几何图形中函数解析式的求法(学法指导)
- 格式:doc
- 大小:202.00 KB
- 文档页数:7
初中求函数解析式的四种常用方法
嘿,同学们!今天咱就来讲讲初中求函数解析式的四种常用方法,这可超级重要,一定要认真听哦!
第一种方法就是待定系数法啦!比如说有个一次函数,它过点(1,2)和(3,4),那咱就可以设这个函数解析式是 y=kx+b,然后把这两个点代进去,不就可以求出 k 和 b 的值啦,很神奇吧!你看,用这个方法是不是一下子
就能把函数解析式给确定下来啦!
再来说说第二种,那就是根据函数图像来求呀!如果给你一幅函数图像,哇,那里面藏着好多信息呢。
就像探险一样,从图像上找出关键的点,然后利用这些点来确定函数解析式。
好比说,图像上有个最高点或者最低点,嘿,那可是宝藏信息呀!你能放过吗?肯定不能呀!
第三种方法也超有意思,就是根据实际问题来建立函数模型。
比如说,
你去买文具,一支笔 2 块钱,那买 x 支笔的总价 y 不就是 y=2x 嘛!是不
是很简单,但又很实用呢!这不就跟咱们生活联系起来啦,多有意思呀!
最后一种呢,就是通过已知函数的性质来求了。
比如说已知一个函数是偶函数,那它就有特别的性质哦,利用这些性质就能求出解析式啦。
哎呀,这四种方法真的是各有各的奇妙之处呀!就像武林秘籍里的不同招式,学会了它们,对付函数解析式的问题那就是小菜一碟啦!同学们,一定要好好掌握呀,这样在数学的世界里才能游刃有余呢!
我的观点结论就是:这四种求函数解析式的方法很重要,掌握好它们,对我们初中数学的学习有极大的帮助,相信你们一定可以的!加油!。
函数解析式的常用求解方法:(1)待定系数法:(已知函数类型如:一次、二次函数、反比例函数等):若已知f(x)的结构时,可设出含参数的表达式,再根据已知条件,列方程或方程组,从而求出待定的参数,求得f(x)的表达式。
待定系数法是一种重要的数学方法,它只适用于已知所求函数的类型求其解析式。
(2)换元法(注意新元的取值范围):已知f(g(x))的表达式,欲求f(x),我们常设t=g(x),从而求得,然后代入f(g(x))的表达式,从而得到f(t)的表达式,即为f(x)的表达式。
(3)配凑法(整体代换法):若已知f(g(x))的表达式,欲求f(x)的表达式,用换元法有困难时,(如g(x)不存在反函数)可把g(x)看成一个整体,把右边变为由g(x)组成的式子,再换元求出f(x)的式子。
(4)消元法(如自变量互为倒数、已知f(x)为奇函数且g(x)为偶函数等):若已知以函数为元的方程形式,若能设法构造另一个方程,组成方程组,再解这个方程组,求出函数元,称这个方法为消元法。
(5)赋值法(特殊值代入法):在求某些函数的表达式或求某些函数值时,有时把已知条件中的某些变量赋值,使问题简单明了,从而易于求出函数的表达式。
求函数解析式是中学数学的重要内容,是高考的重要考点之一。
本文给出求函数解析式的基本方法,供广大师生参考。
一、定义法根据函数的定义求其解析式的方法。
例1. 已知,求。
解:因为二、换元法已知看成一个整体t,进行换元,从而求出的方法。
例2. 同例1。
解:令,所以,所以。
评注:利用换元法求函数解析式必须考虑“元”的取值范围,即的定义域。
三、方程组法根据题意,通过建立方程组求函数解析式的方法。
例3. 已知定义在R上的函数满足,求的解析式。
解:,①②得,所以。
评注:方程组法求解析式的关键是根据已知方程中式子的特点,构造另一个方程。
四、特殊化法通过对某变量取特殊值求函数解析式的方法。
例4. 已知函数的定义域为R,并对一切实数x,y都有,求的解析式。
求函数解析式的三种方法嘿,朋友们!今天咱们来唠唠求函数解析式的那些事儿。
这就像是在神秘的数学魔法世界里寻找宝藏的地图,找到正确的方法,那宝藏(解析式)就手到擒来啦。
第一种方法呢,叫待定系数法。
这就好比是去相亲,你知道对方大概的类型(函数的类型,比如一次函数、二次函数啥的)。
如果是一次函数,那就是y = kx + b这个模式,就像相亲时知道对方是个温柔型(一次函数形式固定)。
然后你通过一些线索(已知条件),比如给了你两个点的坐标,就像知道相亲对象的两个喜好一样。
你把这两个喜好(坐标代入)到y = kx + b里,就像把对方的喜好融入到对他的印象里,然后解出k和b这两个小秘密(待定系数),解析式这个宝藏就被你挖掘出来啦。
这待定系数法啊,就像是给函数这个神秘人画像,根据已知的特点(条件)把他的全貌(解析式)画出来。
再说说换元法。
这可就像是给函数变装啦。
比如说有个复杂的函数,里面的式子就像一个穿着奇装异服的小丑(复杂的表达式),让你看不透。
这时候你就给他来个大变身,把里面复杂的部分设成一个新的角色,比如设成t,就像给小丑换了一套简洁的衣服。
然后整个函数就变得简单明了了,就像小丑变成了一个普通的路人,你能轻松地看清他的样子(求出解析式)。
等求出关于t的解析式后,再把t换回到原来的复杂部分,就像小丑又穿上了他的奇装异服,但是这时候你已经完全了解这个函数啦。
还有一种方法叫配凑法。
这就像是玩拼图游戏。
你有一堆杂乱的拼图块(函数表达式的各个部分),你得想办法把它们巧妙地拼凑起来,凑成一个完整的图案(解析式)。
比如说给你一个函数的变形形式,你得通过自己的智慧,像一个聪明的拼图大师一样,这里加一点,那里减一点,把它变成你熟悉的函数形式。
有时候可能需要一点想象力,就像在拼图的时候突然发现一块可以放在意想不到的地方,然后一个完整的函数解析式就出现在你眼前啦。
这求函数解析式的三种方法啊,就像三把神奇的钥匙,可以打开函数这个神秘宝箱的锁。
初中数学如何通过函数的图像确定其解析式通过函数的图像确定其解析式是一个常见且重要的数学问题。
