×1×2=-14. 四、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分10分)某高速公路收费站入口处的安全标识墩如图所示,墩的上半部分是正四棱锥P -EFGH ,下半部分是长方体ABCD -EFGH .长方体的长、宽、高分别是40 cm 、40 cm 、20 cm ,正四棱锥P -EFGH 的高为60 cm.(1)求该安全标识墩的体积; (2)求该安全标识墩的侧面积.[解析] (1)该安全标识墩的体积V =V P -EFGH +V ABCD -EFGH =13×402×60+402×20=64 000(cm 3).(2)如图,连接EG ,HF 交于点O ,连接PO ,结合三视图可知OP =60 cm ,OG =12EG =20 2 cm ,可得PG =602+(202)2=2011(cm).于是四棱锥P -EFGH 的侧面积S 1=4×12×40×(2011)2-202=1 60010(cm 2), 四棱柱EFGH -ABCD 的侧面积S 2=4×40×20=3 200(cm 2), 故该安全标识墩的侧面积S =S 1+S 2=1 600(10+2)(cm 2).18.(本小题满分12分)如图所示,一个圆锥形的空杯子上面放着一个半球形的冰淇淋,如果冰淇淋融化了,会溢出杯子吗?请用你的计算数据说明理由.[解析] 不会溢出杯子.理由如下:由题图可知半球的半径为4 cm ,所以V 半球=12×43πR 3=12×43π×43=1283π(cm 3),V 圆锥=13πr 2h =13π×42×12=64π(c m 3).因为V 半球<V 圆锥,所以如果冰淇淋融化了,不会溢出杯子.19.(本小题满分12分)如图所示,在四棱锥P -ABCD 中,侧面PAD ⊥底面ABCD ,侧棱PA⊥PD,底面ABCD是直角梯形,其中BC∥AD,∠BAD=90°,AD=3BC,O是AD上一点.(1)若CD∥平面PBO,试指出点O的位置;(2)求证:平面PAB⊥平面PCD.[解析](1)∵CD∥平面PBO,CD⊂平面ABCD,且平面ABCD∩平面PBO=BO,∴BO∥CD.又BC∥AD,∴四边形BCDO为平行四边形,则BC=DO,而AD=3BC,∴AD=3OD,即点O是靠近点D的线段AD的一个三等分点.(2)证明:∵侧面PAD⊥底面ABCD,平面PAD∩平面ABCD=AD,AB⊂底面ABCD,且AB⊥AD,∴AB⊥平面PAD.又PD⊂平面PAD,∴AB⊥PD.又PA⊥PD,AB∩PA=A,AB,PA⊂平面PAB,∴PD⊥平面PAB.又PD⊂平面PCD,∴平面PAB⊥平面PCD.20.(本小题满分12分)(2020·江苏卷)在三棱柱ABC-A1B1C1中,AB⊥AC,B1C⊥平面ABC,E,F分别是AC,B1C的中点.(1)求证:EF∥平面AB1C1;(2)求证:平面AB1C⊥平面ABB1.[解析](1)因为E,F分别是AC,B1C的中点,所以EF∥AB1.又EF⊄平面AB1C1,AB1⊂平面AB1C1,所以EF∥平面AB1C1.(2)因为B1C⊥平面ABC,AB⊂平面ABC,所以B1C⊥AB.又AB⊥AC,B1C⊂平面AB1C1,AC⊂平面AB1C,B1C∩AC=C,所以AB⊥平面AB1C.又因为AB⊂平面ABB1,所以平面AB1C⊥平面ABB1.21.(本小题满分12分)在三棱锥S-ABC中,SA⊥底面ABC,AB⊥BC,DE垂直平分SC 且分别交AC,SC于D,E,又SA=AB,SB=BC.(1)求证:BD⊥平面SAC;(2)求二面角E-BD-C的大小.[解析](1)证明:如图,∵DE⊥SC,且E为SC的中点,又SB=BC,∴BE⊥SC.又DE∩BE=E,根据直线与平面垂直的判定定理知SC⊥平面BDE,∵BD⊂平面BDE,∴SC⊥BD.又SA⊥平面ABC,BD⊂平面ABC,∴SA⊥BD.又SA∩SC=S,∴BD⊥平面SAC.(2)由(1)知∠EDC为二面角E-BD-C的平面角,又△SAC∽△DEC,∴∠EDC=∠ASC.在Rt△SAB中,∠SAB=90°,设SA=AB=1,则SB= 2.由SA⊥BC,AB⊥BC,AB∩SA=A,∴BC⊥平面SAB,SB⊂平面SAB,∴BC⊥SB.在Rt △SBC 中,SB =BC =2,∠SBC =90°,则SC =2. 在Rt △SAC 中,∠SAC =90°,SA =1,SC =2. ∴cos ∠ASC =SA SC =12,∴∠ASC =60°,即二面角E -BD -C 的大小为60°. 22.(本小题满分12分)如图,在三棱柱ABC -A 1B 1C 1中,AA 1⊥平面ABC ,AC =BC ,AB =2A 1A =4,以AB ,BC 为邻边作平行四边形ABCD ,连接A 1D ,DC 1.(1)求证:DC 1∥平面A 1ABB 1; (2)若二面角A 1-DC -A 为45°. ①求证:平面A 1C 1D ⊥平面A 1AD ; ②求直线AB 1与平面A 1AD 所成角的正切值. [解析] (1)证明:连接AB 1, ∵AD ∥BC ∥B 1C 1且AD =BC =B 1C 1, ∴四边形ADC 1B 1为平行四边形, ∴AB 1∥DC 1,又∵AB 1⊂平面A 1ABB 1,DC 1⊄平面A 1ABB 1. ∴DC 1∥平面A 1ABB 1.(2)①证明:如图,取DC 的中点M ,连接A 1M ,AM .易知Rt △A 1AD ≌Rt △A 1AC , ∴A 1D =A 1C ,∴A 1M ⊥DC , 又AM ⊥DC ,∴∠A 1MA 为二面角A 1-DC -A 的平面角, ∴∠A 1MA =45°. ∴在Rt △A 1AM 中,AA 1=AM =2, ∴AD =AC =22,∴AC 2+AD 2=DC 2,∴AC ⊥AD ,又∵AC ⊥AA 1,AD ∩AA 1=A ,∴AC ⊥平面A 1AD . 又∵AC ∥A 1C 1,∴A 1C 1⊥平面A 1AD .∵A 1C 1⊂平面A 1C 1D , ∴平面A 1C 1D ⊥平面A 1AD . ②∵AB 1∥DC 1,∴DC 1与平面A 1AD 所成角等于AB 1与平面A 1AD 所成角. 由①知A 1C 1⊥平面A 1AD ,∴A 1D 为DC 1在平面A 1AD 内的射影, 故∠A 1DC 1为直线DC 1与平面A 1AD 所成角, 在Rt △A 1DC 1中,tan ∠A 1DC 1=A 1C 1A 1D =63, ∴直线AB 1与平面A 1AD 所成角的正切值为63.。
立体几何综合测评(满分:150分时间:120分钟)一、选择题(本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.给出下列命题,其中是真命题的为()(1)若两个平面平行,那么其中一个平面内的直线一定平行于另一个平面;(2)若两个平面平行,那么垂直于其中一个平面的直线一定垂直于另一个平面;(3)若两个平面垂直,那么垂直于其中一个平面的直线一定平行于另一个平面;(4)若两个平面垂直,那么其中一个平面内的直线一定垂直于另一个平面.A.(1)(2)B.(1)(3)C.(2)(4) D.(3)(4)A[(1)因为两个平面平行,所以两个平面没有公共点,即其中一个平面内的直线与另一个平面也没有公共点,所以(1)正确.(2)因为该直线与其中一个平面垂直,那么该直线必与其中两条相交直线垂直,又两个平面平行,故另一个平面也必定存在两条相交直线与该直线垂直,所以该直线与另一个平面也垂直,故(2)正确.(3)错,反例:该直线可以在另一个平面内.(4)错,反例:其中一个平面内也存在直线与另一个平面平行.综上:(1)(2)为真命题.]2.给出以下四个命题:①不共面的四点中,其中任意三点不共线;②若点A,B,C,D共面,点A,B,C,E共面,则点A,B,C,D,E共面;③若直线a,b共面,直线a,c共面,则直线b,c共面;④依次首尾相接的四条线段必共面.其中正确命题的个数是()A.0 B.1C.2 D.3B[①假设其中有三点共线,则该直线和直线外的另一点确定一个平面,这与四点不共面矛盾,故其中任意三点不共线,所以①正确;②如图,两个相交平面有三个公共点A,B,C,但A,B,C,D,E不共面;③显然不正确;④不正确.因为此时所得的四边形的四条边可以不在一个平面上,如空间四边形.]3.在正方体ABCD-A1B1C1D1中,棱所在直线与直线BA1是异面直线的条数为()A.4 B.5C.6 D.7C[如图,在正方体ABCD-A1B1C1D1中,与直线BA1异面的直线有CD,C1D1,C1C,D1D,B1C1,AD,共6条,故选C.]4.设l为直线,α,β是两个不同的平面.下列命题中正确的是()A.若l∥α,l∥β,则α∥βB.若l⊥α,l⊥β,则α∥βC.若l⊥α,l∥β,则α∥βD.若α⊥β,l∥α,则l⊥βB[对于A,若l∥α,l∥β,则α和β可能平行也可能相交,故错误;对于B,若l⊥α,l⊥β,则α∥β,故正确;对于C,若l⊥α,l∥β,则α⊥β,故错误;对于D,若α⊥β,l∥α,则l与β的位置关系有三种可能:l⊥β,l∥β,lβ,故错误.故选B.] 5.如图,已知P A⊥矩形ABCD所在的平面,则图中互相垂直的平面有()A.1对B.2对C.3对D.5对D[∵DA⊥AB,DA⊥P A,∴DA⊥平面P AB.同理BC⊥平面P AB,又AB⊥平面P AD,∴DC⊥平面P AD,∴平面P AD⊥平面AC,平面P AB⊥平面AC,平面PBC⊥平面P AB,平面P AB⊥平面P AD,平面PDC⊥平面P AD,共5对.]6.如图,α∩β=l,点A,C∈α,点B∈β,且BA⊥α,BC⊥β,那么直线l与直线AC的关系是()A.异面B.平行C.垂直D.不确定C[∵BA⊥α,α∩β=l,lα,∴BA⊥l.同理BC⊥l.又BA∩BC=B,∴l⊥平面ABC.∵AC平面ABC,∴l⊥AC.]7.下列命题中正确的是()A.将正方形旋转不可能形成圆柱B.以直角梯形的一腰为轴旋转所得的旋转体是圆台C.圆柱、圆锥、圆台的底面都是圆面D.通过圆台侧面上一点,有无数条母线C[将正方形绕其一边所在直线旋转可以形成圆柱,所以A错误;B中必须以垂直于底边的腰为轴旋转才能得到圆台,所以B错误;通过圆台侧面上一点,只有一条母线,所以D错误,故选C.] 8.如图所示的组合体,其构成形式是()A.左边是三棱台,右边是圆柱B.左边是三棱柱,右边是圆柱C.左边是三棱台,右边是长方体D.左边是三棱柱,右边是长方体D[根据三棱柱和长方体的结构特征,可知此组合体左边是三棱柱,右边是长方体.]9.设长方体的长,宽,高分别为2a,a,a,其顶点都在一个球面上,则该球的表面积为() A.3πa2B.6πa2C.12πa2D.24πa2B[由题可知,球的直径等于长方体的体对角线的长度,故2R=4a2+a2+a2,解得R=62a,所求球的表面积S=4πR2=6πa2.]10.设三棱柱的侧棱垂直于底面,所有棱的长都为a,顶点都在一个球面上,则该球的表面积为()A.πa2 B.73πa2C.113πa2D.5πa2B[由题意知,该三棱柱为正三棱柱,且侧棱与底面边长相等,均为a.如图,P为三棱柱上底面的中心,O为球心,易知AP=23×32a=33a,OP=12a,所以球的半径R=OA满足R2=⎝⎛⎭⎪⎫33a2+⎝⎛⎭⎪⎫12a2=7 12a 2,故S球=4πR2=73πa2.]11.已知直三棱柱ABC-A1B1C1的6个顶点都在球O的球面上,若AB=3,AC=4,AB⊥AC,AA1=12,则球O的半径为()A.3172B.210C.132D.310C[如图所示,由球心作平面ABC 的垂线,则垂足为BC 的中点M .又AM =12BC =52,OM =12AA 1=6,所以球O 的半径为R =OA =62+⎝ ⎛⎭⎪⎫522=132.]12.