第5章 钢梁计算原理
- 格式:doc
- 大小:2.05 MB
- 文档页数:56
第30讲:受弯构件-梁(5)上一讲内容5-201、受弯构件(梁)的破坏类型2、受弯构件的设计思路第30讲:受弯构件-梁(5)5-21✩钢梁的设计要求•钢梁的设计应满足:强度、整体稳定、局部稳定和刚度四个方面的要求。
前三项属于承载能力极限状态计算,采用荷载的设计值;第四项为正常使用极限状态的计算,计算挠度时按荷载的标准值进行第30讲:受弯构件-梁(5)5-22✩钢梁的强度•钢梁的强度计算包括:正应力、剪应力、局部压应力和折算应力四个方面。
第四项为正常使用极限状态的计算,计算挠度时按荷载的标准值进行第30讲:受弯构件-梁(5)5-23✩弯曲正应力•截面应力分布:3个受力阶段•极限状态的确定:截面塑性开展系数目的?动力荷载作用下不考虑。
σ< f f fM< M M < M <M M = M(a)(b)(c)(d)epynypnnpnMMfWfWWW===γynefWM=pnynnypWfSSfM=+=)(21第30讲:受弯构件-梁(5)5-24✩弯曲正应力•设计公式:单向弯曲时双向弯曲时fWMnxxx≤=γσfWMWMnyyynxxx≤+=γγσ第30讲:受弯构件-梁(5)5-25✩剪应力•设计公式:•最大剪应力可近似按下式计算PVPS( a )( b )( c )vwfItVS≤=τvwwfthV≤=2.1maxτ第30讲:受弯构件-梁(5) 5-26✩局部压应力•产生的原因和位置:集中荷载作用截面;翼缘于腹板结合处(上、下)。
腹板的计算高度边缘 •计算公式: l Z =a +2h yt aRl = a + h l = a + 2h4545Fa t l = a + 2h4545FFl ( a )( b )( c )f l t F zw c ≤=ψσ第30讲:受弯构件-梁(5)5-27✩折算应力•产生的原因和位置:在弯矩、剪力都较大的截面,在腹板的计算高度边缘 同一点上同时产生的正应力、剪应力和局部压应力。
钢梁的长度计算规则钢梁是工业和建筑领域中常用的一种结构材料。
在钢结构设计中,精确计算钢梁长度是至关重要的。
在本文中,我们将介绍如何计算钢梁长度的规则和方法。
1. 钢梁长度的定义在结构设计中,钢梁长度指的是两个支撑节点之间的距离。
这个距离可以通过测量支撑节点之间的距离来确定,或通过计算公式来确定。
2. 计算钢梁长度的公式钢梁长度的计算公式通常是根据菲涅尔动态光学原理得出的。
菲涅尔动态光学原理是指在光线经过钢材时,由于光的折射和反射作用,使得圆锥形光束发生了扭曲。
这种扭曲是由钢材的物理特性和光线的特性共同决定的。
根据这个原理,我们可以得出计算钢梁长度的公式:L = (n+1/2)λ/√σ其中,L表示钢梁的长度,n表示菲涅尔圆纹的数量,λ表示波长,σ表示材料的弹性模量。
这个公式可以帮助工程师精确地计算钢梁的长度,以确保在实际施工中能够达到预期的效果。
3. 钢梁长度计算的注意事项在计算钢梁长度时,需要注意以下几点:(1)弹性模量:弹性模量的值取决于钢材的材质和厚度,不同的钢材和不同的厚度具有不同的弹性模量。
(2)波长:波长指的是钢材中的光线波长,通常使用红光波长。
(3)支撑节点:计算钢梁长度时,需要测量支撑节点之间的距离,确保计算结果准确。
(4)精度:在计算钢梁长度时,需要使用高精度的测量仪器和计算工具,确保结果的准确性。
