厌氧氨氧化(ANAMMOX)工艺介绍
- 格式:pptx
- 大小:422.77 KB
- 文档页数:28
厌氧氨氧化(ANAMMOX)和全程自养脱氮(CANON) 【格林大讲堂】厌氧氨氧化是指在厌氧条件下氨氮以亚硝酸盐为电子受体直接被氧化成氮气的过程。
厌氧氨氧化(Anaerobicammoniaoxidation,简称ANAMMOX)是指在厌氧条件下,以Planctomycetalessp为代表的微生物直接以NH4+为电子供体,以NO2-或NO3-为电子受体,将NH4+、NO2-或NO3-转变成N2的生物氧化过程。
武汉格林环保有完善的服务体系和配套的专业环境工程团队,秉着崇高的环保责任和义务长期维护提供免费的污水处理解决方案,是湖北省工业废水运营管理行业中的品牌。
18年来公司设计并施工了上百个交钥匙式的污水处理工程。
该过程利用独特的生物机体以硝酸盐作为电子供体把氨氮转化为N2,最大限度的实现了N的循环厌氧硝化,这种耦合的过程对于从厌氧硝化的废水中脱氮具有很好的前景,对于高氨氮低COD的污水由于硝酸盐的部分氧化,大大节省了能源。
目前推测厌氧氨氧化有多种途径。
其中一种是羟氨和亚硝酸盐生成N2O的反应,而N2O可以进一步转化为氮气,氨被氧化为羟氨。
另一种是氨和羟氨反应生成联氨,联氨被转化成氮气并生成4个还原性[H],还原性[H]被传递到亚硝酸还原系统形成羟氨。
第三种是:一方面亚硝酸被还原为NO,NO被还原为N2O,N2O再被还原成N2;另一方面,NH4+被氧化为NH2OH,NH2OH经N2H4,N2H2被转化为N2。
厌氧氨氧化工艺的优点:可以大幅度地降低硝化反应的充氧能耗;免去反硝化反应的外源电子供体;可节省传统硝化反硝化反应过程中所需的中和试剂;产生的污泥量极少。
厌氧氨氧化的不足之处是:到目前为止,厌氧氨氧化的反应机理、参与菌种和各项操作参数不明确。
全程自养脱氮的全过程实在一个反应器中完成,其机理尚不清楚。
Hippen等人发现在限制溶解氧(DO浓度为0.8·1.0mg/l)和不加有机碳源的情况下,有超过60%的氨氮转化成N2而得以去除。
ANAMMOX(厌氧氨氧化)的工艺发展及工程应用!厌氧氨氧化(ANAMMOX) 工艺,最初由荷兰Delft工业大学于20 世纪末开始研究,并于本世纪初成功开发应用的一种新型废水生物脱氮工艺。
它以20 世纪90 年代发现的ANAMMOX 反应为基础,该反应在厌氧条件下以氨为电子供体,亚硝酸盐为电子受体反应生成氮气,在理念和技术上大大突破了传统的生物脱氮工艺。
ANAMMOX 工艺具有脱氮效率高、运行费用低、占地空间小等优点,在污水处理中发展潜力巨大。
目前该工艺在处理市政污泥液领域已日趋成熟,位于荷兰鹿特丹Dokhaven 污水厂的世界上首个生产性规模的ANAMMOX 装置容积氮去除速率(NRR) 更是高达9.5 kg N/(m3·d)。
此外,ANAMMOX 工艺在发酵工业废水、垃圾渗滤液、养殖废水等高氨氮废水处理领域的推广也逐步开展,在世界各地的工程化应用也呈星火燎原之势。
1、ANAMMOX 工艺及其衍生工艺经过20多年的研究和发展,基于ANAMMOX 反应开发出来的较成熟的工艺有SHARON -ANAMMOX 工艺、全程自养脱氮(CANON) 工艺、限氧自养硝化反硝化(OLAND) 工艺、反硝化氨氧化(DEAMOX) 工艺、好氧反氨化(DEMON) 工艺。
近年来,研究人员仍在不断探索其他形式的ANAMMOX 衍生工艺,譬如同步短程硝化、厌氧氨氧化、反硝化耦合(SNAD) 工艺、单级厌氧氨氧化短程硝化脱氮(Single-stage nitrogen removal using ANAMMOX)目前,存在两种方法为ANAMMOX 提供电子受体亚硝酸盐,一种是在一个独立的曝气反应器中产生而随后进入ANAMMOX 反应器,另一种是在一个无O2 或者微O2 的ANAMMOX反应器中产生并立即参与ANAMMOX 反应。