已知l ,m 表示两条不同的直线,α表示平面,则下列说法正确的是( ) A .若l ⊥α,m α,则l ⊥mB .若l ⊥m ,m α,则l ⊥αC .若l ∥m ,m α,则l ∥αD .若l ∥α,m α,则l ∥m A [对于A ,若l ⊥α,m α,则根据直线与平面垂直的性质,知l ⊥m ,故A 正确;对于B ,若l ⊥m ,m α,则l 可能在α内,故B 不正确;对于C ,若l ∥m ,m α,则l ∥α或l α,故C 不正确;对于D ,若l ∥α,m α,则l 与m 可能平行,也可能异面,故D 不正确.故选A.]二、填空题(本大题共4小题,每小题5分,共20分,把答案填在题中横线上) 13.已知正六棱柱的侧面积为72 cm 2,高为6 cm ,那么它的体积为__________cm 3. 363 [设正六棱柱的底面边长为x cm ,由题意得6x ·6=72,所以x =2 cm , 于是其体积V =34×22×6×6=36 3 cm 3.]14.圆锥的表面积是底面积的3倍,那么该圆锥的侧面展开图扇形的圆心角的度数为________. 180° [S 底+S 侧=3S 底,2S 底=S 侧,即2πr 2=πrl ,得2r =l . 设侧面展开图的圆心角为θ,则θπl 180°=2πr ,∴θ=180°.]15.如图所示,在正方体ABCD -A 1B 1C 1D 1中,M ,N 分别是棱AA 1和AB 上的点,若∠B 1MN 是直角,则∠C1MN等于________.90°[∵B1C1⊥平面A1ABB1,MN平面A1ABB1,∴B1C1⊥MN.又∠B1MN为直角,∴B1M⊥MN.而B1M∩B1C1=B1,∴MN⊥平面MB1C1.又MC1平面MB1C1,∴MN⊥MC1,∴∠C1MN=90°.]16.棱长为1的正四面体内有一点P,由点P向各个面引垂线,垂线段分别为d1,d2,d3,d4,则d 1+d 2+d 3+d 4的值为________.63 [设四面体的高为h ,则h =12-⎝ ⎛⎭⎪⎫23×32×12=63,13Sh =13S (d 1+d 2+d 3+d 4),∴d 1+d 2+d 3+d 4=h =63.]B三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(本小题满分10分)如图,正方体ABCD -A ′B ′C ′D ′的棱长为a ,连结A ′C ′,A ′D ,A ′B ,BD ,BC ′,C ′D ,得到一个三棱锥.求:(1)三棱锥A ′BC ′D 的表面积与正方体表面积的比值; (2)三棱锥A ′BC ′D 的体积.[解] (1)∵ABCD -A ′B ′C ′D ′是正方体, ∴六个面是互相全等的正方形,∴A ′C ′=A ′B =A ′D =BC ′=BD =C ′D =2a ,∴S 三棱锥=4×34×(2a )2=23a 2,S 正方体=6a 2, ∴S 三棱锥S 正方体=33. (2)显然,三棱锥A ′ABD ,C ′BCD ,D A ′D ′C ′, B A ′B ′C ′是完全一样的, ∴V 三棱锥A ′BC ′D =V 正方体-4V 三棱锥A ′ABD =a 3-4×13×12a 2×a =13a 3.18.(本小题满分12分)如图,在三棱锥A -BCD 中,AB ⊥AD ,BC ⊥BD ,平面ABD ⊥平面BCD ,点E ,F (E 与A ,D 不重合)分别在棱AD ,BD上,且EF ⊥AD .求证:(1)EF ∥平面ABC ; (2)AD ⊥AC .[证明] (1)在平面ABD 内,因为AB ⊥AD ,EF ⊥AD , 所以EF ∥AB .又因为EF 平面ABC ,AB 平面ABC , 所以EF ∥平面ABC .(2)因为平面ABD ⊥平面BCD , 平面ABD ∩平面BCD =BD , BC 平面BCD ,BC ⊥BD , 所以BC ⊥平面ABD .因为AD 平面ABD ,所以BC ⊥AD .又AB ⊥AD ,BC ∩AB =B ,AB 平面ABC ,BC 平面ABC , 所以AD ⊥平面ABC . 又因为AC 平面ABC , 所以AD ⊥AC .19.(本小题满分12分)如图,圆锥的轴截面SAB 为等腰直角三角形,Q 为底面圆周上一点.(1)若QB的中点为C,求证:平面SOC⊥平面SBQ;(2)若∠AOQ=120°,QB=3,求圆锥的表面积.[解](1)证明:∵SQ=SB,OQ=OB,C为QB的中点,∴QB⊥SC,QB⊥OC.∵SC∩OC=C,∴QB⊥平面SOC.又∵QB平面SBQ,∴平面SOC⊥平面SBQ.(2)∵∠AOQ=120°,QB=3,∴∠BOQ=60°,即△OBQ为等边三角形,∴OB= 3.∵△SAB为等腰直角三角形,∴SB=6,∴S侧=3·6π=32π,∴S表=S侧+S底=32π+3π=(3+32)π.20.(本小题满分12分)如图所示,ABCD是正方形,O是正方形的中心,PO⊥底面ABCD,底面边长为a,E是PC的中点.(1)求证:P A∥平面BDE;(2)求证:平面P AC⊥平面BDE;(3)若二面角E-BD-C为30°,求四棱锥P-ABCD的体积.[解](1)证明:连结OE,如图所示.∵O,E分别为AC,PC的中点,∴OE∥P A.∵OE平面BDE,P A平面BDE,∴P A∥平面BDE. (2)证明:∵PO⊥平面ABCD,∴PO⊥BD.在正方形ABCD中,BD⊥AC.又∵PO∩AC=O,∴BD⊥平面P AC.又∵BD平面BDE,∴平面P AC⊥平面BDE.(3)取OC 中点F ,连结EF .∵E 为PC 中点,∴EF 为△POC 的中位线,∴EF ∥PO .又∵PO ⊥平面ABCD ,∴EF ⊥平面ABCD ,∴EF ⊥BD .∵OF ⊥BD ,OF ∩EF =F ,∴BD ⊥平面EFO ,∴OE ⊥BD ,∴∠EOF 为二面角E -BD -C 的平面角,∴∠EOF =30°.在Rt △OEF 中,OF =12OC =14AC =24a ,∴EF =OF ·tan 30°=612a ,∴OP =2EF =66a .∴V P ABCD =13×a 2×66a =618a 3.21.(本小题满分12分)如图,三棱锥P -ABC 中,P A ⊥平面ABC ,P A =1,AB =1,AC =2,∠BAC =60°.(1)求三棱锥P -ABC 的体积;(2)证明:在线段PC 上存在点M ,使得AC ⊥BM ,并求PM MC 的值.[解] (1)由题设AB =1,AC =2,∠BAC =60°,可得S △ABC =12·AB ·AC ·sin 60°=32.由P A ⊥平面ABC ,可知P A 是三棱锥P -ABC 的高.又P A =1,所以三棱锥P -ABC 的体积V =13·S △ABC ·P A =36.(2)证明:在平面ABC 内,过点B 作BN ⊥AC ,垂足为N .在平面P AC 内,过点N 作MN ∥P A 交PC 于点M ,连接BM . 由P A ⊥平面ABC 知P A ⊥AC ,所以MN ⊥AC .由于BN ∩MN =N ,故AC ⊥平面MBN .又BM 平面MBN ,所以AC ⊥BM . 在直角△BAN 中,AN =AB ·cos ∠BAC =12,从而NC =AC -AN =32.由MN ∥P A ,得PM MC =AN NC =13.22.(本小题满分12分)如图(1),在Rt △ABC 中,∠C =90°,D ,E 分别为AC ,AB 的中点,点F 为线段CD 上的一点,将△ADE 沿DE 折起到△A 1DE 的位置,使A 1F ⊥CD ,如图(2).(1) (2)(1)求证:DE∥平面A1CB;(2)求证:A1F⊥BE;(3)线段A1B上是否存在点Q,使A1C⊥平面DEQ.说明理由.这样的设问该怎么回答?[解](1)证明:∵D,E分别为AC,AB的中点,∴DE∥BC.又∵DE平面A1CB,BC平面A1CB,∴DE∥平面A1CB.(2)证明:由已知得AC⊥BC且DE∥BC,∴DE⊥AC,∴DE⊥A1D,DE⊥CD,A1D∩CD=D,∴DE⊥平面A1DC,而A1F平面A1DC,∴DE⊥A1F.又∵A1F⊥CD,DE∩CD=D,∴A1F⊥平面BCDE,∵BE平面BCDE,∴A1F⊥BE.(3)线段A1B上存在点Q,使A1C⊥平面DEQ.理由如下:如图,分别取A1C,A1B的中点P,Q,连接PQ,QE,则PQ∥BC.又∵DE∥BC,∴DE∥PQ,∴平面DEQ即为平面DEP.由(2)知,DE⊥平面A1DC,A1C平面A1DC,∴DE⊥A1C.又∵P是等腰三角形DA1C底边A1C的中点,∴A1C⊥DP.又DE∩DP=D,∴A1C⊥平面DEP.从而A1C⊥平面DEQ.故线段A1B上存在点Q(A1B的中点),使得A1C⊥平面DEQ.。
2022-2023学年高一第二学期第八章《立体几何初步》单元测试(新人教A 版必修第二册)一、单项选择题(每小题5分,共40分)1、下列说法中正确的是 A .若一个平面内有3个不共线的点到另一个平面的距离相等,则这两个平面平行B .以直角三角形的一条边所在直线为旋转轴,其余两边旋转形成的曲面所围成的几何体叫圆锥C .有两个面平行,其余各面都是四边形的几何体是棱柱D .过直线外一点有且仅有一条直线与该直线平行2、已知正三角形的边长为2,那么的直观图△的面积为 ABCD3、已知S 为圆锥的顶点,O为底面圆心,圆锥的体积为 ABCD4、如图:已知正四面体中E 在棱上,,G 为的重心,则异面直线与所成角为( )A. B. C. D. 5.已知直线,与平面,,,则能使成立的充分条件是 A .,B .,C .,D .,,6、如图,正方体的棱长为1,则下列四个命题错误的是 ()ABC ABC ∆A B C '''()SO =()ABCD CD 2EC DE =ABC V EG BD 30°45︒60︒90︒m n αβγαβ⊥()αγ⊥βγ⊥//m α//m β//m αm β⊥m n ⊥m αβ= n β⊂1111ABCD A B C D -()A .直线与平面所成的角等于B .点到面C .两条异面直线和所成的角为D .三棱柱7、端午佳节,人们有包粽子和吃粽子的习俗. 粽子主要分为南北两大派系,地方细分特色鲜明, 且形状各异. 裹蒸粽是广东肇庆地区最为出名的粽子, 是用当地特有的冬叶、水草包裹糯米、绿豆、猪肉、咸蛋黄等蒸制而成的金字塔形的粽子. 现将裹蒸粽看作一个正四面体, 其内部的咸蛋黄看作一个球体,那么,当咸蛋黄的体积为时,该裹蒸粽的高的最小值为A. B. C. D. 8、已知三棱锥中,,,三点在以为球心的球面上,若,,且三棱锥的半径为 A .2B.5C .13D 二、多项选择题(每小题5分,共20分,有多项符合要求,全部选对得5分,部分选对得2分,有选错得0分)9、高空走钢丝是杂技的一种,渊源于古代百戏的走索,演员手拿一根平衡杆,在一根两头拴住的钢丝上来回走动,并表演各种动作.在表演时,假定演员手中的平衡杆是笔直的,水平地面内一定存在直线与演员手中的平衡杆所在直线 A .垂直B .相交C .异面D .平行10、设,,表示不同的点,,表示不同的直线,,表示不同的平面,下列说法错误的是 A .若,,,则B .若,,,,则C .若,,,,,,则D .若,,,则11、如图,在菱形中,,,将沿折起,使到,点不落在底面内,若为线段的中点,则在翻折过程中,以下命题中正确的是 BC 11ABC D 4πC 11ABCD 1D C 1BC 4π1111AA D BB C -43π46810O ABC -A B C O 2AB BC ==120ABC ∠=︒O ABC -O ()()A B C n l αβ()l αβ= //n α//n β//n l A B l ∈A B α∉//l αA B α∈A B C β∈l αβ= C l ∈//αβl α⊂n β⊂//l n ABCD 2AB =3BAD π∠=ABD ∆BD A A 'A 'BCD M A C 'ABD ∆()A .