4. 总结钢梁长度的计算是结构设计中至关重要的一环。
在进行钢结构设计时,需要仔细考虑材料的物理特性、计算公式和测量仪器等因素,以确保计算出的钢梁长度是准确的。
通过本文的介绍,我们相信您已经对钢梁长度计算的规则和方法有了更好的了解。
钢结构设计原理第五章受弯构件1、第五章受弯构件51概述1、定义主要承受横向荷载作用的构件,即通常所讲的梁。
2、类型按使用功能,可分为工作平台梁、吊车梁、楼盖梁、墙梁及檩条等;按支承状况,可分为简支梁、连续梁、伸臂梁和框架梁等;按荷载作用状况,可分为单向弯曲梁和双向弯曲梁;按截面形式有型钢梁和组合梁;实腹式和格构式。
图51受弯构件的截面形式3、受弯构件梁的内力一般,仅考虑其弯矩和剪力;对于框架梁,需同时考虑M、V和N作用。
※关键词受弯构件MEMBERINBENDING梁BEAM单向受弯构件ONEWAYMEMBERINBENDING双向受弯构件TWOWAYMEMBERINBENDING52受弯构件的强度一、2、抗弯强度1、梁在弯矩作用下,当M渐渐增加时,截面弯曲应力的进展可分为三个阶段,见图52所示。
〔1〕弹性工作阶段弯矩较小时,梁截面受拉边缘?<YF,梁处于弹性工作阶段,弯曲应力呈三角形分布。
弹性极限弯矩为NEW??截面受拉边缘的?YF。
〔2〕弹塑性工作阶段弯矩继续增大,截面边缘部分进入塑性,中间部分仍处于弹性工作状态。
〔3〕塑性工作阶段当弯矩再继续增加,截面的塑性区进展至全截面,形成塑性铰,梁产生相对转动,变形大量增加。
此时为梁的塑性工作阶段的极限状态,对应的塑性极限弯矩为PNYPWFM??。
图52梁受弯时各阶段的应力分布状况问取那个阶段作为设计或计算的模型答规范中按弹性阶3、段或弹塑性阶段设计或计算。
塑性进展深度,通过塑性进展系数?来衡量。
截面样子系数NPEFWM??2、抗弯强度?单向受弯FNX????双向受弯FWNYNX???其中X?、Y截面塑性进展系数,一般状况按表61取值;?若YFTB2351>时,取X?Y10;?若直接承受动力荷载作用时,取10。
※抗弯强度不够时,可以调整截面尺寸增大NW,但以增大截面高度H最有效。
二、抗剪强度梁的抗剪强度按弹性设计,以截面的剪应力到达钢材的抗剪强度设计值作为抗剪承载力的极限状态。
第五章钢梁计算原理5.1 概述在钢结构中,承受横向荷载作用的实腹式构件称为梁类构件,即钢梁。
钢梁在土木工程中应用很广泛,例如厂房建筑中的工作平台梁、吊车梁、屋面檩条和墙架横梁,以及桥梁、水工闸门、起重机、海上采油平台中的梁等。
按制作方法可将钢梁分为型钢梁和组合梁两种.型钢梁制作简单,成本较低,应用较广。
型钢梁通常采用热轧工字钢、槽钢、H型钢和T型钢(图5-1(a))以及冷弯薄壁型钢(图5-l(c)).其中H型钢的截面分布最合理,其翼缘内外边缘平行,方便与其他构件连接;槽钢的截面扭转中心在腹板外侧,一般受力情况下容易发生扭转,在使用时应尽量避免。
当荷载较大或跨度较大时,必须采用组合梁(图5-1(b))来提高截面的刚度和承载力,其中箱形截面梁的抗扭强度较高。
组合梁的截面可以根据具体受力情况合理布置,达到节省钢材的目的。
图5-1表示出了两个正交的形心主轴,其中绕x轴的惯性矩、截面抵抗矩最大,称为强轴,另一轴则为弱轴。
对于工形、T形、箱形截面,平行于x轴(弯曲轴)的最外边板称为翼缘,垂直于x轴的板称为腹板。