在本文中,我们将详细讨论如何通过函数的图像确定其解析式。
要通过函数的图像确定其解析式,我们可以按照以下步骤进行:1. 观察图像的形状和特点:首先,仔细观察函数图像的形状和特点。
注意函数图像的曲线、拐点、交点等信息。
通过观察图像,我们可以猜测函数的类型和形式。
2. 确定函数的类型:根据图像的形状和特点,我们可以初步确定函数的类型。
常见的函数类型包括线性函数、二次函数、指数函数、对数函数等。
根据函数的类型,我们可以有针对性地进行后续的分析和确定。
3. 确定函数的一般形式:根据函数的类型,我们可以猜测函数的一般形式。
例如,如果函数图像是一条直线,我们可以猜测函数的一般形式为f(x) = ax + b,其中a 和 b 是常数。
如果函数图像是一个抛物线,我们可以猜测函数的一般形式为f(x) = ax^2 + bx + c,其中a、b 和c 是常数。
4. 使用已知点确定解析式:选择图像上的几个已知点,然后将这些点的坐标代入到猜测的一般形式中。
通过解方程组,我们可以求解出函数的解析式的具体参数值。
5. 确认结果:计算出函数的解析式后,我们需要确认结果是否合理。
可以通过将解析式代入其他已知点,然后观察函数图像是否经过这些点。
如果函数图像经过这些点并且满足其他已知条件,则我们可以确认所计算的解析式是正确的。
需要注意的是,通过图像确定函数的解析式是一个近似的过程,存在一定的不确定性。
因此,我们需要选择尽可能多的已知点,以提高计算结果的准确性。
通过以上步骤,我们可以通过函数的图像确定其解析式。
这种方法可以帮助我们更直观地理解函数的性质,并且可以应用于其他类型的函数。
了解函数的解析式对于解决实际问题以及进一步理解数学概念都非常重要。
求函数解析式的六种常用方法函数解析式指的是用代数式或公式来表示函数的方式。
以下是六种常用方法:一、明确函数定义域和值域在确定函数解析式之前,首先需要明确函数的定义域和值域。
函数的定义域是指函数可以取值的自变量的范围,而值域则是函数的函数值可以取的范围。
明确函数的定义域和值域可以帮助我们确定函数解析式的形式和特点。
二、利用已知条件和性质确定函数解析式在求函数解析式时,可以利用已知条件和性质来确定函数解析式的形式。
例如,已知函数的导函数,可以通过求导的逆运算确定原函数的解析式。
又如,已知函数的周期性质,可以利用周期性质来确定函数解析式的形式。
三、从实际问题中建立函数关系函数解析式可以从实际问题中建立起来。
在解决实际问题时,可以首先建立自变量和函数值之间的关系,然后根据问题中给出的条件来确定函数解析式。
例如,求解经济学中的需求函数、生长模型等。
四、利用已知函数的性质和运算建立函数解析式在求函数解析式时,可以利用已知函数的性质和运算来建立函数解析式。
例如,可以利用已知函数的线性性质、对称性质、指数性质等来建立函数解析式。
又如,可以利用已知函数的运算性质,如加减乘除、复合等来建立函数解析式。
五、利用恒等式和方程组建立函数解析式在求解一些复杂的函数问题时,可以利用恒等式和方程组来建立函数解析式。
通过列方程并求解,可以得到函数解析式中的一些未知系数。
例如,可以通过建立差分方程求解离散函数的解析式。
六、利用已知函数的级数展开建立函数解析式在求解一些函数的解析式时,可以利用已知函数的级数展开式来建立函数解析式。
通过逐项求和,可以得到函数解析式的形式。
例如,可以利用幂级数展开来确定一些特殊函数的解析式。
几何图形中函数解析式的求法(学法指导)几何图形中函数解析式的求法函数是初中数学的重要内容,也是初中数学和高中数学有相关联系的细节,在历年的中考试题中都占有重要的份量,而求函数的解析式则成为中考的热点。
求函数的解析式的方法是多种多样的,但是学生往往把思维固定在用“待定系数法”去求函数的解析式。
而使用待定系数法去求函数的解析式的大前提是必须根据题目的条件,选用恰当函数(如正、反比例函数,一次、二次函数)的表达式。
如果题目中能根据直接条件或间接条件给出函数的类型,当然是选用待定系数法求函数的解析式。
但我们发现,在几何图形中求函数解析式却成为初中数学考试的常见题、压轴题。
同时我们也发现,在几何图形中求函数解析式往往是无法确定所求函数的类型,因此用待定系数法进行解题是行不通的。
我们知道,函数的解析式也是等式,要建立函数解析式,关键是运用已知条件在几何图形中找出等量关系,列出以变量有关的等式。
下面以几个例子来探求在几何图形中建立函数解析式的常见类型和解题途径。
一、 用图形的面积公式确立等量关系例1、如图1,正方形ABCD 的边长为2,有一点P 在BC 上运动,设PB=x ,梯形APCD 的面积为y (1)求y 与x 的函数关系式;(2)如果S △ABP =S 体型APCD 请确定P 的位置。
分析:本题所给的变量y 是梯形的面积,因此可根据梯形面积公式B CADP图1即222)2(y y x =-+ 整理得1412+=x y在Rt ΔABC 中,∠B=90°,∠BAC=30°,AB=2 , ∴BC=332 ,∴0<x <332。
于是1412+=x y (0<x <332)为所求的函数解析式。
(2)略二、 用平行线截线段成比例,利用比例式确立等量关系例4、如图4,在ΔABC 中,AB=8,AC=6,⊙O 是ΔABC 的外接圆,且BC 是直径,⊙O 与⊙O ’内切于点A ,与边AB 、AC 分别交于点D 、E 。
求函数解析式的四种常用方法例题1. 引言嘿,朋友们,今天咱们来聊聊求函数解析式的那些事儿!很多人觉得这玩意儿可难了,心里老是七上八下的。
其实,求函数解析式就像做一道美味的菜,只要掌握了几种方法,咱们也能轻松搞定。