四面体的体积的最大值为1B .存在某一位置,使得C .异面直线,所成的角为定值D .当二面角的余弦值为时,四面体12、四面体的四个顶点都在球的球面上,,,点,,分别为棱,,的中点,则下列说法正确的是 A .过点,,做四面体的截面,则该截面的面积为2B .四面体C .与的公垂线段的长为D .过作球的截面,则截面面积的最大值与最小值的比为二、填空题(每小题5分,共20分)13、将边长为1的正方形以其一边所在直线为旋转轴旋转一周,所得几何体的侧面积为 .14、在正方体中,为的中点,则直线与所成的角为 .15、某校高一级学生进行创客活动,利用3D 打印技术制作模型.如图,该模型为长方体挖去正四棱台后所得的几何体,其中,为增强其观赏性和耐用性,现对该模型表面镀上一层金属膜,每平方厘米需要金属,不考虑损耗,所需金属膜的质量为____________.A BCD '-BM CD ⊥BM A D 'A BD C '--13A BCD '-ABCD O 4AB BC CD DA ====AC BD ==EFG BC CD AD ()E F G ABCD ABCD AC BD E O 5:41111ABCD A B C D -P 11B D PB 1AD 1111ABCD A B C D -ABCD EFGH -122,6cm,4cm AB EF BF AB BC AA =====2mg mg16、如图,在长方体中,四边形是边长为4的正方形,,为棱的中点,为棱(包括端点)上的动点,则三棱锥外接球表面积的最小值是 .三 解答题(共6小题,共计70分)17、(10分)如图,在三棱锥中,平面,是直角三角形,,.,分别是棱,的中点.(1)证明:平面平面.(2)求三棱锥的体积.18.(12分)如图,在三棱锥中,,底面.1111ABCD A B C D -ABCD 13AA =E CD F 11C D A DEF -P ABC -PA ⊥ABC ABC ∆AC BC =6PA AB ==D E PB PC PAC ⊥ADE P ADE -P ABC -90ACB ∠=︒PA ⊥ABC(1)求证:平面平面;(2)若,,求与平面所成角的正弦值.19.(12分)如图,在直四棱柱中,四边形是平行四边形,是的中点,点是线段上,且.(1)证明:直线平面.(2)若,,,求点到平面的距离.20、(12分)如图,在四棱锥中,,,,分别为,的中点底面四边形是边长为2的菱形,且,交于点.(1)求证:平面;(2)二面角的平面角为,若.①求与底面所成角的大小;②求点到平面的距离.21、(12分)如图在直三棱柱中,,,,是上的一点,且,、、分别是、、的中点,与相交于.(Ⅰ)求证:平面;(Ⅱ)求证:平面平面;PAC ⊥PBC 2AC PA ==3BC =AB PBC 1111ABCD A B C D -ABCD F 1BD E 1CD 12D E CE =//AF BDE 13AA AB ==2AD =60BAD ∠=︒F BDE P ABCD -PB PD =PA PC ⊥M N PA BC ABCD 60DAB ∠=︒AC BD O //MN PCD B PC D --θ1cos 7θ=-PA ABCD N CDP 111ABC A B C -90ABC ∠=︒2BC =14CC =E 1BB 11EB =D F G 1CC 11B C 11A C EF 1B D H 1B D ⊥ABD //EFG ABD(Ⅲ)求平面与平面的距离.22、(12分)如图,在四棱锥,底面为梯形,且,,等边三角形所在的平面垂直于底面,.(1)求证:平面;(2)若直线与平面,求二面角的余弦值.参考答案1、D2、D3、B4、A5、C6、C7、A8、D 8、【解析】设的外接圆的圆心为,半径为,在中,,,由余弦定理可得,由正弦定理可得,解得,所以又三棱锥所以EGF ABD P ABCD -ABCD 12BC AD =//BC AD PCD ABCD BC PD ⊥BC ⊥PCD PB ABCD P AB D --ABC ∆1O r ABC ∆2AB BC ==120ABC ∠=︒222cos AC AB BC AB BC ABC =+-⋅⋅∠=24sin AC r ABC ===∠2r =11sin 2222ABC S AB BC ABC ∆=⋅⋅⋅∠=⨯⨯=O ABC -111133O ABC ABC V S OO OO -∆=⋅⋅==故三棱锥的高,所以球.9、AC10、BCD 11、ABD 12、ACD9、【解析】根据题意可得:对直线与平面的任何位置关系,平面内均存在直线与直线垂直,A 正确;平衡杆所在直线与水平地面的位置关系:平行或相交,根据线面关系可知:若直线与平面平行,则该直线与平面内的直线的位置关系:平行或异面,若直线与平面相交,则该直线与平面内的直线的位置关系:相交或异面,C 正确,B 、D 错误;【答案】AC11、【解析】连接交于,连接,取的中点,连接,,对于A ,当平面平面时,四面体的体积最大,点到平面的距离最大,此时在菱形中,,则,都是等边三角形,则,此时四面体的体积为,所以四面体的体积的最大值为1,故A 正确;对于B ,因为,分别为,的中点,所以,且,由题意,则,当时,,因为,O ABC -13OO =O =l l AC BD O OA 'CD N MN BN A BD '⊥BCD A BCD '-A 'BCD ABCD 2AB =3BAD π∠=ABD ∆BCD ∆OA OA OC '===A BCD '-112132⨯⨯=A BCD '-M N C 'CD BN CD ⊥//MN A D '112MN A D ='=2(0,)3A DC π∠'∈2(0,3MNC π∠∈2MNC π∠=MN CD ⊥MN BN N =所以当时,平面,又平面,所以,所以存在某一位置,使得,故B正确;对于C,因为,所以异面直线,所成的角即为或其补角,,因为不为定值,所以不为定值,即异面直线,,所成的角不为定值,故C错误;对于D,因为,,所以即为二面角的平面角,则,所以,所以四面体为正四面体,如图,补全正四面体,即四面体的D正确.【答案】ABD12、【解析】如图所示:取中点,连结、,则有:,且,同理可得,且所以,且为平行四边形,2MNCπ∠=CD⊥BMNBM⊂BMN CD BM⊥BM CD⊥//MN A D'BM A D'BMN∠2131cos22BM BMBMNBM BM+-∠==-BM cos BMN∠BM A D'OC BD⊥OA BD'⊥A OC∠'A BD C'--26163A CA OC-'∠'==2A C'=A BCD'-A BCD'-=A BCD'-AB H EH HG//HG BD12GH BD==//EF BD12EF BD== //HG EF HG EF==EFGH同理可得,且,所以平行四边形的菱形;取中点,连结、,因为,所以,同理,所以平面,所以,又因为,,所以,所以菱形的正方形,所以,故A 正确;因为,,,所以,同理可得,在中,,所以边上的高,又因为平面,为中点,所以,故B 错;因为平面,平面,所以,又因为,所以是与的公垂线,由选项可知,故C 正确;取中点,则为球心,理由如下:因为平面,,所以,同理,,所以,所以即为球心,所以,又因为,所以过所作的面积最小的截面是以为圆心,为半径的圆;面积最大的截面是过,的大圆,//HE GF HE GF ==EFGH BD Q AQ CQ AB AD =AQ BD ⊥CQ BD ⊥BD ⊥ACQ BD AC ⊥//HG BD //HE AC HG HE ⊥EFGH 2EFGH S =4AB AD ==BD =AQ BD ⊥BQ DQ ==AQ =CQ =ACQ ∆AQ CQ ==AC =AC QM ==12ACQ S AC QM ∆=⋅⋅=BD ⊥ACQ Q BD 1122233A BCD B ACQ ACQ V V S BQ --∆==⨯⨯=⨯⨯=BD ⊥ACQ QM ⊆ACQ BD QM ⊥QM AC ⊥QM AC BD B QM =QM S S O BD ⊥ACQ BQ DQ =12QS QM ==225SB SD ==12MS QM ==225SA SC ==SA SB SC SD ====S O R =OE BC ⊥E E 2BE =O E所以,故D 正确.13、 14、15、16、15、【详解】由题意,该几何体侧面4个面的面积和为,底面积,正方形面积.考虑梯形,高为,故正四棱台的侧面积为,故该模型表面积为,故所需金属膜的质量为16、【解析】如图,取的中点,过作平面的垂线,与平面交于点,过作的垂线,垂足为,则三棱锥外接球的球心在上,设,,则,设球的半径为,则,即,所以.因为,所以,则.()()22::5:4S S R BE ππ==大小2π6π282+2449π244696cm ⨯⨯=26636cm ⨯=EFGH 2339cm ⨯=ABFE =()214362⨯+=(296369141cm +++=+((2141282mg⨯+=+AE 1O 1O ABCD 1111A B C D M M 11C D N E ADF -O 1MO 1OO m =NF n =03n ……O R 222R OE OF ==22222225(3)4R m OM MN NF m n =+=++=-++286n m +=03n ......41736m (2261)59R m =+…故三棱锥外接球的表面积.17、(1)证明:因为是直角三角形,且,所以.因为平面,且平面,所以.因为平面,平面,且,所以平面.因为,分别是棱,的中点,所以,,因为平面,所以平面.因为平面,所以平面平面.(2)解:因为,所以因为平面,且,所以三棱锥的体积.连接,因为是棱的中点,所以三棱锥的体积.因为是棱的中点,所以三棱锥的体积.因为三棱锥与三棱锥是同一个三棱锥,所以的体积为.18.(1)证明:底面.,又,,又,平面,又平面,平面平面;(2)解:取的中点,连接、,,,又平面平面且交线为,平面,A DEF -224449S R ππ=…ABC ∆AC BC =AC BC ⊥PA ⊥ABC BC ⊂ABC PA BC ⊥PA ⊂PAC AC ⊂PAC PA AC A = BC ⊥PAC D E PB PC 12DE BC =//DE BC BC ⊥PAC DE ⊥PAC DE ⊂ADE PAC ⊥ADE 6AB =AC BC ==PA ⊥ABC 6PA =P ABC -1161832V =⨯⨯=CD D PB D PAC -11118922V ==⨯=E PC D PAE -211199222V V ==⨯=P ADE -D PAE -P ADE -92PA ⊥ ABC PA BC ∴⊥90ACB ∠=︒ AC BC ∴⊥PA AC A = BC ∴⊥PAC BC ⊂PBC ∴PBC ⊥PAC PC O AO BO PA AC = AO PC ∴⊥ PBC ⊥PAC PC AO ∴⊥PBC直线在平面中的射影为,为与平面所成的角,在直角中,,,.19.(1)证明:连接,记,连接.取线段的中点,连接,.因为四边形是平行四边形,所以是的中点.因为是的中点,且,所以是的中点,因为,分别是,的中点,所以.因为平面,平面,所以平面.因为,分别是,的中点,所以.因为平面,平面,所以平面.因为平面,平面,且,所以平面平面.因为平面,所以平面.(2)解:由(1)可知平面,则点到平面的距离等于点到平面的距离.因为,,,所以的面积为作,垂足为,连接,则平面.因为,所以,,则.