据此,可将ANAMMOX 工艺相应分为分体式(两级系统) 和一体式(单级系统) 两种,一体式包括CANON、OLAND、DEAMOX、DEMON、SNAP 、SNAD 等工艺,分体式主要是SHARON-ANAMMOX 工艺。
厌氧氨氧化:理论和工艺发展概述(代序言)厌氧氨氧化:理论和工艺发展概述(代序言)近年来,随着全球人口的快速增长和城市化进程的不断推进,水资源的供应和水环境的保护面临着巨大的挑战。
氨氮是自然界和人类活动中普遍存在的一种污染物,高浓度的氨氮排放不仅会对水体造成严重的污染,还会对生态系统和人类健康产生潜在的风险。
传统的氨氮处理工艺主要包括硝化和硝化-反硝化过程,但这些工艺存在着许多问题。
首先,硝化过程需要较长的反应时间和较高的氧气供应,导致能耗较高。
其次,硝化-反硝化过程需要两次氧气供应,产生了大量的二氧化碳和亚硝酸盐,对环境造成了不可忽视的影响。
此外,硝化-反硝化过程中产生的亚硝酸盐还可能形成亚硝酸胺,这种物质对人体是有害的。
因此,发展一种更加高效、环保和经济的氨氮处理技术变得迫切。
厌氧氨氮氧化(Anammox)工艺由荷兰科学家Van de Graaf和Mulder等人于1995年提出,是一种新兴的氨氮处理技术,可以在无氧条件下将氨氮和亚硝酸盐直接转化为氮气。
Anammox反应是一种厌氧氧化反应,通过厌氧氨氧化细菌(Anammox bacteria)在厌氧环境中催化。
Anammox工艺具有许多优点,包括节约能源、减少化学药剂的使用、减少二氧化碳和亚硝酸盐的产生等。
因此,它被认为是未来氨氮处理的重要方向之一。
然而,Anammox工艺的应用仍面临着一些挑战。
首先,Anammox细菌的生长速度相对较慢,需要较长时间来启动和稳定反应。
其次,Anammox工艺对氨氮和亚硝酸盐的适应性较差,需要较高的氨氮和亚硝酸盐浓度才能获得良好的处理效果。
此外,Anammox细菌在高温和酸碱度条件下的稳定性也值得关注。
为了克服上述问题,近年来,许多研究人员致力于提高Anammox工艺的效率和稳定性。
他们通过优化反应条件、设计厌氧反应器、改进进样和排放方式等方法来改善Anammox工艺。
其中,微生物技术、分子生物学技术和工艺自动化技术的发展为Anammox工艺的研究和应用提供了有力支持。
厌氧氨氧化成功案例摘要:1.厌氧氨氧化的概念和原理2.厌氧氨氧化的成功案例3.厌氧氨氧化技术在污水处理中的应用优势4.厌氧氨氧化技术面临的困难与挑战5.厌氧氨氧化技术的未来发展前景正文:一、厌氧氨氧化的概念和原理厌氧氨氧化(Anammox)是一种在厌氧条件下,通过微生物将氨氮转化为氮气的过程。
在这一过程中,微生物利用氨氮作为能量来源,将其转化为氮气并释放能量,实现有机物的降解和氮的去除。
二、厌氧氨氧化的成功案例目前,厌氧氨氧化技术已在多个国家和地区的污水处理厂得到成功应用。
比如,荷兰、美国、日本等地的污水处理厂采用厌氧氨氧化技术实现了高效的氮去除。
这些成功案例表明,厌氧氨氧化技术具有较高的应用潜力。
三、厌氧氨氧化技术在污水处理中的应用优势1.能源回收:厌氧氨氧化过程可以利用有机物中的化学能,实现能源的回收和再利用,降低污水处理过程中的能耗。
2.氮去除效率高:厌氧氨氧化技术可以在一个反应器中实现高效的氮去除,减少了处理流程和设备投资。
3.污泥产量低:与传统的生物脱氮工艺相比,厌氧氨氧化技术可以降低污泥产量,减少污泥处理和处置成本。
四、厌氧氨氧化技术面临的困难与挑战1.技术成熟度较低:相较于传统的生物脱氮工艺,厌氧氨氧化技术成熟度较低,仍需在工程实践中不断优化和完善。
2.反应器设计和控制难度大:厌氧氨氧化反应器内的微生物种群结构复杂,反应器设计和运行控制难度较大。
3.缺乏相关标准和法规:目前,关于厌氧氨氧化技术的相关标准和法规尚不完善,制约了该技术的推广和应用。
五、厌氧氨氧化技术的未来发展前景尽管厌氧氨氧化技术在实际应用中存在一定的困难和挑战,但随着科研的深入和技术的进步,该技术在污水处理领域的应用前景仍然十分广阔。