让我们一起来揭开这个神秘面纱,看看怎样能让这些函数变得活灵活现吧!2. 常用方法概述在求函数解析式的过程中,咱们通常会用到四种常用方法。
你别看它们名字听起来挺复杂,其实用起来就是那么简单。
好啦,咱们一个个来捋捋。
2.1. 代入法首先,咱们说说代入法。
这个方法就像是给你一个拼图,里面有块儿缺失的,咱们把已知的先代进去。
比如说,假设你知道了一个点(2, 3),而且这个点在你求的函数上,那你可以把x=2代入到函数的表达式里,得出y=3。
只要这样一来,缺失的部分就能一点点填上去。
再比如说,给你个一元二次方程,你可以通过代入法,逐步求解出它的系数,嘿,这不是轻松解决问题的最佳捷径吗?2.2. 图像法接下来,我们聊聊图像法。
说白了,就是拿个画笔,给你的函数画个图。
这就像咱们做个草图,先把大概的轮廓给勾勒出来。
通过图像,可以很直观地看出函数的趋势,甚至能猜测出解析式。
如果你看到图像有个明显的拐点,嘿,那就说明你得考虑一下二次函数或者其他高阶函数的可能性了。
画画可不是小儿科,越细致,越能洞察真相。
3. 数据拟合法然后是数据拟合法。
这是个数据控的最爱,简直就是量化分析的金钥匙。
你拿到一堆数据,就像在河里捡了宝,接下来用拟合的办法,把它们转换成函数。
简单说,就是找个合适的函数,让它尽量贴合这些数据点。
比如,使用最小二乘法,这个名字听上去复杂,其实就是最小化偏差,让点儿和函数之间的距离最短。
想象一下,像一位细心的裁缝,量体裁衣,缝合出最完美的曲线,谁能不爱?3.1. 线性拟合这里再具体讲讲线性拟合。
线性拟合就像是在为你的数据找到一条直线,傻傻的认为这个直线能代表你所有的点。
虽然不是每次都能完美,但如果数据呈现出一条明显的趋势,线性拟合就能帮你找到一条合适的直线方程。
求函数解析式的方法和例题一、常见的求函数解析式的方法。
1. 代数法,通过代数运算,将已知的函数关系式化简成解析式的形式。
例如,对于一元一次函数y=ax+b,我们可以通过代数运算将已知的函数关系式y=ax+b化简为解析式y=2x+3。
2. 图像法,通过观察函数的图像特征,推导出函数的解析式。
例如,对于二次函数y=ax^2+bx+c,我们可以通过观察抛物线的开口方向、顶点坐标等特征来推导出函数的解析式。
3. 系数法,对于一些特定的函数类型,可以通过系数的求解来得到函数的解析式。
例如,对于指数函数y=a^x,我们可以通过已知的函数值和指数的关系来求解出函数的解析式。
4. 反函数法,有些函数的解析式可以通过求解其反函数得到。
例如,对于对数函数y=log_a(x),我们可以通过求解其反函数来得到函数的解析式。
二、求函数解析式的例题。
1. 求一元一次函数y=ax+b的解析式,已知当x=1时,y=3;当x=2时,y=5。
解:根据已知条件,我们可以列出方程组:a1+b=3。
a2+b=5。
通过解方程组,可以求解出a=2,b=1,因此函数的解析式为y=2x+1。
2. 求二次函数y=ax^2+bx+c的解析式,已知其图像经过点(1,2),顶点坐标为(-1,3)。
解:根据已知条件,我们可以列出方程组:a1^2+b1+c=2。
a(-1)^2+b(-1)+c=3。
通过解方程组,可以求解出a=1,b=0,c=1,因此函数的解析式为y=x^2+1。
3. 求指数函数y=a^x的解析式,已知当x=2时,y=16;当x=3时,y=64。
解:根据已知条件,我们可以列出方程组:a^2=16。
a^3=64。
通过解方程组,可以求解出a=4,因此函数的解析式为y=4^x。
以上就是关于求函数解析式的方法和例题的介绍,希望能对大家有所帮助。
通过学习和掌握这些方法和技巧,相信大家可以更好地理解和运用函数解析式,提高数学解题的能力。
求函数解析式的四种常用方法函数是数学中的重要概念,它描述了变量之间的关系。
函数解析式是用代数表达式来表示函数的定义域、值域和具体的变化规律。
常用的四种方法来得到函数的解析式是:通过公式、通过图像、通过数据和通过给定条件。
一、通过公式:一些函数的解析式可以通过简单的数学公式来得到。
例如,直线函数y = kx + b、二次函数y = ax^2 + bx + c以及指数函数y = a^x等。
这些函数可以根据已知的系数和常数来确定解析式。
例如,对于直线函数y = 2x + 3,我们可以知道它的斜率是2,截距是3,因此解析式为y = 2x + 3二、通过图像:函数的解析式可以通过观察图像来确定。
例如,可以根据函数的特点,如对称性、切线的斜率等,来确定解析式。
对于一元函数来说,可以通过绘制函数的图像来判断函数的特点,从而得到函数的解析式。
例如,对于一次函数来说,可以通过观察图像的直线特点来确定解析式;对于二次函数来说,可以根据开口方向、抛物线的顶点位置等来确定解析式。
三、通过数据:有时候可以通过给定的数值表格或函数的值来确定函数的解析式。
通过列举一组合适的输入和输出值,然后观察数值的规律,可以找到函数的解析式。
例如,已知函数的自变量为x,函数的值为y,通过给定一些具体的x和对应的y值,可以通过观察它们之间的关系来确定函数的解析式。
四、通过给定条件:在一些具体的问题中,函数的解析式可以通过给定的条件来确定。
例如,在几何问题中,根据给定的几何条件和函数的特性,可以建立函数的解析式。
例如,根据直线过点的条件和斜率的特性,可以确定直线的解析式。
综上所述,函数解析式的四种常用方法是通过公式、通过图像、通过数据和通过给定条件。
通过这些方法,可以确定函数的解析式,进而研究函数的性质和变化规律,以及解决一些实际问题。
求函数解析式的方法和例题在数学学习中,求函数解析式是一个非常重要的问题。
函数解析式是描述函数规律的数学式子,它可以帮助我们更好地理解函数的性质和特点,进而解决各种与函数相关的问题。