因为,,,所以AB PBC OB ABO ∴∠AB PBC AOB ∆AB =AO =∴sin ABO ∠=AC AC BD O = OE 1D E H AH HF ABCD O AC H 1D E 12D E CE =E HC O E AC HC //OE AH OE ⊂BDE AH ⊂/BDE //AH BDE H F 1D E 1BD //HF BE BE ⊂BDE HF ⊂/BDE //HF BDE AH ⊂AHF HF ⊂AHF AH HF H = //AHF BDE AF ⊂AHF //AF BDE //AF BDE F BDE A BDE 2AD =3AB =60BAD ∠=︒ABD ∆1sin 2AD AB BAD ⋅∠=EG CD ⊥G BG EG ⊥ABCD 12D E CE =1113EG DD ==22DG GC ==DE =3AB =2AD =60BAD ∠=︒BD因为,,,所以,则.在中,由余弦定理可得.故的面积为.设点到平面的距离为,因为三棱锥的体积等于三棱锥的体积,所以,解得到平面20、(1)证明:取得中点,连接,,如图,为的中点,,为的中点且四边形为菱形,,,,四边形为平行四边形,,又平面,平面,平面;(2)解:①连接,过作于,连接,,由,是的中点,,由菱形知,又,平面,平面,平面平面,且交线为,直线在平面上的射影为,即与底面所成角为,平面,,且在平面上的射影为,,又,,是的中点,是的中点,,由知,,,为二面角的平面角,,1CG =2BC =60BCG ∠=︒BG =2BE =BDE ∆cos BED ∠==sin BED ∠=BDE ∆11sin 222BE DE BED ⋅∠=⨯=F BDE h E ABD -A BDE -11133=h =F BDE PD E ME CE M PA ∴1,//2ME AD ME AD =N BC ABCD ∴1//,2NC AD NC AD =//NC ME ∴NC ME =∴MNCE //MN EC ∴MN ⊂/PCD CE ⊂PCD //MN ∴PCD PO B BF PC ⊥F DF OF PB PD =O BD PO BD ∴⊥ABCD AC BD ⊥PO AC O = BD ∴⊥PAC BD ⊂ ABCD ∴PAC ⊥ABCD AC ∴PA ABCD AC PA ABCD PAC ∠BD ⊥ PAC BF PC ⊥BF PAC OF OF PC ∴⊥PA PC ⊥//OF PA ∴O BD F ∴PC 2PB BC ∴==BPC DPC ∆≅∆DF PC ⊥BF DF =BFD ∴∠B PC D --∴2222222162cos 277BD BF DF BF DF BFD BF BF BF =+-⋅∠=+=即,解得,,,,,即与底面所成角的大小为;②连接,过作于,由,平面,平面,平面,点到平面的距离即点到平面的距离,,,,平面,平面平面,且是交线,,平面,在中,,由等积法可得,即,即点到平面.21、(12分)(Ⅰ)证明:由直三棱柱的性质,得平面平面,又,平面,又平面,,,在和△中,,,即,又,平面.(Ⅱ)证明:由题意知,在△中,,又,,平面,不包含于平面,平面,、分别为、的中点,,又,,,不包含平面,平面,平面,平面,,平面平面.(Ⅲ)解:平面,平面平面,平面,为平行平面与之间的距离,21647BF =274BF =∴23PC FC ===∴sin 2PC PC PAC AC AO ∠====090PAC ︒∠︒ ……60PAC ∴∠=︒PA ABCD 60︒ON O OG FD ⊥G //ON CD ON ⊂/PCD CD ⊂PCD //ON ∴PCD ∴N CDP O CDP BF PC ⊥ DF PC ⊥BF DF F = PC ∴⊥BFD ∴PCD ⊥BDF DF OG FD ⊥ OG ∴⊥PCD Rt OFD ∆1,OF OD DF ===OF OD FD OG ⋅=⋅OG =N CDP ABC ⊥11BB C C AB BC ⊥AB ∴⊥11BB C C 1B D ⊂11BB C C 1AB B D ∴⊥1112BC CD DC B C ==== ∴Rt BCD ∆Rt 11DC B 1145BDC B DC ∠=∠=︒190BDB ∴∠=︒1B D BD ⊥AB BD B = 1B D ∴⊥ABD 111EB B F ==∴Rt 1EB F 145FEB ∠=︒145DBB ∠=︒//EF BD ∴BD ⊂ ABD EF ABD //EF ∴ABD G F 11A C 11B C 11//GF A B ∴11//A B AB //GF AB ∴\AB ABD ⊂ 平面GF ABD //GF ∴ABD EF ⊂ EFG GF ⊂EFG EF GF F = ∴//EFG ABD 1B D ⊥ ABD //EGF ABD 1B D ∴⊥EGF HD ∴EFG ABD.22、证明:(1)如图所示,取中点,连接,是正三角形,又平面平面,且平面平面,平面,平面,,,且,平面;如图所示,连接,,过点,作,,分别与交于点,,过点作,交于点,连接,设,,,则,由(1)得平面,即为直线与平面所成角的平面角,平面,,则,解得:,故,,解得又,所以平面,,,,解得所以点为线段的中点,故点也为线段中点,11HD B D B H ∴=-==CD O PO PCD ∆ PO CD∴⊥PCD ⊥ABCD PCD ⋂ABCD CD =PO ∴⊥ABCD BC ⊂ABCD PO BC ∴⊥BC PD ⊥ PO PD P = BC ∴⊥PCD OB BD D P DM AB ⊥PN AB ⊥AB M N M //MQ NP AP Q DQ 22AD BC ==2CD a =0a >OP =OP ⊥ABCD OBP ∴∠PB ABCD BC ⊥PCD BC CP ∴⊥OP PB OBP BP =∠===1a =BD AB ====BM AM =DM //BC AD AD ⊥PCD AD PD ⊥PA ===BN AN PN ===M AN Q AP所以,所以即为二面角的平面角,.12QM PN DQ ===DMQ ∠P AB D --222cos 2DM QM DQ DMQ DM QM +-∠===⋅。
最新整理必修1 第一章 集合测试一、选择题(共12小题,每题5分,四个选项中只有一个符合要求)1.下列选项中元素的全体可以组成集合的是 ( )A.学校篮球水平较高的学生B.校园中长的高大的树木C.2007年所有的欧盟国家D.中国经济发达的城市2.方程组20{=+=-y x y x 的解构成的集合是 ( )A .)}1,1{(B .}1,1{C .(1,1)D .}1{3.已知集合A ={a ,b ,c },下列可以作为集合A 的子集的是 ( )A. aB. {a ,c }C. {a ,e }D.{a ,b ,c ,d }4.下列图形中,表示N M ⊆的是 ( )5.下列表述正确的是 ( )A.}0{=∅B. }0{⊆∅C. }0{⊇∅D. }0{∈∅6、设集合A ={x|x 参加自由泳的运动员},B ={x|x 参加蛙泳的运动员},对于“既参 加自由泳又参加蛙泳的运动员”用集合运算表示为 ( )A.A∩BB.A ⊇BC.A ∪BD.A ⊆B7.集合A={x Z k k x ∈=,2} ,B={Z k k x x ∈+=,12} ,C={Z k k x x ∈+=,14}又,,B b A a ∈∈则有 ( )A.(a+b )∈ AB. (a+b) ∈BC.(a+b) ∈ CD. (a+b) ∈ A 、B 、C 任一个8.集合A ={1,2,x },集合B ={2,4,5},若B A Y ={1,2,3,4,5},则x =( )A. 1B. 3C. 4D. 59.满足条件{1,2,3}⊂≠M ⊂≠{1,2,3,4,5,6}的集合M 的个数是 ( )A. 8 B . 7 C. 6 D. 510.全集U = {1 ,2 ,3 ,4 ,5 ,6 ,7 ,8 }, A= {3 ,4 ,5 }, B= {1 ,3 , 6 },那么集合 { 2 ,7 ,8}是 ( )A. A B YB. B A IC. B C A C U U ID. B C A C U U Y M N A M N B N M C M ND11.设集合{|32}M m m =∈-<<Z ,{|13}N n n M N =∈-=Z I 则,≤≤ ( )A .{}01,B .{}101-,,C .{}012,, D .{}1012-,,, 12. 如果集合A={x |ax 2+2x +1=0}中只有一个元素,则a 的值是 ( )A .0B .0 或1C .1D .不能确定 二、填空题(共4小题,每题4分,把答案填在题中横线上)13.用描述法表示被3除余1的集合 .14.用适当的符号填空:(1)∅ }01{2=-x x ; (2){1,2,3} N ;(3){1} }{2x x x =; (4)0 }2{2x x x =.15.含有三个实数的集合既可表示成}1,,{ab a ,又可表示成}0,,{2b a a +,则=+20042003b a . 16.已知集合}33|{≤≤-=x x U ,}11|{<<-=x x M ,}20|{<<=x x N C U 那么集合=N ,=⋂)(N C M U ,=⋃N M .三、解答题(共4小题,共44分,解答应写出文字说明,证明过程或演算步骤)17. 已知集合}04{2=-=x x A ,集合}02{=-=ax x B ,若A B ⊆,求实数a 的取值集合.18. 已知集合}71{<<=x x A ,集合}521{+<<+=a x a x B ,若满足 }73{<<=x x B A I ,求实数a 的值.19. 已知方程02=++b ax x .(1)若方程的解集只有一个元素,求实数a ,b 满足的关系式;(2)若方程的解集有两个元素分别为1,3,求实数a ,b 的值20. 已知集合}31{≤≤-=x x A ,},{2A x y x y B ∈==,},2{A x a x y y C ∈+==,若满足B C ⊆,求实数a 的取值范围.必修1 函数的性质一、选择题:1.在区间(0,+∞)上不是增函数的函数是 ( )A .y =2x +1B .y =3x 2+1C .y =x 2D .y =2x 2+x +12.函数f (x )=4x 2-mx +5在区间[-2,+∞]上是增函数,在区间(-∞,-2)上是减函数,则f (1)等于 ( )A .-7B .1C .17D .253.函数f (x )在区间(-2,3)上是增函数,则y =f (x +5)的递增区间是 ( )A .(3,8)B .(-7,-2)C .(-2,3)D .(0,5)4.函数f (x )=21++x ax 在区间(-2,+∞)上单调递增,则实数a 的取值范围是 ( )A .(0,21) B .( 21,+∞) C .(-2,+∞) D .(-∞,-1)∪(1,+∞)5.函数f (x )在区间[a ,b ]上单调,且f (a )f (b )<0,则方程f (x )=0在区间[a ,b ]内 ( )A .至少有一实根B .至多有一实根C .没有实根D .必有唯一的实根6.若q px x x f ++=2)(满足0)2()1(==f f ,则)1(f 的值是 ( )A 5B 5-C 6D 6-7.若集合}|{},21|{a x x B x x A ≤=<<=,且Φ≠B A I ,则实数a 的集合( )A }2|{<a aB }1|{≥a aC }1|{>a aD }21|{≤≤a a8.已知定义域为R 的函数f (x )在区间(-∞,5)上单调递减,对任意实数t ,都有f (5+t )=f (5-t ),那么下列式子一定成立的是 ( )A .f (-1)<f (9)<f (13)B .f (13)<f (9)<f (-1)C .f (9)<f (-1)<f (13)D .f (13)<f (-1)<f (9)9.函数)2()(||)(x x x g x x f -==和的递增区间依次是A .]1,(],0,(-∞-∞B .),1[],0,(+∞-∞C .]1,(),,0[-∞+∞D ),1[),,0[+∞+∞10.若函数()()2212f x x a x =+-+在区间(]4,∞-上是减函数,则实数a 的取值范围 ( )A .a ≤3B .a ≥-3C .a ≤5D .a ≥311. 函数c x x y ++=42,则 ( )A )2()1(-<<f c fB )2()1(->>f c fC )2()1(->>f f cD )1()2(f f c <-<12.已知定义在R 上的偶函数()f x 满足(4)()f x f x +=-,且在区间[0,4]上是减函数则最新整理A .(10)(13)(15)f f f <<B .(13)(10)(15)f f f <<C .(15)(10)(13)f f f <<D .(15)(13)(10)f f f <<.二、填空题:13.函数y =(x -1)-2的减区间是___ _.14.函数f (x )=2x 2-mx +3,当x ∈[-2,+∞)时是增函数,当x ∈(-∞,-2]时是减函数,则f (1)= 。