侧流厌氧氨氧化技术侧流厌氧氨氧化技术是一种新型的处理污水的生物技术,其主要特点是将氮、磷等经过厌氧生物反应处理后,大部分被氧化成气体排放出去,其余部分被转化成可用于植物生长的营养物。
这种生物技术被广泛运用于一些城市的污水处理厂,以达到节约成本、提高污水处理效率等目的。
侧流厌氧氨氧化技术是一种典型的厌氧氨氧化(Anammox)反应,其中加入一个特殊的微生物液相悬浮液,这种微生物能够在没有氧气的条件下将氨氧化成氮气。
在这个反应过程中产生的大量能量可以被用来产生ATP。
过程中,含氮废水首先通过初沉池和污泥活性池来达到生物处理的目的。
然后侧流废水从沉淀池取出,送入侧流厌氧反应器,特殊的菌种在此通过氧化和还原反应将氨和硝酸盐分解成氮气和水分,释放大量的能量同时合成ATP。
侧流厌氧反应器与常规处理池相比,有较强的适应性,pH值、温度、浓度和水力负荷都有较大波动,但依然能保证高效率的氨氮去除。
氨去除的效率通常可达90%以上。
侧流厌氧氨氧化技术在生化处理系统中的应用有很多优点,如:节约成本、提高处理效率、降低能耗等等。
而且,与传统处理方法相比,侧流厌氧氨氧化技术具有更高的氨氮去除效率、更低的化学药剂使用量和更高的污泥品质。
侧流厌氧氨氧化技术已经被广泛地应用于很多国家的污水处理厂,尤其是欧洲和日本等发达国家。
众多的研究表明,侧流厌氧氨氧化技术还具有较高的处理效率、较低的能耗、稳定可靠等优点,因此在未来污水处理领域中的应用范围将会不断扩大。
结论侧流厌氧氨氧化技术是一种新型的处理污水的生物技术,其应用可以提高污水处理的效率、降低成本,并且能够达到较高的氨氮去除效率。
该技术也被广泛地运用于欧洲、亚洲等发达国家的污水处理厂。
在技术应用过程中仍存在着一些问题,如技术稳定性、成熟度等。
未来的研究应继续解决相关问题,以提高技术的应用效果和适用广度。
侧流厌氧氨氧化技术是当前污水处理行业中发展速度较快的一种技术,其在能源消耗、处理效率、成本节约等方面都具有较大的优势。
anammox工艺原理引言:anammox工艺是一种新兴的生物处理技术,可以高效地将氨氮转化为氮气,具有节能、降低化学药剂使用和减少污泥产生的优点。
本文将介绍anammox工艺的原理及其应用。
一、anammox工艺的原理anammox是Anaerobic Ammonium Oxidation的缩写,中文意为厌氧氨氧化。
该工艺利用特定的厌氧细菌(如Planctomycetes)在无氧条件下将氨氮与亚硝酸根(NO2-)直接反应生成氮气(N2)。
这个反应过程中不需要外源供氧,因此可以节约能源。
同时,由于该过程不需要氧化剂,也减少了化学药剂的使用。
二、anammox工艺的过程anammox工艺包括两个主要反应:厌氧氨氧化反应和亚硝酸根反应。
在厌氧氨氧化反应中,厌氧细菌利用氨氮和亚硝酸根作为底物,通过反应生成氮气和水。
该反应的化学式可以表示为:NH4+ + NO2- → N2 + 2H2O。
这个反应需要一定的反应温度和pH条件,通常在30-40摄氏度和6.5-8.5的pH范围内进行。
亚硝酸根反应是厌氧氨氧化反应的关键环节,它是产生亚硝酸根的源头。
亚硝酸根反应的化学式可以表示为:NO2- + NH4+ + H+ → N2 + 2H2O。
这个反应由反硝化细菌(Denitrifying bacteria)完成,不仅提供了亚硝酸根,还通过产生H+维持了反应的pH条件。
三、anammox工艺的应用anammox工艺在废水处理领域有着广泛的应用。
由于其高效转化氨氮为氮气的能力,可以用于处理含氨废水,如生活污水、畜禽养殖废水和农业废水等。
与传统的硝化-反硝化工艺相比,anammox 工艺具有更高的氮素去除效率和更低的能耗。
此外,anammox工艺还可以应用于一些特殊的废水处理,如含有硝酸盐的废水、含有抗生素的废水等。
除了废水处理,anammox工艺还可以应用于其他领域。