那么,我们该如何求函数的解析式呢?下面,我将介绍几种常见的方法和通过例题来帮助大家更好地理解。
一、根据函数图像求解析式。
我们知道,函数的图像可以直观地反映函数的性质和规律。
因此,当给定函数的图像时,我们可以通过观察图像的特点来求解析式。
以一元一次函数为例,当我们给定了函数图像上的两个点坐标时,我们可以通过这两个点的坐标来求解析式。
具体的求解步骤是,首先计算出斜率,然后利用其中一个点的坐标和斜率来写出函数解析式。
例如,给定一元一次函数的图像上的两个点坐标分别为(1,3)和(2,5),我们可以先计算出斜率为2,然后利用其中一个点的坐标(比如(1,3))和斜率来写出函数解析式,y=2x+1。
二、根据函数的性质求解析式。
有些函数具有一些特殊的性质,我们可以通过这些性质来求解析式。
比如,对于一元二次函数y=ax^2+bx+c,我们知道它的图像是一个抛物线,而抛物线的开口方向取决于a的正负。
因此,当我们给定了抛物线的开口方向和顶点坐标时,我们可以通过这些性质来求解析式。
例如,给定一元二次函数的抛物线开口向上,顶点坐标为(1,2),我们可以利用这些信息来求解析式。
首先,根据顶点坐标可以得到c=2,然后根据抛物线开口向上可以得到a>0,进而写出函数解析式,y=ax^2+bx+2。
三、根据函数的定义求解析式。
有些函数是根据一定的规则或定义而得到的,我们可以通过这些规则或定义来求解析式。
比如,对于阶梯函数,我们知道它在不同的区间有不同的取值,因此可以根据这些规则来写出函数解析式。
例如,给定一个阶梯函数在区间[0,2)上的取值为1,在区间[2,4)上的取值为3,我们可以根据这些规则来写出函数解析式,f(x)=1, 0≤x<2;f(x)=3, 2≤x<4。
函数解析式的七种求法一、通过给定的输入和输出求解析式。
这是最简单直接的方法,当给定了函数的输入和输出时,可以利用这些已知信息求解析式。
例如,如果一个函数在输入为1时输出为3,在输入为2时输出为5,我们可以直接写出函数解析式为f(x)=2x+1二、基于已知函数的变换求解析式。
对于已知的一些基本函数,例如线性函数、多项式函数、指数函数、对数函数等,我们可以通过对它们进行变换得到其他函数的解析式。
例如,如果已知函数f(x)=x^2,我们可以通过对f(x)进行变换得到f(x)=(x-1)^2+1三、利用函数的性质和特点求解析式。
对于一些特殊函数,例如奇函数、偶函数、周期函数等,可以利用它们的性质和特点来求解析式。
例如,如果一个函数是奇函数,那么它的解析式中只包含奇次幂项,可以利用这个特点来求解析式。
四、利用已知函数的级数展开求解析式。
对于一些复杂的函数,可以利用已知函数的级数展开进行逼近,从而得到函数的解析式。
例如,可以利用泰勒级数展开求得函数的解析式,只需要计算到足够高的阶数即可。
五、利用已知函数的导数和积分求解析式。
对于一些函数,可以通过对它们的导数和积分进行运算得到其他函数的解析式。
例如,如果已知一个函数的导数或积分,可以通过对这个导数或积分进行逆运算来求得函数的解析式。
六、基于已知函数的函数逼近求解析式。
对于一些复杂的函数,可以利用一些已知的简单函数进行逼近,从而得到函数的解析式。
例如,可以利用多项式函数对一个非多项式函数进行逼近,从而得到函数的解析式。
七、利用差分方程或微分方程求解析式。
对于一些具有差分方程或微分方程性质的函数,可以通过求解这些方程来得到函数的解析式。
例如,可以利用差分方程或微分方程求解线性递推函数的解析式。
以上是七种常用的求解函数解析式的方法。
不同方法适用于不同情况,根据具体的问题和已知信息选择合适的方法可以更高效地求解函数的解析式。
一)求函数的解析式1、函数的解析式表示函数与自变量之间的一种对应关系,是函数与自变量建立联系的一座桥梁,其一般形式是y =f (x ),不能把它写成f (x ,y )=0;2、求函数解析式一般要写出定义域,但若定义域与由解析式所确定的自变量的范围一致时,可以不标出定义域;一般地,我们可以在求解函数解析式的过程中确保恒等变形;3、求函数解析式的一般方法有:(1)直接法:根据题给条件,合理设置变量,寻找或构造变量之间的等量关系,列出等式,解出y 。
(2)待定系数法:若明确了函数的类型,可以设出其一般形式,然后代值求出参数的值;(3)换元法:若给出了复合函数f [g (x )]的表达式,求f (x )的表达式时可以令t =g (x ),以换元法解之;(4)构造方程组法:若给出f (x )和f (-x ),或f (x )和f (1/x )的一个方程,则可以x 代换-x (或1/x ),构造出另一个方程,解此方程组,消去f (-x )(或f (1/x ))即可求出f (x )的表达式;(5)根据实际问题求函数解析式:设定或选取自变量与因变量后,寻找或构造它们之间的等量关系,列出等式,解出y 的表达式;要注意,此时函数的定义域除了由解析式限定外,还受其实际意义限定。