2024高一数学单元测试题及答案第一部分:选择题1. 设函数f(x)=2x+3,下列哪个表达式等于f(x+h)-f(x)?A) 2h+3 B) 2h C) 2x+2h+3 D) 2x+3h+32. 已知函数y=ax^2-2x,则a的值为多少时,函数对称轴与x轴重合?A) 0 B) 1 C) 2 D) -13. 已知直线L1过点A(-1,2),L2过点B(2,3),则L1和L2的斜率之积为多少?A) -1 B) -2 C) 1 D) 24. 设集合A={1,2,3},集合B={2,3,4},则A与B的交集为:A) {1} B) {2,3} C) {2,3,4} D) 空集第二部分:填空题1. 已知直线y=2x+1与曲线y=x^2-3x-2相交于两点A和B,若点A 的横坐标为1,则点B的纵坐标为____。
2. 若集合A={1,2,3},集合B={2,3,4},则集合A的幂集和集合B的幂集的并集共有____个元素。
3. 设事件A的概率为P(A)=0.3,事件B的概率为P(B)=0.4,事件A 与事件B同时发生的概率为P(A∩B)=0.12,那么事件A与事件B互不相容的概率为____。
第三部分:解答题1. 解方程3(x-2)+2(x+1)=5(x-3)-2的结果是多少?2. 设函数y=log(a^2x)-log(ax+20),其中a为常数,若该函数的定义域为R-{20/a},求a的取值范围。
3. 已知等差数列的首项为a1=-1,公差为d=3,求该等差数列的前n项和的公式。
第四部分:解题答案选择题答案:1) D 2) B 3) D 4) B填空题答案:1) -1 2) 16 3) 0.54解答题答案:1) 解得x=5,所以方程的解为5;2) 由定义域为R-{20/a}可得ax+20≠0,即ax≠-20,得到a∈R-{-20},即a的取值范围为实数集合去除{-20};3) 等差数列的前n项和公式为Sn=(n/2)(2a1+(n-1)d),代入已知条件a1=-1,d=3,得到Sn=(n/2)(-2+3n)。
2020年下期高一级数学质检试题(一)参考答案(必修1 集合与常用逻辑用语)三、填空题13. 1 14. }1|{->a a 15. }1|{>m m 16. 18 四、解答题17.解:(1)由于命题中含有全称量词“任意的”,因而是全称量词命题;又由于“任意的”的否定为“存在一个”,因此,⌝p :“∃R x ∈,使012≠++x x 成立”; (2)由于“∃R x ∈”表示存在一个实数x ,即命题中含有存在量词“存在一个”,因而是存在量词命题;又由于“存在一个”的否定为“任意一个”,因此,⌝p :∀R x ∈,0522≤++x x .18.解:∵P =Q ,∴⎩⎨⎧==22y y x x 或⎩⎨⎧==x y y x 22,解得⎩⎨⎧==10或y x 0或⎩⎨⎧==0y x 0或⎪⎪⎩⎪⎪⎨⎧==2141y x 由元素的互异性可知y x ≠, 故1,0==y x 或21,41==y x . 19.解:(1)由02082≤--x x ,得102≤≤-x ,∴}102|{≤≤-=x x M .∵M x ∈是N x ∈的必要条件,则M N ⊆ ∴⎩⎨⎧≤+-≥-10121m m ,解得3≤m .又∵N 为非空集合,∴m m +≤-11,解得0≥m . 综上,m 的取值范围是[0,3].(2)由(1)知}102|{≤≤-=x x M . ∵p ⌝是q ⌝的必要不充分条件,∴p 是q 的充分不必要条件.则N M ⊆.∴⎩⎨⎧>+-≤-10121m m 或⎩⎨⎧≥+-<-10121m m ,解得9≥m ,又∵N 为非空集合,∴m m +≤-11,解得0≥m . 综上,实数m 的取值范围是[9,+∞).20.解:(1)A ∪B =}82|≤≤x x {∪}61|<<x x {=}81|≤<x x {.∵∁U A =}82|><x x x 或{, ∴(∁U A )∩B =}21|<<x x {.(2)∵A ∩C ≠∅,作图易知,只要a 在8的左边即可,∴8<a .∴a 的取值范围为}8|{<a a . 21.解:(1)由P ⊆Q ,需⎩⎨⎧≥+-≤-10121m m ,解得9≥m ,即实数m 的取值范围为}9|{≥m m . (2)由P ∩Q =Q 得,Q ⊆P ,①当m m +>-11,即0<m 时,Q =∅,符合题意; ②当m m +≤-11,即0≥m 时,需⎩⎨⎧≤+-≥-10121m m ,解得30≤≤m ;综上得3≤m ,即实数m 的取值范围为}3|{≤m m . 22.解:因为P 是非空集合,所以112+≥+a a ,即0≥a .(1)当3=a 时,P =}74|{≤≤x x ,(∁R P )=}74|{><x x x 或, 又因为Q =}52|{≤≤-x x ,所以(∁R P )∩Q =}42|{<≤-x x . (2)若“x ∈P ”是“x ∈Q ”的充分不必要条件,即Q P ≠⊂,所以⎪⎩⎪⎨⎧≥≤+-≥+051221a a a ,且21-≥+a 和512≤+a 的等号不能同时取得,解得20≤≤a ,即实数a 的取值范围为}20|{≤≤a a .2020年下期高一级数学质检试题(二)参考答案(必修1 一元二次函数、方程和不等式)三.填空题13. 2 14. b a <<0 15. 72 16. 60四.解答题17.解:(1)}31|{}032|{2≤≤-=≤--=x x x x x A ,且}52|{<≤=x x B ,U =R ,∴∁U B =}52|{≥<x x x 或, ∴A ∩(∁U B)=}21|{<≤-x x .(2)由A ∪C =C ,得A ⊆C ,又C =}|{a x x >,}31|{≤≤-==x x A ,∴a 的取值范围是1-<a .18.解:(1)∵01)3612()3512()6()7)(5(222<-=++-++=--++x x x x x x x ,∴2)6()7)(5(-<++x x x(2)∵82,41<<<<b a ,∴28-<-<-b .∴2481-<-<-b a ,即27<-<-b a .又∵21181<<b ∴2481<<b a ,即281<<ba. 19.解:(1)若2=a ,可得0322≥--x x ,即0)1)(3(≥+-x x ,所以原不等式的解集为}31|{≥-≤x x x 或. (2)当1≥x 时222--≥-x ax x ,即)1(2xx a +≤恒成立,又因为4122)1(2=⋅⨯≥+x x x x ,当且仅当xx 1=,即1=x 时等号成立, 所以a 的取值范围是4≤a .20.解:(1)∵不等式032>++bx ax 的解集为}31|{<<-x x ,∴-1和3是方程032=++bx ax 的两个实根, 从而有⎩⎨⎧=++=+-033903b a b a ,解得⎩⎨⎧=-=21b a .(2)∵1=+b a ,且0,0>>b a , ∴942545))(41(41=⋅+≥++=++=+ba ab b a a b b a b a b a , 当且仅当⎪⎩⎪⎨⎧=+=14b a b a a b ,即⎪⎪⎩⎪⎪⎨⎧==3312b a 时等号成立, 所以ba 41+的最小值为9.21.解:(1)08.118392031600292031600920160039202≈=+⋅≤++=++=vv v v v v vy .当且仅当vv 1600=,即40=v 千米/小时时,车流量最大,最大值为11.08千辆/小时. (2)据题意有:10160039202≥++v v v,即01600316008922≤+++-v v v v 又因为0>v ,所以01600892≤+-v v , 即0)64)(25(≤--v v , 解得6425≤≤v .所以汽车的平均速度应控制在6425≤≤v 这个范围内.22.解:(1)原不等式等价于0)1)(1(>+-x ax .①当0=a 时,由0)1(>+-x ,得1-<x . ②当0>a 时,不等式可化为0)1)(1(>+-x a x ,解得ax x 11>-<或.③当0<a 时,不等式可化为0)1)(1(<+-x ax , 若11-<a ,即01<<-a ,则11-<<x a; 若11-=a,即1-=a ,则不等式的解集为空集; 若11->a ,即1-<a ,则ax 11<<-. 综上所述,当1-<a 时,不等式的解集为}11|{ax x <<-; 当1-=a 时,不等式解集为∅; 当01<<-a 时,不等式的解集为}11|{-<<x ax ; 当0=a 时,不等式的解集为}1|{-<x x ; 当0>a 时,不等式的解集为}11|{ax x x >-<或. (2)∵当a x -=时不等式成立,∴0112>+---a a , ∵012<--a , ∴01<+-a ,∴a 的取值范围为1>a .2020年下期高一级数学质检试题(三)参考答案一、选择题(共8小题)1.解:由题意得:x2﹣7x+6≥0,解得:x≥6或x≤1,故函数的定义域是:(﹣∞,1]∪[6,+∞),故选:B.2.解:A.两个函数的定义域都为N,但两个函数的解析式不相同,即对应法则不一样,故不表示同一函数;B.f(x)的定义域为{x|x≥1},g(x)的定义域为{x|x≥1或x≤﹣1},两个函数的定义域不相同,故不表示同一函数;C.f(x)的定义域为{x|x≠1},g(x)的定义域为R,两个函数的定义域不相同,故不表示同一函数;D.f(x)的定义域为R,g(x)=|x|的定义域为R,两个函数的定义域相同,对应法则相同,故表示同一函数.故选:D.3.解:函数的定义域为(﹣∞,0)∪(0,+∞),∴选项A错误;当x>0时,f(x)=x+>0,∴选项C和D错误,故选:B.4.解:根据题意,函数f(x)=x2+(k﹣2)x为开口向上的二次函数,其对称轴为x=﹣,若函数f(x)=x2+(k﹣2)x是[1,+∞)上的增函数,则必有,即k的取值范围为[0,+∞);故选:B.5.解:令g(x)=,得1﹣2x=,解得x=.∴f()=f[g()]===15.故选:A.6.解:f(x)=2x﹣x2=﹣(x﹣1)2+1≤1;x=3时,f(x)取到最小值﹣3;∴M=1,m=﹣3;∴M+m=﹣2.故选:D.7.解:由题意可得,函数f(x)在(﹣∞,0)上是增函数,且f(﹣3)=﹣f(3)=0,函数的单调性示意图如图所示:由不等式xf(x)>0可得,x与f(x)的符号相反,结合函数f(x)的图象可得,不等式的解集为(﹣∞,﹣3)∪(3,+∞),故选:D.8.解:根据题意,函数f(x)=在[﹣1,1]上是奇函数,则有f(0)=0,即=0,解可得a=0,又由f(x)为[﹣1,1]上是奇函数,则有f(﹣x)=﹣f(x),即=﹣1×,分析可得:b=0,则f(x)=;故选:A.二、多项选题(共4小题)9.