按支承条件又可将梁分为简支梁、连续梁和悬伸梁等。
其中简支梁应用最广,因其制造、安装、拆换都较方便,而且受温度变化和支座沉陷的影响很小。
梁的设计必须同时满足承载能力极限状态和正常使用极限状态。
钢梁的承载能力极限状态包括强度、整体稳定和局部稳定三个方面。
设计时要求在荷载设计值作用下,梁的抗弯强度、抗剪强度、局部承压强度和折算应力均不超过相应的强度设计值;保证梁不会发生整体失稳;同时保证组成梁的板件不出现局部失稳。
正常使用极限状态主要指梁的刚度,设计时要求在荷载标准值作用下梁具有符合规范要求的足够的抗弯刚度.图5-1 钢梁常用截面类型5.2钢梁的强度和刚度5.2.1 梁的强度梁的强度包括抗弯强度、抗剪强度、局部承压强度和折算应力,设计时要求在荷载设计值作用下,均不超过《钢结构设计规范》规定的相应的强度设计值。
第5章梁梁计算原理本章旨在介绍梁的计算原理及其相关概念。
梁是一种常见的结构构件,在工程领域中广泛应用。
了解梁的计算原理对设计和分析工程结构至关重要。
1. 梁的定义和分类梁是一种具有较大长度和较小横截面的结构构件。
根据材料的不同,梁可以分为钢梁、混凝土梁和木梁等。
梁可用于承受垂直荷载、弯曲荷载和剪切力。
2. 梁的受力分析方法梁的受力分析可以通过静力学方法进行。
常用的受力分析方法有:- 等效节点法:将梁结构简化为一系列节点和梁段,通过节点间的等效节点力计算梁段的受力。
- 物理分析法:通过应力平衡方程和几何关系,推导出梁的受力分布。
- 数值模拟法:借助计算机软件进行模拟计算,得出梁的受力状态。
3. 梁的设计原则梁的设计应遵循以下原则:- 荷载合理分配:根据梁的受力情况,合理地分配荷载,使梁能够承受预期的荷载。
- 材料选用合适:根据梁的用途和工程要求,选择适合的材料进行梁的设计。
- 结构稳定性考虑:梁的结构应具有足够的稳定性,以确保在荷载下不会发生破坏或变形。
- 节约材料节能环保:在梁的设计过程中,应尽量减少材料的使用量,提高结构的节能环保性能。
4. 梁的计算步骤梁的计算过程一般包括以下步骤:1. 确定梁的受力情况和荷载。
2. 选择适当的静力学方法进行受力分析。
3. 计算梁的截面特性,如惯性矩和截面面积。
4. 计算梁的弯曲、剪切和轴力等受力。
5. 验证梁的安全性和结构稳定性。
6. 根据设计要求进行优化设计和材料选用。
5. 结论梁的计算原理是工程设计中的重要内容,透过对梁的受力分析、设计原则和计算步骤的掌握,可以更好地设计和分析工程结构。
梁的计算原理需要综合运用静力学原理、材料力学和数值模拟等技术手段。
本章介绍的内容将有助于读者对梁的计算原理有一个整体的认识。
第五章钢梁计算原理5.1 概述在钢结构中,承受横向荷载作用的实腹式构件称为梁类构件,即钢梁。
钢梁在土木工程中应用很广泛,例如厂房建筑中的工作平台梁、吊车梁、屋面檩条和墙架横梁,以及桥梁、水工闸门、起重机、海上采油平台中的梁等。
按制作方法可将钢梁分为型钢梁和组合梁两种。
型钢梁制作简单,成本较低,应用较广。
型钢梁通常采用热轧工字钢、槽钢、H型钢和T型钢(图5-1(a))以及冷弯薄壁型钢(图5-l(c))。
其中H型钢的截面分布最合理,其翼缘内外边缘平行,方便与其他构件连接;槽钢的截面扭转中心在腹板外侧,一般受力情况下容易发生扭转,在使用时应尽量避免。