(二)求函数定义域1、函数定义域是函数自变量的取值的集合,一般要求用集合或区间来表示;2、常见题型是由解析式求定义域,此时要认清自变量,其次要考查自变量所在位置,位置决定了自变量的范围,最后将求定义域问题化归为解不等式组的问题;3、如前所述,实际问题中的函数定义域除了受解析式限制外,还受实际意义限制,如时间变量一般取非负数,等等;4、对复合函数y =f [g (x )]的定义域的求解,应先由y =f (u )求出u 的范围,即g (x )的范围,再从中解出x 的范围I1;再由g (x )求出y =g (x )的定义域I2,I1和I2的交集即为复合函数的定义域;5、分段函数的定义域是各个区间的并集;6、含有参数的函数的定义域的求解需要对参数进行分类讨论,若参数在不同的范围内定义域不一样,则在叙述结论时分别说明;7、求定义域时有时需要对自变量进行分类讨论,但在叙述结论时需要对分类后求得的各个集合求并集,作为该函数的定义域;(三)求函数的值域1、函数的值域即为函数值的集合,一般由定义域和对应法则确定,常用集合或区间来表示;2、在函数f :A →B 中,集合B 未必就是该函数的值域,若记该函数的值域为C ,则C 是B 的子集;若C =B ,那么该函数作为映射我们称为“满射”;3、分段函数的值域是各个区间上值域的并集;4、对含参数的函数的值域,求解时须对参数进行分类讨论;叙述结论时要就参数的不同范围分别进行叙述;5、若对自变量进行分类讨论求值域,应对分类后所求的值域求并集;6、求函数值域的方法十分丰富,应注意总结函 数 解 析 式 的 七 种 求 法一、 待定系数法:在已知函数解析式的构造时,可用待定系数法。
求函数解析式常用的方法函数的解析式是指能够描述函数关系的数学表达式。
常见的函数解析式有多种求法,下面介绍几种常用的方法。
一、通过已知的函数图像求函数的解析式:1.方程法:已知函数的图像,可以通过观察图像上的点与坐标轴的交点,列方程来求解。
例如,已知函数图像上点(1,3)和(2,5),可以列出方程f(1)=3和f(2)=5,然后通过解方程组的方法求得函数解析式。
2.函数平移法:已知函数图像上的一些平移属性,可以通过对已知函数进行平移操作得到所求函数的解析式。
例如,已知函数f(x)在原坐标系上的图像向左平移2个单位,可以得到函数f(x+2)。
3.倒推法:已知函数的图像为已知函数的变换之一,可以从已知函数推导出所求函数的解析式。
例如,已知函数f(x)的图像是函数g(x)的图像上关于y轴对称得到的,可以通过对函数f(x)进行关于y轴对称操作得到函数g(x)的解析式。
二、通过已知函数求函数的解析式:1.基本函数的组合:常见的基本函数包括线性函数、二次函数、指数函数、对数函数等。
可以通过将基本函数进行合理的组合和变换,来构建所求函数的解析式。
2.反函数法:已知函数的反函数,可以通过对已知函数的自变量和因变量进行互换得到所求函数的解析式。
例如,已知函数f(x)的反函数是g(x),则所求函数的解析式为f(y)=x。
3.极限法:当函数的极限存在时,可以通过极限的概念推导所求函数的解析式。
例如,已知函数的极限为一些常数,可以通过求出极限值来得到所求函数的解析式。
三、通过函数的性质求函数的解析式:1.函数的奇偶性:如果一个函数是奇函数,那么它的解析式中不含有$x^2$的项;如果一个函数是偶函数,那么它的解析式中不含有$x$的项。
2.函数的周期性:如果一个函数是周期函数,那么它的解析式中必定含有正弦或余弦等与周期函数相关的函数。
3.函数的导数与微分:通过求函数的导数和微分,可以得到函数所满足的微分方程,然后进一步求解微分方程从而得到函数的解析式。
求函数解析式的四种常用方法求函数解析式的四种常用方法: 1、设法化成一元一次方程,再通过检验判断一元一次方程的解的存在性;2、利用函数图像和单调性求函数解析式; 3、利用函数奇偶性来求解;4、利用“韦达定理”来求解。
2、根据图像的变化,利用“特殊值”求解。
例题:求抛物线的方程。
(1)已知抛物线y=mx+c的图象过点(-5, 5),且过原点(0, 0)。
(2)求y的最大值和最小值(3)若将抛物线y=mx+c上的点代入y=mx+c=x+m中,可得y的值为7,求x的取值范围。
例题:求圆的方程(1)已知直线y=4/x+6/y的图象与直线y=-3/2在坐标平面内的截距相等,且图象过点(0, 3)。
(2)求y的最大值。
(3)若将y=4/x+6/y上的点代入y=-3/2-x-8/3中,可得y的值为9,求x的取值范围。
3、利用奇偶性求解。
例题:已知函数y=5/6+12/13,当x=1时, y=-2/13;当x=5/6时, y=-7/23;当x=9时, y=-11/22。
试求y的解析式,并说明奇偶性。
4、利用“韦达定理”来求解。
例题:已知f(x) = x**2-12x+30.(1)若f(x) =0,求x的值; (2)已知f(x)的图象与y=8/5有两个不同的交点,且图象在y轴的第一、二象限,试求x的取值范围。
解析:(1)由f(x) =x**2-12x+30,即f(x)的图象为双曲线。
可设y=8/5;解得-6/5<y<-3/5,即-4/5≤y≤-3/5,由题意得-6/5≤y≤-3/5;解得-6/5≤y≤-3/5,则0<y≤-3/5;(2)将f(x)的图象移到(0, -1)之间,得到双曲线y=-1/4-4/3;在(-1, 1)内画出y=-1/4-4/3的图象,从而得到函数y=-1/4+4/3的图象;解得x≤1/3。
求函数解析式的几种方法及题型【最新版3篇】篇1 目录一、引言二、求函数解析式的常用方法1.待定系数法2.交点式3.顶点式4.换元法5.归纳法三、求函数解析式的题型及应用1.已知三个点求解析式2.已知顶点求解析式3.已知交点求解析式4.抽象复杂函数问题四、结论篇1正文一、引言求函数解析式是高中数学中的常见问题,也是高考的常规题型之一。
解决这类问题需要掌握一定的方法和技巧。
本文将介绍几种常用的求函数解析式的方法及题型,帮助同学们更好地理解和应用这些方法。
二、求函数解析式的常用方法1.待定系数法待定系数法是一种求未知数的方法。
将一个多项式表示成另一种含有待定系数的新的形式,这样就得到一个恒等式。
然后根据恒等式的性质得出系数应满足的方程或方程组,其后通过解方程或方程组便可求出待定的系数,或找出某些系数所满足的关系式。
2.交点式交点式适用于已知抛物线与 x 轴的两个交点的情况。