解:设幂函数f(x)=xα(α为常数),∵幂函数y=f(x)的图象经过点(3,27),∴3α=27,∴α=3,∴f(x)=x3,∴函数f(x)在R单调递增,又f(﹣x)=﹣x3=﹣f(x),∴幂函数f(x)是奇函数,故选:AC.10.解:因为,所以f(﹣x)===﹣f(x),故f(x)为奇函数,A正确;当x≥0时,f(x)==﹣=﹣1+∈(﹣1,0],根据奇函数的对称性可知,f(x)∈(﹣1,1),C正确;根据反比例函数的性质及函数图象的平移可知,f(x)在(﹣∞,﹣1),(﹣1,+∞)上单调递减,故B错误;当x=0时,显然是方程的一个根,x>0时,f(x)+x2=+x2=0可得x(x+1)=1显然有1正根,当x<0时,f(x)+x2=+x2=0可得x(x﹣1)+1=0显然没有根,综上,方程有2个根,D正确;故选:ACD.11.解:由可知,若函数f(x)在x=1处有意义,则f(1)=0,故排除B;对于A,,符合题意,故A正确;对于C,当0<x<1时,,则,符合题意;当x>1时,,则,符合题意;当x=1时,f(1)=0符合题意,故C正确;对于D,函数的定义域为(﹣1,0)∪(0,1),,故D错误.故选:AC.12.解:A.D.都满足函数的定义,在B中,当x=0时有两个函数值与之对应,不满足函数对应的唯一性,在C中,存在一个x有两个y与x对应,不满足函数对应的唯一性,故选:AD.三.填空题(共4小题)13.解:设,t≥0,则x=t2﹣1,函数化为,t≥0,所以t=1时,原函数的最小值为﹣1.故答案为:﹣1.14.解:由0≤x≤3,得﹣1≤x﹣1≤2,∴函数f(x)的定义域是[﹣1,2].故答案为:[﹣1,2].15.解:∵=,则f(x)=x2+2,∵y=在(0,+∞)上单调递增,且为奇函数,其值域为R故函数f(x)=x2+2的定义域为R.故答案为:f(x)=x2+216.解:前10天满足一次函数,设f (x )=ax +b , 将点(1,10),(10,30)代入函数解析式得,得a =,b =,则f (x )=x +, 则在1月31日,即当x =7时,f (7)=×7+=≈23千克, 故答案为:23. 四、解答题(共6小题)17.解:(1)要使函数有意义,只需x 2﹣3x +2≠0, 即x ≠1且x ≠2,故函数的定义域为{x |x ≠1且x ≠2}. (2)要使函数有意义,则|x |﹣x >0且x +1≠0,解得x <0且x ≠﹣1.所以定义域为(﹣∞,﹣1)∪(﹣1,0).(3)要使函数有意义,则,解得﹣≤x <2,且x ≠0.故定义域为,[,0)∪(0,2).18、解:(1)∵343,43,,141x y y y xy x x y x y +-=-=+=≠--+得, ∴值域为{}|1y y ≠-(2)∵222432(1)11,x x x -+=-+≥ ∴2101,05243y x x <≤<≤-+ ∴值域为(]0,5(3)1120,,2x x y x -≥≤且是的减函数, 当min 11,22x y ==-时, ∴值域为1[,)2-+∞19、解:(1)定义域为[)(]1,00,1-,则22x x +-=,()f x x =∵()()f x f x -=-∴()f x =(2)∵()()f x f x -=-且()()f x f x -=∴()f x 既是奇函数又是偶函数。
高一数学《集合》单元测试题姓名:______ 班级:______ 得分:______温馨提示:1.本试卷共4页,包括20个小题。
试卷满分70分,考试时间60分钟;2.请用蓝、黑色钢笔或圆珠笔答题;3.请将第I卷答案写在第II卷相应表格内,未写在规定位置的不予评分,第II卷的答案直接答在相应位置内.........第I卷(选择题共24分)一、选择题(本大题包括8小题,每小题3分,共24分。
下列各题四个选项中只有一个....是最符合题意的。
)1.下列语句中,能够确定一个集合的是A.某校高一(1)班性格开朗的女生的全体.B.与1接近的实数的全体.C.平方后等于-1的实数的全体.D.李强所在班级中,高个子同学构成的全体.2.下列叙述正确的一项是A.由1,2,3,3,5,6构成的集合中共有6个元素.B.世界上的人口构成一个无限集.C.某一时刻,地球的所有卫星构成了一个无限集.D.所有三角形构成了一个无限集.3.集合{4,7,8}的真子集个数为A.6个B.7 个C.8个D. 94.若集合A=B,已知A={x |=0},则集合B可能是下列的A.{-3,5}B.{1,-3,5}C.{1,3,5}D.{3,-5}5.已知,Q={x|x为有理数},Z={x|x为整数},R={x|x为实数},用维恩图表示(如下图),其中正确的是A. B. C. D.6.已知集合U={1,2,3,4,5,6},集合A={5,2,1},集合B={2,3,7},集合C={3,6}.则CuB∩CuA∪C等于A.{3,6}B.{4,6}C.{3,4,6}D.{6}7.现有如下集合:高一数学第1页共4页(1)小于10000的质数全体构成的集合. (2)⊙O 内点的全体构成的集合.(3)大于0,并且小于1的自然数构成的全体. (4)一本数学书上所有文字构成的集合. 在上述4个集合中,属于有限集的是A.(1)(4)B.(1)C.(1)(3)D.(3)8.集合A ={2,3,2x }(2,3,2x 是3个不同的元素),B ={2,x+3}(2,x+3是2个不同的元素).若A ∩B =B ,则x 等于A.1B.3C.1或3D.0或3高一数学《集合》单元测试题第II 卷 (非选择题 共46分)一、选择题(本大题包括8小题,每小题3分,共24分。
高一数学单元测试卷一、选择题(每题5分,共60分)1. 设集合A = {xx^2 - 3x + 2 = 0},B={x∈ Z - 1≤slant x - 1≤slant2},则A∩ B = ( )A. {1, 2}B. {1}C. {2}D. varnothing2. 函数y=√(x - 1)+lg(2 - x)的定义域为()A. (1,2)B. [1,2)C. (1,+∞)D. [1,+∞)3. 下列函数中,在(0,+∞)上为增函数的是()A. y = ((1)/(2))^xB. y=log_(1)/(2)xC. y = x^-2D. y=√(x)4. 已知f(x)是一次函数,且f(f(x)) = 4x + 3,则f(x)=( )A. 2x + 1C. 2x + 1或-2x - 3D. 2x - 1或-2x + 35. 若a = log_23,b=log_32,c=log_4(1)/(3),则a,b,c的大小关系是()A. a>b>cB. b>a>cC. c>a>bD. c>b>a6. 函数y = log_a(x + 3)-1(a>0,a≠1)的图象恒过定点A,若点A在直线mx+ny + 1 = 0上,其中mn>0,则(1)/(m)+(2)/(n)的最小值为()A. 8B. 6C. 4D. 107. 已知函数f(x)=x^2+bx + c,且f(2 + x)=f(-x),则下列不等式中成立的是()A. f(-4)B. f(0)C. f(0)D. f(4)8. 函数y = (1)/(x - 1)在[2,3]上的最小值为()B. (1)/(3)C. -(1)/(2)D. -(1)/(3)9. 若函数y = f(x)是函数y = a^x(a>0,a≠1)的反函数,且f(2)=1,则f(x)=( )A. log_2xB. (1)/(2^x)C. log_(1)/(2)xD. 2^x - 210. 已知函数f(x)=a^x - 1+3(a>0,a≠1)的图象一定过定点P,则P点的坐标为()A. (1,3)B. (0,1)C. (1,4)D. (0,3)11. 设a = 0.6^0.6,b = 0.6^1.5,c = 1.5^0.6,则a,b,c的大小关系是()A. a < b < cB. a < c < bC. b < a < cD. b < c < a12. 已知函数f(x)=log_a(2x^2+x)(a>0,a≠1),当0 < a < 1时,f(x)的单调递增区间为()A. (-∞,-(1)/(4))B. (-(1)/(4),+∞)C. (0,+∞)D. (-∞,0)二、填空题(每题5分,共20分)13. 计算log_2√(frac{7){48}}+log_212-(1)/(2)log_242=_ 。
必修4《三角函数》单元测试卷四(时间:80分钟 满分:100分)一、选择题(本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.为了得到函数y =sin ⎝⎛⎭⎫x +π3的图象,只需把函数y =sin x 的图象上所有的点( ) A .向左平行移动π3个单位长度B .向右平行移动π3个单位长度C .向上平行移动π3个单位长度D .向下平行移动π3个单位长度2.下列函数中,既是偶函数又存在零点的是( ) A .y =ln x B .y =x 2+1 C .y =sin xD .y =cos x3.点P 从(1,0)点出发,沿单位圆x 2+y 2=1逆时针方向运动π3弧长到达Q 点,则Q 点坐标为( )A.⎝⎛⎭⎫12,32B.⎝⎛⎭⎫-32,-12 C.⎝⎛⎭⎫-12,-32D.⎝⎛⎭⎫-32,12 4.已知a =tan ⎝⎛⎭⎫-7π6,b =cos 23π4,c =sin ⎝⎛⎭⎫-334π,则a ,b ,c 的大小关系是( ) A .b >a >c B .a >b >c C .b >c >aD .a >c >b5.已知扇形的半径为r ,周长为3r ,则扇形的圆心角等于( ) A.π3 B .1 C.2π3D .36.已知函数y =2sin x 的定义域为[a ,b ],值域为[-2,1],则b -a 的值不可能是( ) A.5π6 B .π C.7π6D .2π7.如图1是函数y =f (x )图象的一部分,则函数y =f (x )的解析式可能为( )图1A .y =sin ⎝⎛⎭⎫x +π6B .y =sin ⎝⎛⎭⎫2x -π6C .y =cos ⎝⎛⎭⎫4x -π3D .y =cos ⎝⎛⎭⎫2x -π6 8.下列函数中,最小正周期为π且图象关于原点对称的函数是( ) A .y =cos ⎝⎛⎭⎫2x +π2 B .y =sin ⎝⎛⎭⎫2x +π2 C .y =sin 2x +cos 2x D .y =sin x +cos x9.函数f (x )=sin(ωx +φ)⎝⎛⎭⎫ω>0,|φ|<π2的最小正周期为π,若其图象向右平移π3个单位后关于y 轴对称,则( )A .ω=2,φ=π3B .ω=2,φ=π6C .ω=4,φ=π6D .ω=2,φ=-π610.已知tan α=-3,π2<α<π,那么cos α-sin α的值是( )A .-1+32B.-1+32C.1-32D.1+32二、填空题(本大题共4小题,每小题5分,共20分,将答案填在题中的横线上) 11.已知sin α+2cos α=0,则2sin αcos α-cos 2α的值是________.12.将函数f (x )=sin(ωx +φ)⎝⎛⎭⎫ω>0,-π2≤φ<π2图象上每一点的横坐标缩短为原来的一半,纵坐标不变,再向右平移π6个单位长度得到y =sin x 的图象,则f ⎝⎛⎭⎫π6=________. 13.定义在区间[0,3π]上的函数y =sin 2x 的图象与y =cos x 的图象的交点个数是________.14.给出下列4个命题:①函数y =⎪⎪⎪⎪sin ⎝⎛⎭⎫2x -π12的最小正周期是π2;②直线x =7π12是函数y =2sin ⎝⎛⎭⎫3x -π4的一条对称轴;③若sin α+cos α=-15,且α为第二象限角,则tan α=-34;④函数y =cos(2-3x )在区间⎝⎛⎭⎫23,3上单调递减.其中正确的是________.