当荷载较大或跨度较大时,必须采用组合梁(图5-1(b))来提高截面的刚度和承载力,其中箱形截面梁的抗扭强度较高。
组合梁的截面可以根据具体受力情况合理布置,达到节省钢材的目的。
图5-1表示出了两个正交的形心主轴,其中绕x轴的惯性矩、截面抵抗矩最大,称为强轴,另一轴则为弱轴。
对于工形、T形、箱形截面,平行于x轴(弯曲轴)的最外边板称为翼缘,垂直于x轴的板称为腹板。
按支承条件又可将梁分为简支梁、连续梁和悬伸梁等。
其中简支梁应用最广,因其制造、安装、拆换都较方便,而且受温度变化和支座沉陷的影响很小。
梁的设计必须同时满足承载能力极限状态和正常使用极限状态。
钢梁的承载能力极限状态包括强度、整体稳定和局部稳定三个方面。
设计时要求在荷载设计值作用下,梁的抗弯强度、抗剪强度、局部承压强度和折算应力均不超过相应的强度设计值;保证梁不会发生整体失稳;同时保证组成梁的板件不出现局部失稳。
正常使用极限状态主要指梁的刚度,设计时要求在荷载标准值作用下梁具有符合规范要求的足够的抗弯刚度。
图5-1 钢梁常用截面类型5.2钢梁的强度和刚度5.2.1 梁的强度梁的强度包括抗弯强度、抗剪强度、局部承压强度和折算应力,设计时要求在荷载设计值作用下,均不超过《钢结构设计规范》规定的相应的强度设计值。
下面分别进行叙述。
一、抗弯强度如图5-2所示,梁在弯矩作用下,截面上正应力的发展过程可分为三个阶段,分述如下。
图5-2 梁的正应力分布(1)弹性工作阶段当弯矩较小时,截面上应力分布呈三角形,中和轴为截面的形心轴,截面上各点的正应力均小于屈服应力y f 。
弯矩继续增加,直至最外边缘纤维应力达到屈服应力y f 时(图5-2(b )),弹性状态的结束,相应的弹性极限弯矩e M 为 e n y M W f = (5-1) 式中 n W ——梁的净截面弹性抵抗矩。
(2)弹塑性工作阶段弯矩继续增加,在梁截面上、下边缘各出现一个高度为a 的塑性区,其应力σ达到屈服应力y f 。
而截面的中间部分区域仍处于弹性工作状态(图5—2(c )),此时梁处于弹塑性工作阶段。
(3)塑性工作阶段随着弯矩再继续增加,梁截面的塑性区不断向内发展,直至全部达到屈服应力y f (图5—2(d )),此时梁的抗弯承载能力达到极限,截面所负担弯矩不再增加,而变形却可继续增大,形成“塑性铰”,相应的塑性极限弯矩p M 为 p 1n 2n y pn y ()M S S f W f =+= (5-2) 式中 1n S ,2n S ——分别为中和轴以上及以下净截面对中和轴的面积矩; pn W ——梁的净截面塑性抵抗矩,pn 1n 2n W S S =+。
塑性抵抗矩与弹性抵抗矩的比值称为截面形状系数γ。
它的大小仅与截面的几何形状有关,而与材料及外荷载无关。
实际上表示出截面在进入弹塑性阶段之后的后续承载力。
γ越大,表示截面的弹塑性后续承载能力越大。
pnpn y p n n y e W W f M W W f M γ=== (5-3)对于矩形截面 1.5γ=,圆截面 1.7γ=,圆管截面 1.27γ=,工字形截面1.17γ≈。
说明在边缘纤维屈服后,矩形截面内部塑性变形发展还能使弯矩承载能力增大50%,而工字形截面的弯矩承载能力增大则较小。
虽然考虑截面塑性发展似乎更经济,但若按截面塑性极限弯矩进行设计,可能使梁产生过大的挠度,受压翼缘过早失去局部稳定。