通过已知的交点,我们可以得到两个方程,解这两个方程可以求得抛物线的解析式。
3.顶点式顶点式适用于已知抛物线的顶点的情况。
通过已知的顶点,我们可以得到一个方程,这个方程包含了抛物线的顶点坐标和抛物线的解析式中的待定系数。
解这个方程可以求得抛物线的解析式。
4.换元法换元法是一种通用的求函数解析式的方法,适用于各种复杂的函数问题。
通过换元,我们可以将复杂的函数问题转化为简单的函数问题,从而求得函数的解析式。
5.归纳法归纳法适用于具有一定规律的函数问题。
通过观察函数的规律,我们可以猜测函数的解析式,然后通过数学归纳法证明我们的猜测是正确的。
三、求函数解析式的题型及应用1.已知三个点求解析式已知函数上的三个点,我们可以通过待定系数法求解函数的解析式。
设定函数的形式为 y=ax^2+bx+c,然后将三个点的坐标代入方程,得到三个方程组成的线性方程组,解这个方程组可以求得函数的解析式。
2.已知顶点求解析式已知抛物线的顶点,我们可以通过顶点式求解抛物线的解析式。
求函数解析式的几种常用方法函数解析式是用来描述一个函数的数学表达式,它是数学中非常重要的概念。
在数学中,我们常常使用函数解析式来描述一个函数的性质、图像以及其他相关信息。
下面介绍几种常用的方法来求函数解析式。
一、观察法观察法是最常见的一种方法,它适用于一些简单的函数。
通过观察函数的各个特点,我们可以推测出函数的解析式。
例如,对于线性函数y = kx + b来说,我们可以通过观察到该函数的图像是一条直线,并且通过截距b可以确定直线的位置。
同时,我们还可以通过观察到斜率k来确定直线的斜率。
二、代入法代入法是一种常用的方法,它可以通过代入已知的数据来求得函数的解析式。
例如,假设我们已知一个函数满足条件f(0) = 2,f(1) = 3,f(2) = 4,我们可以通过代入这些数据来求得函数的解析式。
首先,我们可以设函数的解析式为f(x) = ax + b,然后代入第一个条件f(0) = 2,得到2 = a * 0 + b,从而得到b = 2、接着,我们再代入第二个条件f(1) = 3,得到3 = a * 1 + 2,从而得到a = 1、最后,代入第三个条件f(2) = 4,得到4 = 1 * 2 + 2,从而验证了我们的答案。
三、求导和积分法对于一些复杂的函数,我们可以利用求导和积分的方法来求函数的解析式。
首先,我们可以通过求导的方法来求得函数的导函数,然后再通过积分的方法来求得函数的解析式。
例如,对于函数f(x)=x^2+2x+1来说,我们可以通过求导的方法来求得导函数f'(x)=2x+2,然后再通过积分的方法来求得函数的解析式。
具体的方法和步骤可以根据函数的特点来确定。
四、简化法简化法是一种常用的方法,它适用于一些复杂的函数。
通过对函数的特征进行简化,我们可以得到函数的解析式。
例如,对于一个多项式函数f(x)=2x^3+3x^2+4x+5来说,我们可以通过简化法来求得函数的解析式。
首先,我们可以对多项式进行化简,得到f(x)=x^2*(2x+3)+4x+5,然后再进行进一步的化简。
求函数解析式的方法和例题在数学学习中,我们经常会遇到需要求解函数解析式的问题。
函数解析式是描述函数规律的数学式子,它可以帮助我们更好地理解函数的性质和行为。
那么,如何求函数解析式呢?接下来,我将介绍一些常见的方法和例题,希望能帮助大家更好地掌握这一内容。
一、常见的求函数解析式的方法。
1. 根据函数图像求解析式,当已知函数的图像时,我们可以通过观察图像的性质来推导函数解析式。
例如,对于一元一次函数y=kx+b,我们可以根据函数的斜率k和截距b来确定函数解析式。
同样地,对于二次函数、指数函数、对数函数等,也可以通过观察图像的特点来求解析式。
2. 根据函数性质求解析式,有些函数具有特定的性质,我们可以利用这些性质来求解析式。
例如,对于奇偶函数、周期函数、对数函数等,我们可以根据其性质来确定函数解析式。
3. 根据已知条件求解析式,有时候,我们会遇到一些特定的条件,例如函数的零点、极值点、导数等,我们可以利用这些已知条件来求解析式。
通过建立方程组,我们可以求解未知的函数解析式。
二、求函数解析式的例题。
1. 已知一元一次函数的图像经过点(2,3),斜率为4,求函数解析式。
解,根据一元一次函数的一般形式y=kx+b,我们可以利用已知的斜率和点的坐标来求解析式。
首先,斜率为4,即k=4;其次,函数经过点(2,3),代入x=2,y=3,得到3=4×2+b,解得b=-5。
因此,函数解析式为y=4x-5。
2. 已知函数f(x)满足f(1)=2,f'(x)=3x^2,求函数f(x)的解析式。
解,根据已知条件f(1)=2,我们可以利用这一条件来求解析式。
由导数的定义可知,f'(x)=3x^2,对f(x)进行积分得到f(x)=x^3+C,其中C为积分常数。
代入f(1)=2,得到2=1+C,解得C=1。
因此,函数f(x)的解析式为f(x)=x^3+1。
通过以上例题,我们可以看到,求解函数解析式的关键在于利用已知条件和函数的性质来建立方程,进而求得未知的函数解析式。
求函数解析式的方法和例题一、常见的求函数解析式的方法:1. 图像法,通过观察函数的图像特点,可以推测出函数的解析式。
例如,对于一次函数y=kx+b,可以通过观察函数的图像特点来确定k和b的值。
2. 常数法,对于一些特殊的函数,可以通过代入不同的自变量值,利用函数的性质和已知条件来求解函数的解析式。
例如,对于指数函数y=a^x,可以通过代入x=0、x=1等值来求解a的值。
3. 反函数法,对于已知函数的反函数,可以通过求解反函数来得到原函数的解析式。