(写出所有正确命题的序号)三、解答题(本大题共3小题,共30分.解答应写出文字说明、证明过程或演算步骤) 15.(本小题满分10分)已知0<α<π2,sin α=45.(1)求tan α的值;(2)求α+-2cos ⎝⎛⎭⎫π2+α--α+cosπ+α的值.16.(本小题满分10分)(1)已知角α的终边经过点P (4,-3),求2sin α+cos α的值; (2)已知角α的终边经过点P (4a ,-3a )(a ≠0),求2sin α+cos α的值;(3)已知角α终边上一点P 到x 轴的距离与到y 轴的距离之比为3∶4,求2sin α+cos α的值.17.(本小题满分10分)函数f (x )=1-2a -2a cos x -2sin 2 x 的最小值为g (a )(a ∈R ). (1)求g (a );(2)若g (a )=12,求a 及此时f (x )的最大值.必修4《三角函数》单元测试卷四答案解析一、选择题(本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.为了得到函数y =sin ⎝⎛⎭⎪⎫x +π3的图象,只需把函数y =sin x 的图象上所有的点( )A .向左平行移动π3个单位长度B .向右平行移动π3个单位长度C .向上平行移动π3个单位长度D .向下平行移动π3个单位长度【答案】 A【解析】 把函数y =sin x 的图象上所有的点向左平行移动π3个单位长度就得到函数y =sin ⎝⎛⎭⎪⎫x +π3的图象.2.下列函数中,既是偶函数又存在零点的是( ) A .y =ln x B .y =x 2+1 C .y =sin x D .y =cos x【答案】 D【解析】 A 是非奇非偶函数,故排除;B 是偶函数,但没有零点,故排除;C 是奇函数,故排除;y =cos x 是偶函数,且有无数个零点.故选D.3.点P 从(1,0)点出发,沿单位圆x 2+y 2=1逆时针方向运动π3弧长到达Q 点,则Q 点坐标为( )A.⎝ ⎛⎭⎪⎫12,32 B.⎝ ⎛⎭⎪⎫-32,-12 C.⎝ ⎛⎭⎪⎫-12,-32D.⎝⎛⎭⎪⎫-32,12 【答案】 A【解析】 设∠POQ =θ,则θ=π3.又设Q (x ,y ),则x =cos π3=12,y =sin π3=32.4.已知a =tan ⎝ ⎛⎭⎪⎫-7π6,b =cos 23π4,c =sin ⎝ ⎛⎭⎪⎫-334π,则a ,b ,c 的大小关系是( )A .b >a >cB .a >b >cC .b >c >aD .a >c >b【解析】 a =tan ⎝⎛⎭⎪⎫-π-π6=-tan π6=-33, b =cos 234π=cos ⎝⎛⎭⎪⎫6π-π4=cos π4=22, c =sin ⎝⎛⎭⎪⎫-334π=sin ⎝ ⎛⎭⎪⎫-8π-π4=-sin π4=-22,所以b >a >c .故选A.5.已知扇形的半径为r ,周长为3r ,则扇形的圆心角等于( ) A.π3 B .1 C.2π3D .3【答案】 B【解析】 因为弧长l =3r -2r =r , 所以圆心角α=l r=1.6.已知函数y =2sin x 的定义域为[a ,b ],值域为[-2,1],则b -a 的值不可能是( ) A.5π6 B .π C.7π6D .2π【答案】 D【解析】 函数y =2sin x 在R 上有-2≤y ≤2,函数的周期T =2π,值域[-2,1]含最小值不含最大值,故定义域[a ,b ]小于一个周期.7.如图1是函数y =f (x )图象的一部分,则函数y =f (x )的解析式可能为( )图1A .y =sin ⎝⎛⎭⎪⎫x +π6B .y =sin ⎝ ⎛⎭⎪⎫2x -π6C .y =cos ⎝ ⎛⎭⎪⎫4x -π3D .y =cos ⎝⎛⎭⎪⎫2x -π6【解析】 T 2=π12-⎝ ⎛⎭⎪⎫-π6,∴T =π2,∴ω=4,排除A 、B 、D.故选C.8.下列函数中,最小正周期为π且图象关于原点对称的函数是( ) A .y =cos ⎝ ⎛⎭⎪⎫2x +π2 B .y =sin ⎝ ⎛⎭⎪⎫2x +π2 C .y =sin 2x +cos 2x D .y =sin x +cos x 【答案】 A【解析】 y =cos ⎝ ⎛⎭⎪⎫2x +π2=-sin 2x ,最小正周期T =2π2=π,且为奇函数,其图象关于原点对称,故A 正确;y =sin ⎝⎛⎭⎪⎫2x +π2=cos 2x ,最小正周期为π,且为偶函数,其图象关于y 轴对称,故B 不正确;C ,D 均为非奇非偶函数,其图象不关于原点对称,故C ,D 不正确.9.函数f (x )=sin(ωx +φ)⎝ ⎛⎭⎪⎫ω>0,|φ|<π2的最小正周期为π,若其图象向右平移π3个单位后关于y 轴对称,则( )A .ω=2,φ=π3B .ω=2,φ=π6C .ω=4,φ=π6D .ω=2,φ=-π6【答案】 B【解析】 T =2πω=π,∴ω=2.函数f (x )=sin(2x +φ)的图象向右平移π3个单位得函数g (x )=sin ⎝ ⎛⎭⎪⎫2x +φ-2π3的图象关于y 轴对称,∴φ-2π3=π2+k π,k ∈Z ,∴φ=76π+k π,k ∈Z .∵|φ|<π2,∴φ=π6.故选B.10.已知tan α=-3,π2<α<π,那么cos α-sin α的值是( ) A .-1+32B.-1+32 C.1-32D.1+32【答案】 A【解析】 ∵π2<α<π,∴cos α<0,sin α>0, ∴cos α-sin α=-α-sin α2=-1-2sin αcos αsin 2 α+cos 2α =-1-2tan αtan 2 α+1 =-4+234 =-3+12. 二、填空题(本大题共4小题,每小题5分,共20分,将答案填在题中的横线上) 11.已知sin α+2cos α=0,则2sin αcos α-cos 2α的值是________. 【答案】 -1【解析】 由sin α+2cos α=0,得tan α=-2.所以2sin αcos α-cos 2α=2sin αcos α-cos 2αsin 2α+cos 2α=2tan α-1tan 2α+1=-4-14+1=-1. 12.将函数f (x )=sin(ωx +φ)⎝ ⎛⎭⎪⎫ω>0,-π2≤φ<π2图象上每一点的横坐标缩短为原来的一半,纵坐标不变,再向右平移π6个单位长度得到y =sin x 的图象,则f ⎝ ⎛⎭⎪⎫π6=________.【答案】22【解析】 因为y =sin x 图象――→向左平移π6个单位得函数y =sin ⎝ ⎛⎭⎪⎫x +π6图象上――→每点横坐标变为原来2倍得函数y =sin ⎝ ⎛⎭⎪⎫12x +π6图象,则有f (x )=sin ⎝ ⎛⎭⎪⎫12x +π6, ∴f ⎝ ⎛⎭⎪⎫π6=sin ⎝ ⎛⎭⎪⎫12×π6+π6=sin π4=2213.定义在区间[0,3π]上的函数y =sin 2x 的图象与y =cos x 的图象的交点个数是________. 【答案】 7【解析】 法一:函数y =sin 2x 的最小正周期为2π2=π,y =cos x 的最小正周期为2π,在同一坐标系内画出两个函数在[0,3π]上的图象,如图所示.通过观察图象可知,在区间[0,3π]上两个函数图象的交点个数是7.法二:联立两曲线方程,得⎩⎪⎨⎪⎧y =sin 2x ,y =cos x ,两曲线交点个数即为方程组解的个数,也就是方程sin2x =cos x 解的个数.方程可化为2sin x cos x =cos x ,即cos x (2sin x -1)=0,∴cos x =0或sin x =12.①当cos x =0时,x =k π+π2,k ∈Z ,∵x ∈[0,3π],∴x =π2,32π,52π,共3个; ②当sin x =12时,∵x ∈[0,3π],∴x =π6,56π,136π,176π,共4个.综上,方程组在[0,3π]上有7个解,故两曲线在[0,3π]上有7个交点. 14.给出下列4个命题:①函数y =⎪⎪⎪⎪⎪⎪sin ⎝ ⎛⎭⎪⎫2x -π12的最小正周期是π2;②直线x =7π12是函数y =2sin ⎝ ⎛⎭⎪⎫3x -π4的一条对称轴;③若sin α+cos α=-15,且α为第二象限角,则tan α=-34;④函数y =cos(2-3x )在区间⎝ ⎛⎭⎪⎫23,3上单调递减.其中正确的是________.(写出所有正确命题的序号)【答案】 ①②③【解析】 函数y =sin ⎝ ⎛⎭⎪⎫2x -π12的最小正周期是π,故①正确.对于②,当x =712π时,2sin ⎝ ⎛⎭⎪⎫3×712π-π4=2sin 32π=-2,故②正确.对于③,由(sin α+cos α)2=125得2sin αcos α=-2425,α为第二象限角,所以sin α-cosα=1-2sin αcos α=75,所以sin α=35,cos α=-45,所以tan α=-34,故③正确.对于④,函数y =cos(2-3x )的最小正周期为2π3,而区间⎝ ⎛⎭⎪⎫23,3长度73>2π3,显然④错误.三、解答题(本大题共3小题,共30分.解答应写出文字说明、证明过程或演算步骤) 15.(本小题满分10分)已知0<α<π2,sin α=45.(1)求tan α的值;(2)求α+π-2cos ⎝ ⎛⎭⎪⎫π2+α--α+π+α的值.【答案】 (1)因为0<α<π2,sin α=45,所以cos α=35,故tan α=43.(2)α+π-2cos ⎝ ⎛⎭⎪⎫π2+α--α+π+α=-sin α+2sin αsin α-cos α=sin αsin α-cos α=tan αtan α-1=4.16.(本小题满分10分)(1)已知角α的终边经过点P (4,-3),求2sin α+cos α的值; (2)已知角α的终边经过点P (4a ,-3a )(a ≠0),求2sin α+cos α的值;(3)已知角α终边上一点P 到x 轴的距离与到y 轴的距离之比为3∶4,求2sin α+cos α的值. 【答案】(1)∵α终边过点P (4,-3), ∴r =|OP |=5,x =4,y =-3,∴sin α=y r =-35,cos α=x r =45,∴2sin α+cos α=2×⎝ ⎛⎭⎪⎫-35+45=-25.(2)∵α终边过点P (4a ,-3a )(a ≠0), ∴r =|OP |=5|a |,x =4a ,y =-3a .当a >0时,r =5a ,sin α=y r =-35,cos α=x r =45,∴2sin α+cos α=-25;当a <0时,r =-5a ,∴sin α=y r =35,cos α=x r =-45,∴2sin α+cos α=25.综上,2sin α+cos α=-25或25.(3)当点P 在第一象限时,sin α=35,cos α=45,2sin α+cos α=2;当点P 在第二象限时,sin α=35,cos α=-45,2sin α+cos α=25;当点P 在第三象限时,sin α=-35,cos α=-45,2sin α+cos α=-2;当点P 在第四象限时,sin α=-35,cos α=45,2sin α+cos α=-25.17.(本小题满分10分)函数f (x )=1-2a -2a cos x -2sin 2x 的最小值为g (a )(a ∈R ). (1)求g (a );(2)若g (a )=12,求a 及此时f (x )的最大值.【答案】 (1)由f (x )=1-2a -2a cos x -2sin 2x =1-2a -2a cos x -2(1-cos 2x )=2cos 2x -2a cos x -(2a +1)=2⎝⎛⎭⎪⎫cos x -a 22-a 22-2a -1. 这里-1≤cos x ≤1.①若-1≤a 2≤1,则当cos x =a2时,f (x )min =-a 22-2a -1;11 ②若a 2>1,则当cos x =1时,f (x )min =1-4a ; ③若a 2<-1,则当cos x =-1时,f (x )min =1. 因此g (a )=⎩⎪⎨⎪⎧ 1, a <-2,-a 22-2a -1, -2≤a ≤2,1-4a , a >2.(2)因为g (a )=12. 所以①若a >2,则有1-4a =12,得a =18,矛盾; ②若-2≤a ≤2,则有-a 22-2a -1=12, 即a 2+4a +3=0,所以a =-1或a =-3(舍);若a <-2时,g (a )≠12,矛盾. 所以g (a )=12时,a =-1. 此时f (x )=2⎝⎛⎭⎪⎫cos x +122+12, 当cos x =1时,f (x )取得最大值5.。