因此,《钢结构设计规范》只是有限制地利用塑性,取截面塑性发展深度0.125a h ≤,并通过截面塑性发展系数γ来体现,且pn n 1.0W W γ≤<,按附表取值。
因此,梁的抗弯强度计算公式为:单向弯曲时x x nx M f W σγ=≤ (5-4)双向弯曲时y x x nx y ny M M f W W σγγ=+≤ (5-5)式中 x M ,y M ——绕x 轴和y 轴的弯矩;nx W ,ny W ——梁对x 轴和y 轴的净截面抵抗矩;x γ,y γ——截面塑性发展系数,当梁受压翼缘的自由外伸宽度与其厚度之比不大于附表取值,否则x y 1.0γγ==; f ——钢材的抗弯强度设计值,按附表采用。
对于直接承受动力荷载梁及需要计算疲劳的梁,须按弹性工作阶段进行计算,宜取x y 1.0γγ==。
二、抗剪强度一般情况下,梁同时承受弯矩和剪力的共同作用。
对于外加剪力垂直于强轴的实腹梁来说,如工字形和槽形截面梁,翼缘处分担的剪力很小,可忽略不计,截面上的剪力主要由腹板承担。
工字形和槽形截面梁腹板上的剪应力分布分别如图5-3(a )、(b )所示。
截面上的最大剪应力发生在腹板中和轴处。
其承载能力极限状态以截面上的最大剪应力达到钢材的抗剪屈服强度为准,而抗剪强度计算式为 v w VS f It τ=≤ (5-6)式中 V ——计算截面处沿腹板平面作用的剪力设计值;S ——计算剪应力(此处即为中和轴)以上毛截面对中和轴的面积矩;I ——毛截面惯性矩;w t ——腹板厚度; v f ——钢材的抗剪强度设计值,按附表采用。
图5-3 腹板剪应力由于型钢腹板较厚,一般均能满足上式要求。
三、局部承压强度当梁的翼缘受到沿腹板平面作用的集中荷载(例如此梁传来的集中力、支座反力和吊车轮压等)作用且该处又未设置支承加劲肋时(图5-4(a )、(b )),应验算腹板计算高度边缘的局部承压强度。
图5-4 局部压应力在集中荷载作用下,腹板计算高度边缘的压应力分布如图5-4(c )的曲线所示。
计算时假定集中荷载从作用点处以45︒角扩散,并均匀分布于腹板的计算高度边缘。
梁的局部承压强度可按下式计算c w z Ff t l ψσ=≤ (5-7)式中 F ——集中荷载(对动力荷载应考虑动力系数);ψ——集中荷载增大系数(对重级工作制吊车轮压, 1.35ψ=;对其他荷载, 1.0ψ=);z l ——集中荷载在腹板计算高度边缘的假定分布长度(跨中z y R 52l a h h =++,梁端z y 12.5l a h a =++);a ——集中荷载沿梁跨度方向的支承长度(对吊车梁可取为50mm );y h ——自梁承载的边缘到腹板计算高度边缘的距离;R h ——轨道的高度(无轨道时R 0h =); 1a ——梁端到支座板外边缘的距离(按实际取值,但不得大于y 2.5h )。
腹板的计算高度0h 按下列规定采用:①轧制型钢梁,为腹板在与上、下翼缘相接处两内弧起点间的距离;②焊接组合梁,为腹板高度。
当计算不满足式(5-7)时,在固定集中荷载处(包括支座处)应设置支承加劲肋予以加强,并对支承加劲肋进行计算。
对移动集中荷载,则应加大腹板厚度。