例如,对于对数函数y=loga(x),可以通过求解反函数来得到对数函数的解析式。
4. 组合函数法,对于复杂的函数,可以通过将函数进行分解,然后分别求解各个部分函数的解析式,最后组合得到原函数的解析式。
例如,对于复合函数y=f(g(x)),可以先求解g(x)和f(x),然后将其组合得到y的解析式。
二、求函数解析式的例题:例题1,已知一次函数y=2x+3,求函数的解析式。
解,根据一次函数的一般形式y=kx+b,可以得到k=2,b=3,因此函数的解析式为y=2x+3。
例题2,已知指数函数y=2^x,且y(1)=4,求函数的解析式。
解,代入x=1,得到2^1=2,因此a=2,所以函数的解析式为y=2^x。
例题3,已知对数函数y=log2(x),求函数的解析式。
解,对数函数的底数为2,因此函数的解析式为y=log2(x)。
例题4,已知复合函数y=(x+1)^2,求函数的解析式。
解,将函数进行分解,得到g(x)=x+1,f(x)=x^2,因此函数的解析式为y=(x+1)^2。
以上就是关于求函数解析式的方法和例题的介绍。
希望对大家有所帮助,也希望大家在学习数学的过程中能够灵活运用这些方法,提高数学解题能力。
求解析式的方法一、代数法。
代数法是求解析式的常用方法之一。
当我们遇到一些复杂的数学问题时,可以通过引入未知数,建立方程,然后利用代数运算的性质进行求解。
例如,对于一道简单的线性方程题目,我们可以设未知数为x,建立方程式2x+3=7,然后通过化简方程,得出x=2的解析式。
二、几何法。
几何法是求解析式的另一种常用方法。
在一些几何问题中,我们可以通过画图的方式,利用几何关系进行分析,从而得到问题的解析式。
例如,对于一个三角形的面积问题,我们可以通过画图,利用三角形的面积公式S=1/2底高,求解出三角形的面积。
三、逆向思维法。
逆向思维法是求解析式的另一种常用方法。
有时候,我们可以通过逆向思维,反过来思考问题,从而得到问题的解析式。
例如,对于一个复杂的函数问题,我们可以通过反推函数的性质,逆向求解出函数的解析式。
四、数学归纳法。
数学归纳法是求解析式的一种重要方法。
通过观察数列或者图形的规律,我们可以通过数学归纳法来求解出问题的解析式。
例如,对于一个数列问题,我们可以通过观察数列的规律,然后利用数学归纳法来求解出数列的解析式。
五、综合运用法。
综合运用法是求解析式的一种灵活方法。
在实际问题中,我们可以根据具体情况,灵活运用代数法、几何法、逆向思维法、数学归纳法等多种方法来求解出问题的解析式。
通过综合运用不同的方法,我们可以更好地理解问题,并得到准确的解析式。
总结:求解析式是数学学习中的重要内容,掌握求解析式的方法对于提高解题能力至关重要。
通过代数法、几何法、逆向思维法、数学归纳法以及综合运用法,我们可以更好地求解出问题的解析式,从而更好地理解和解决数学问题。
希望本文介绍的方法能够帮助大家更好地掌握求解析式的技巧,提高数学学习的效果。
几何图形中函数解析式的求法函数是初中数学的重要容,也是初中数学和高中数学有相关联系的细节,在历年的中考试题中都占有重要的份量,而求函数的解析式则成为中考的热点。
求函数的解析式的方法是多种多样的,但是学生往往把思维固定在用“待定系数法”去求函数的解析式。
而使用待定系数法去求函数的解析式的大前提是必须根据题目的条件,选用恰当函数(如正、反比例函数,一次、二次函数)的表达式。
如果题目中能根据直接条件或间接条件给出函数的类型,当然是选用待定系数法求函数的解析式。
但我们发现,在几何图形中求函数解析式却成为初中数学考试的常见题、压轴题。
同时我们也发现,在几何图形中求函数解析式往往是无法确定所求函数的类型,因此用待定系数法进行解题是行不通的。
我们知道,函数的解析式也是等式,要建立函数解析式,关键是运用已知条件在几何图形中找出等量关系,列出以变量有关的等式。
下面以几个例子来探求在几何图形中建立函数解析式的常见类型和解题途径。
一、 用图形的面积公式确立等量关系例1、如图1,正方形ABCD 的边长为2,有一点P 在BC 上运动,设PB=x ,梯形APCD 的面积为y (1)求y 与x 的函数关系式;(2)如果S △ABP =S 体型APCD 请确定P 的位置。
分析:本题所给的变量y 是梯形的面积,因此可根据梯形面积公式BCADP图1A D CBEFGN图2S=21(上底+下底)×高 ,分别找出上底、下底、高问题可获解决。
因为上底CP=x -2,下底AD=2,高CD=2,于是由梯形面积公式建立两个变量之间的等量关系,2)22(21⋅+-=x y ,整理得:222+-=x y 。
(2)略 例2、如图2,在直角梯形ABCD 中,AD ∥BC ,∠BCD=90°,AD=a ,BC=2a ,CD=2,四边形EFCG 是矩形,点E 、G 分别在腰AB 、CD 上,点F 在BC 上。
设EF=x ,矩形EFCG 的面积为y 。
(2002年中考题) (1)求y 与x 的函数关系式;(2)当矩形EFCG 的面积等于梯形ABCD 的面积的一半时,求x 的值; (3)当∠ABC=30°时,矩形EFCG 是否能成正方形,若能求其边长,若不能试说明理由。
分析:本题所给的变量y 值是矩形的面积,因此根据矩形面积公式S=长×宽,若能算出长FC 与宽EF ,或者用变量x 、y 表示FC 和EF ,则问题可获解决。
其中宽EF=x ,问题归结为求出长FC ,从而两个变量x 、y 之间的关系通过矩形面积公式建立了。