2020年高一数学第二学期期末试卷及答案(共七套)2020年高一数学第二学期期末试卷及答案(一)一.选择题1.两直线3x+y﹣3=0与6x+my+1=0平行,则它们之间的距离为()A. 4B.C.D.2.将边长为的正方形ABCD沿对角线AC折成一个直二面角B﹣AC﹣D.则四面体ABCD的内切球的半径为()A. 1B.C.D.3.下列命题正确的是()A. 两两相交的三条直线可确定一个平面B. 两个平面与第三个平面所成的角都相等,则这两个平面一定平行C. 过平面外一点的直线与这个平面只能相交或平行D. 和两条异面直线都相交的两条直线一定是异面直线4.在空间中,给出下面四个命题,则其中正确命题的个数为()①过平面α外的两点,有且只有一个平面与平面α垂直;②若平面β内有不共线三点到平面α的距离都相等,则α∥β;③若直线l与平面α内的无数条直线垂直,则l⊥α;④两条异面直线在同一平面内的射影一定是两条平行线.A. 0B. 1C. 2D. 35.已知直线l1:x+2ay﹣1=0,与l2:(2a﹣1)x﹣ay﹣1=0平行,则a的值是()A. 0或1B. 1或C. 0或D.6.如果圆(x﹣a)2+(y﹣a)2=8上总存在到原点的距离为的点,则实数a的取值范围是()A. (﹣3,﹣1)∪(1,3)B. (﹣3,3)C. [﹣1,1]D. [﹣3,﹣1]∪[1,3]7.若圆C:(x﹣5)2+(y+1)2=m(m>0)上有且只有一点到直线4x+3y﹣2=0的距离为1,则实数m的值为()A. 4B. 16C. 4或16 D. 2或48.已知二面角α﹣l﹣β为60°,AB⊂α,AB⊥l,A为垂足,CD⊂β,C∈l,∠ACD=135°,则异面直线AB与CD所成角的余弦值为()A. B. C.D.9.如图,在圆的内接四边形ABCD中,AC平分∠BAD,EF切⊙O于C点,那么图中与∠DCF相等的角的个数是()A. 4B. 5C. 6D. 710.点P是双曲线﹣=1的右支上一点,M是圆(x+5)2+y2=4上一点,点N 的坐标为(5,0),则|PM|﹣|PN|的最大值为()A. 5B. 6C. 7D. 811.m,n,l为不重合的直线,α,β,γ为不重合的平面,则下列说法正确的是()A. m⊥l,n⊥l,则m∥nB. α⊥γ,β⊥γ,则α⊥βC. m∥α,n∥α,则m∥nD. α∥γ,β∥γ,则α∥β12.曲线y=1+ 与直线y=k(x﹣2)+4有两个交点,则实数k的取值范围是()A. B. C. D.二.填空题13.如图,网格纸上每个小正方形的边长为1,若粗线画出的是某几何体的三视图,则此几何体的体积为________.14.若过定点M(﹣1,0)且斜率为k的直线与圆x2+4x+y2﹣5=0在第一象限内的部分有交点,则k的取值范围是________.15.若点P在圆上,点Q在圆上,则|PQ|的最小值是________.16.直线x+7y﹣5=0分圆x2+y2=1所成的两部分弧长之差的绝对值为________.三.解答题17.已知△ABC三边所在直线方程:l AB:3x﹣2y+6=0,l AC:2x+3y﹣22=0,l BC:3x+4y﹣m=0(m∈R,m≠30).(1)判断△ABC的形状;(2)当BC边上的高为1时,求m的值.18.如图,在三棱柱ABC﹣A1B1C1中,AA1⊥底面ABC,且△ABC为等边三角形,AA1=AB=6,D为AC的中点.(1)求证:直线AB1∥平面BC1D;(2)求证:平面BC1D⊥平面ACC1A1;(3)求三棱锥C﹣BC1D的体积.答案解析部分一.<b >选择题</b>1.【答案】D【考点】两条平行直线间的距离【解析】【解答】解:∵直线3x+y﹣3=0与6x+my+1=0平行,∴,解得m=2.因此,两条直线分别为3x+y﹣3=0与6x+2y+1=0,即6x+2y﹣6=0与6x+2y+1=0.∴两条直线之间的距离为d= = = .故答案为:D【分析】根据两条直线平行的一般式的系数关系可求出m=2,进而得到两条直线的方程,再利用两条平行线间的距离公式可得结果。
高一数学函数单元测试题及答案单元测试题一、填空题1、设全集U=Z,集合A={-1,1,2},B={-1,1,2},从A到B的一个映射为x→y=f(x)=x/|x|,其中x∈A,y∈B,P={y|y=f(x)},则B∩(C∪P)={-1,1}。
2、已知x1是方程x+lgx=3的根,x2是方程x+10=3的根,则x1+x2值为2.3、已知函数y=f(x)的图象关于直线x=-1对称,且当x>0时f(x)=x/1,则当x<-2时f(x)=-x/1.4、函数y=f(x)的反函数y=f^-1(x)的图像与y轴交于点P(0,2),则方程f(x)=0在[1,4]上的根是x=2.5、设f(x)=2log(x-1),x≥2;f(x)=3x-1,x<2,则f(f(2))的值为1.6、从甲城市到乙城市m分钟的电话费由函数f(m)=1.06×([m]+44)给出,其中[m]表示不大于m的最大整数(如[3]=3,[3.9]=3,[3.1]=3),则从甲城市到乙城市5.8分钟的电话费为7.7、函数f(x)=2-2/(x-1),x≤2;f(x)=1-x/2,x>2,则f(0)=-1.8、函数y=(1-x)/(1+x),x≠-1,的值域为(-1,1)。
9、若f(5/2x-1)=x-2,则f(125)=48.10、已知映射f:A→B,其中A=B=R,对应法则为f:x→y=x+2x+3.若对实数k∈B,在集合A中不存在原象,则k 的取值范围是(-3/2,-3)∪(-3,-2)∪(-2,-3/2)。
11、偶函数f(x)在(-∞,0)上是减函数,若f(-1)<f(lgx),则实数x的取值范围是(1,e)。
12、关于x的方程|x-4x+3|-a=0有三个不相等的实数根,则实数a的值是1/2.13、关于x的方程(2x-1)/(x+2)+a=1有正根,则实数a的取值范围是(-∞,1/2)。
二、改写后的答案1、已知集合A={-1,1,2},B={-1,1,2},全集U=Z,映射f:A→B,f(x)=x/|x|,其中x∈A,y∈B,P={y|y=f(x)},求B∩(C∪P)的值。
数 学
一.选择题:本大题共8小题;每小题5分,共40分. 在每
小题给出的四个选项中,只有一项是符合题目要求的. 1. 下列说法正确的是( )
A.045-是锐角
B. 第二象限角大于090
C .090是第一象限角 D. 0180-与0180的终边相同 2. ︒-120sin 的值是( )
A. 0.5
B.
0.5
- C.
D. 3. 函数sin(2)(0)y x ϕϕπ=+≤≤是R 上的偶函数,则ϕ的值是( ) A.0 B.
4
π
C.
2
π
D. π
4. 将函数sin()3
y x π=-的图象上所有点的横坐标伸长到原来的
2倍(纵坐标不变),再将所得的图象向左平移3
π个单位,
得到的图象对应的解析式是( )
A. sin(2)6
y x π=- B.1sin()2
2
y x π=- C.
1sin 2y x = D. 1sin()26
y x π=-
5. 设α角属于第二象限,且2
cos 2cos α
α-=,则2
α角属于( )
A. 第一象限
B. 第二象限
C. 第
三象限 D. 第四象限 6. 若,4
2π
απ
-<<- 则( ) A. αααtan sin cos >> B.αααsin tan cos >>
C. αααtan cos sin >>
D.αααcos sin tan >> 7.设
)
(x f 是定义域为
R
,最小正周期为
2
3π的函数,且
⎪⎩
⎪⎨⎧
<≤<≤-=)0(sin )02
(cos )(ππx x x x x f ,则)415(π-f 等于( ) A.1
B.2
C.0
D.-
8. 若函数,,0,)3(sin 2)(R x x x f ∈>+=ωπω又0)(,2)(=-=βαf f ,且
||βα-的最小值等于π
4
3
.则函数)(x f 的一个单调递增区间
是( )
A .)4
,2(ππ- B .),4
(ππ C
.
),2
(ππ
- D .)2
,2(ππ-
二.填空题:本大题共7个小题,每小题5分,共35分,将答案填写在答题卡中相应题号的横线上.
9. 若ααα则,0tan sin >⋅是第________________ 象限角. 10. 5
π-弧度等于_______度.
11. 设扇形的周长为8cm ,面积为24cm ,则扇形的圆心角的弧度数是 .
12. 在半径为30m 的圆形广场中央上空,设置一个照明光源,
射向地面的光呈圆锥形,且其轴截面顶角为0120,若要光源恰好照亮整个广场,则其高应为_______m . 13. 化简:
00000360sin 270cos 180sin 90cos 0tan r q p x m ---+=__________.
14. 函数x y sin 3=的最小正周期为_______; 值域是_________. 15. 给出下列四个命题: ①函数
2sin(2)
3
y x π
=-的一条对称轴是512
x π=; ②函数
tan y x =的图象关于点(
2
π
,0)对称; ③正弦函数在第一象限为增函数; ④函数x y cos =的所有零点可表示为22ππ+=k x ,
其中k Z ∈.以上四个命题中正确..的有 (将所有正确命题前面的序号都填写)
三.解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.
16.(本题满分12分)已知2
2log )cos(2=-πα,求ααsin tan +的
值.
17(本题满分12分)求函数x x y tan log 22
1++=+x cos 的定义
域.
18.(本题满分12分)已知α为第三象限角,
()
3
sin()cos()tan() 22
tan()sin()
f
ππ
ααπα
α
απαπ
-+-
=
----
.
(Ⅰ)化简()
fα;
(Ⅱ)若31
cos()
25
π
α-=,求()
fα的值.
19.(本小题满分13分) 设集合
}
sin ,4,2
1
{x A =,集合
}cos ,2
3
{x B -
= (Ⅰ)若A B ⊂,求x 的值;
(Ⅱ)若}{y B A =⋂,求y x 、的值.
20.(本题满分13分)某港口的水深y (米)是时间t (
024t ≤≤,单位:小时)的函数,下面是每天时间
与水深的关系表:
经过长期观测,
()y f t =可近似的看成是函数sin y A t b ω=+.
(Ⅰ)根据以上数据,求出()y f t =的解析式;
(Ⅱ)若船舶航行时,水深至少要11.5米才是安全的,那么船舶在一天中的哪几段时间可以安全的进出该港?
21.(本小题满分13分) 设关于
x
的函数
12cos 2sin 22+---=a x a x y 的最小值为()f a ,试确定满足1()2
f a =
的a 的值,并对此时的a 值求y 的最大值.。