四、折算应力当组合梁的腹板计算高度边缘处,同时承受较大的正应力σ、剪应力τ和局部压应力c σ时,或同时承受较大的正应力σ和剪应力τ时,应按下式验算该处的折算应力1f β (5-8) 式中 σ,τ,c σ——腹板计算高度边缘同一点上的弯曲正应力、剪应力和局部压应力,τ按式(5-6)计算,c σ按式(5-7)计算,σ按下式计算nx My I σ= (5-9)nx I ——梁净截面惯性矩;y ——计算点至梁中和轴的距离;σ,c σ——均以拉应力为正值,压应力为负值; 1β——折算应力的强度设计值增大系数(当σ和c σ异号时,取1 1.2β=;当σ和c σ同号或c σ时,取1 1.1β=)。
实际工程中几种应力皆以较大值在同一处出现的概率很小,故将强度设计值乘以1β予以提高。
当σ和c σ异号时,其塑性变形能力比σ和c σ同号时大,因此1β值取更大些。
5.2.2 梁的刚度梁刚度的验算相应于正常使用极限状态。
当梁的刚度不足时,会产生较大的挠度,将影响结构的正常使用。
例如若平台梁的挠度过大,一方面会使人们感到不舒服和不安全,另一方面会影响操作;若吊车梁挠度过大,会使吊车运行困难,甚至不能运行。
因此,应使用下式来保证梁的刚度不至于过小:[]v v ≤ (5-10) 式中 v ——荷载标准值作用下梁的最大挠度;[]v——梁的容许挠度值,《钢结构设计规范》根据实践经验规定的容许挠度值见附表。
挠度计算时,除了要控制受弯构件在全部荷载标准值下的最大挠度外,对承受较大可变荷载的受弯构件,尚应保证其在可变荷载标准值作用下的最大挠度不超过相应的容许挠度值,以保证构件在正常使用时的工作性能。
5.3钢梁的整体稳定5.3.1一般概念如图5-5所示的工字形截面梁,承受弯曲平面内的横向荷载作用,若其截面形式为高而窄,则当荷载增大一定程度时,梁除了仍有弯矩作用平面内的弯曲以外,会突然发生侧向弯曲和扭转,并丧失继续承载的能力,这种现象就称为梁的整体失稳。
此时梁的抗弯承载能力尚未充分发挥。
梁维持其稳定平衡状态所承受的最大弯矩,称为临界弯矩。
图5-5 梁的整体失稳横向荷载的临界值和它沿梁高的作用位置有关。
荷载作用在上翼缘时,如图5-6(a)所示,在梁产生微小侧向位移和扭转的情况下,荷载F将产生绕剪力中心的附加扭矩Fe,它将对梁侧向弯曲和扭转起促进作用,使梁加速丧失整体稳定。
但当荷载F作用在梁的下翼缘时(图5-6(b)),它将产生反方向的附加扭矩Fe,有利于阻止梁的侧向弯曲扭转,延缓梁丧失整体稳定。
因此,后者的临界荷载(或临界弯矩)将高于前者。
图5-6 荷载位置对整体稳定的影响5.3.2 梁的扭转梁整体失稳形态为双向弯曲加扭转,为此有必要简略介绍有关扭转的若干概念。
根据支承条件和荷载形式的不同,扭转分为自由扭转和约束扭转两种形式。
一、自由扭转非圆截面构件扭转时,原来为平面的横截面不再保持为平面,产生翘曲变形,即构件在扭矩作用下,截面上各点沿杆轴方向产生位移。
如果扭转时轴向位移不受任何约束,截面可自由翘曲变形(图5-7),称为自由扭转。
自由扭转时,各截面的翘曲均相同,纵向纤维保持直线且长度保持不变,截面上无正应力,只有剪应力。
沿杆件全长扭矩相等,单位长度扭转角d d z ϕ相等,并在各截面上产生相同的扭转剪应力。
图5-7 杆件的自由扭转剪应力沿板厚方向呈三角形分布,扭矩与截面扭转角ϕ的关系为 t t d d M GI z ϕ= (5-11) 式中 t M ——截面的自由扭转扭矩;G ——材料的剪变模量;ϕ——截面的扭转角; t I ——截面的抗扭惯性矩(扭转常数)。