解:(1)过点A 作AN ⊥BC 于N ,因为在矩形EFCG 中,EF ⊥BC , ∴EF ∥AN ∴ANEFBN BF = 即22x a a BF =-, 得BF=2axAB CDO EF图3∴EG=FC=242axa BF a -=- ∴x axa y ⋅-=24 ∴所求的函数关系式是ax ax y 2212+-=(0<≤x 2) (2)、(3)略二、 由直角三角形,利用勾股定理确立等量关系例3、如图3,在Rt △ABC 中,∠B=90°,∠A=30°,D 为BC 边上一动点,AD 的垂直平分线EF 交B 、AD 、C 于E 、O 、F ,AB=2。
(1)BD=x ,AE=y ,求y 关于x 的函数关系式; (2)是否存在x 使四边形AEDF 为菱形?若存在,则说明理由。
分析:本题所给图形中直角三角形较多,将两个变量x ,y 之间的关系集中到同一直角三角形中问题可获得解决。
因为BD=x ,AE=y ,AB=2,所以BE=2-y ,又根据线段中垂线的性质知DE=AE=y 。
于是,在Rt ΔBDE 中,由勾股定理建立两个变量之间的等式。
解:(1)∵EF 是线段AD 的中垂线, ∴AE=DE=yBD=x ,BE=y -2,在Rt ΔBDE 中, BD 2+BE 2=DE 2,即222)2(y y x =-+ 整理得1412+=x y在Rt ΔABC 中,∠B=90°,∠BAC=30°,AB=2 , ∴BC=332 ,∴0<x <332。
于是1412+=x y (0<x <332)为所求的函数解析式。
(2)略三、 用平行线截线段成比例,利用比例式确立等量关系例4、如图4,在ΔABC 中,AB=8,AC=6,⊙O 是ΔABC 的外接圆,且BC 是直径,⊙O 与⊙O ’切于点A ,与边AB 、AC 分别交于点D 、E 。
设BD=x ,DE=y 。
(1)求y 关于x 的函数解析式,并指出自变量x 的取值围;(2)求当⊙O ’与BC 相切时y 的值。
分析:AB=8,BD=x ,AD=x -8,如果能求得BC 的长,知道DE ∥BC ,则问题便迎刃而解。
显然,这两个问题可分别通过直径所对的圆周角的性质、弦切角定理获得解决。
解:(1)如图4,过点A 作⊙O 和⊙O ’的公切线AT ,则有O ‘ OBCDEA图4· · TA BCDPQ图5∠BAT=∠DEA=∠BCA 。
∴DE ∥BC ,∴BCDEAB AD =。
∵BC 是直径,∴∠BAC=90°, ∴BC= 10682222=+=+AC AB 。
∴1088yx =-, ∴y 与x 的函数关系式是:1045+-=x y (0<x <8)。
(2)略四、用相似三角形,对应边成比例的比例式确立等量关系例5、已知:矩形ABCD 中,AB=6cm ,BC=8cm ,在BC 边上取一点P (P 与B 、C 两点不重合),在DC 边上取一点Q ,使∠APQ=90°。
(1)设BP 的长为x ,CQ 的长为y ,求出y 与x 之间的函数关系式;(2)试讨论当P 在什么位置时,CQ 的值最大。
分析:本题中∠APQ=90°,若连结AQ ,问题可以转化为上述提到的“用直角三角形,利用勾股定理确立等量关系”,但计算过程中会比较复杂且运算量较大,容易算错。
但仔细观察可以发现,由于BP=x ,CQ=y ,其中两个变量都分别在不同的三角形中,要把它们建立起等量关系,则可考虑证△ABP ∽△PCQ ,由相似三角形对应边成比例可得:CQBPPC AB =。
从而问题可获解决,相比之下比第一种方法要简单。
例6、如图6,△ABC 是边长为2的等边三角形。
点E 、F 分别在CB 和BC 的延长线上,且 ∠EAF=120°。
设BE=x ,CF=y ,求出y 与x 之间的函数关系式。
分析:本题中的BE=x ,CF=y ,其中两个变量都分别在不同的三角形中,要把它们建立起等量关系,则可证△ABE ∽△FCA ,由相似三角形对应边成比例可得:ACEBFC AB。
从而问题可获解决。
例7、已知:△ABC 是正三角形,⊙O 切AB 、AC 于D 、E 、G 是BC 上一动点,DG 交⊙O 于F ,若AB=16,AD=6,设DG=x ,EF=y 。
(1)当点G 在BC 上运动时,求y 与x 的函数关系式; (2)求自变量x 的取值围; (3)求EF 的最大值。
分析:其中DG=x ,EF=y ,由于G 是一个动点,当G 的位置改变,x 、y 的值也会随着改变,这种“动”的变化对于学生的理解来说是比较抽象的。
如果连结OD 、OE ,由四边形角和定理不难发现,在“动”中存在着一个不动的量,就是∠DFE 始终都等于60°。
由于△ABC 是正三角形,即有∠B =AE F图6·OEDA B CGF图7∠DFE ,若能找出分别含有DG 、EF 两边的两个三角形相似,则问题就迎刃而解。
显然,这个问题可通过弦切角定理找出∠BDG=∠FED ,从而证出两个三角形相似。
解:(1)如图7,连结OD 、DE 、DE ∵AB 、AC 分别切⊙O 于D 、E∴OD ⊥AB ,OE ⊥AC 即∠ADO=∠AEO=90° 又∵∠A=60° ∴∠DOE=120°∴∠DFE=60° 即有∠B =∠DFE ∴∠BDG=∠FED ∴△DBG ∽△EFD ∴EDDGEF DB =∵AD=AE=6(切线长定理) ∠A=60° ∴DE=6 ∴6610x y =- 整理得:xy 60= ∴y 与x 的函数关系式是: xy 60=(2)(3)略 几何图形中求函数的解析式是属于初中数学常见的几何的、代数的综合题。
由于综合题的条件多,比较分散,或者比较隐蔽,因此增加了解题的难度。
因此在解决这类问题时,要善于根据题目给出的条件结合几何图形找出突破口。
而数形结合的思想是在分析解综合题思路的一种重要的数学思想.运用这种思想可以把代数的问题化成几何的问题,最终由几何性质解决代数问题,把复杂的问题转化成简单的问题,从而完成数与数的转化,形与形的转化,数与形的转化。