例如,它可以用于处理含氨气体的废气,将氨氮转化为氮气,减少对环境的污染。
ANAMMOX®(厌氧氨氧化)工艺是一项创新的生物处理工艺,是脱氮领域的重要突破。
ANAMMOX®工艺是废水和废气除氨的投资回报很高的工艺。
以传统的硝化/反硝化工艺相比,运行成本和二氧化碳产量的减少均高达90%。
此外,该工艺只需要相当于传统工艺一半的空间。
ANAMMOX®转化过程是自然氮循环的一条巧妙的捷径。
结合亚硝酸反应,ANAMMOX®细菌将铵氨(NH4+)直接转化为氮气。
帕克环保与代尔夫特技术大学(荷兰)密切合作,开发了该工艺的工业应用。
2002年夏天第一个ANAMMOX®工业装置在荷兰启动。
目前有四个ANAMMOX®工业装置在运行。
ANAMMOX®的优势●很高的总氮去除率●二氧化碳产生量比传统硝化/反硝化工艺减少90%●减少50%的空间需求●动力消耗比传统硝化/反硝化工艺减少60%●不消耗甲醇●剩余污泥产量极少第34卷第4 期2009 年4 月环境科学与管理ENV IRONM ENTAL SC IENCE AND M ANAG EM ENT V ol 34 N o 4 1 1 Apr 2009 . 文章编号: 1674- 6139( 2009) 04- 0098- 04 新型脱氮工艺- 厌氧氨氧化(ANAMMOX) 盖书慧, 张宁, 张雁秋(中国矿业大学环境与测绘学院, 江苏徐州221008) 摘要: 厌氧氨氧化( ANAMMOX)是近年来发现的新型生物脱氮工艺。
由于厌氧氨氧化生物脱氨技术在经济方面的独特优势, 成为近年国内外研究的热点, 是未来污水生物脱氮技术发展的主流。
国内对该技术的研究与国外还存在较大的差距, 尤其在厌氧氨氧化机理方面。
综述了厌氧氨氧化反应的由来、机理和影响因素, 介绍了厌氧氨氧化菌的特征, 列举了厌氧氨氧化工艺的应用及出现的一些问题, 从而为该技术的深入研究及其在实际中的应用奠定了基础, 同时为该技术的进一步发展提出了具体的建议。
厌氧氨氧化颗粒污泥一、概述Anammox(Anaerobicammoniumoxidation)工艺称为厌氧氨氧化工艺,是由荷兰Delft技术大学1990年提出的一种新型脱氮工艺。
该工艺的原理是:在严格厌氧条件下,以亚硝氮为电子受体,氨氮为电子供体,反应生成氮气。
厌氧氨氧化工艺是一项极具应用前景的工艺,主要表现为:厌氧氨氧化是自养的微生物过程,即不需要添加任何有机物或还原性无机物作为电子供体;厌氧氨氧化细菌倍增时间很长,污泥产率低,减少了污泥的二次处理量;厌氧氨氧化为一产碱过程,结合氨氧化过程既可以利用氨氧化过程的产物亚硝氮作为反应物,同时产生的碱度又可以中和氨氧化产生的酸度,节省了化学试剂的用量。
厌氧颗粒污泥是由产甲烷菌、产乙酸菌和水解发酵菌等形成的自凝聚体。
它是由相互聚集的、多物种的微生物构成的团体,具有生物致密、相对密度大、沉降速度快等特点,可使反应器中保持有较高的污泥浓度和容积负荷,与传统的活性污泥法相比,可简化工艺流程、降低成本等,因此它在水污染控制领域必将有更广阔的发展前景二、厌氧颗粒污泥的形成机理、性质及微生物相2.1厌氧颗粒污泥的形成机理厌氧颗粒污泥形成的机理目前还处于研究阶段,以下为几种有代表性的假说:2.1.1二次核学说二次核学说认为营养不足的衰弱颗粒污泥,在水利剪切力作用下,破裂成碎片,污泥碎片可作为新内核,重新形成颗粒污泥。
Grotenhuis及其合作者分别用高低浓度基质培养颗粒污泥,发现前者形成颗粒粒径较大,而后者的粒径较小,据此提出了二次核形成的模型。
其他研究者如杨虹、Beeftink等也提出过类似的二次核形成模型。
二次核学说较好地说明了加入少量颗粒污泥可加速颗粒化进程的现象。
2.1.2三段理论学说Y.G.Yen等认为污泥颗粒化过程可分成三个阶段:即积累阶段、颗粒化阶段和成熟阶段。
他们认为颗粒污泥的增长速率呈指数增加,而粒径表示的颗粒比生长速率等于细菌比生长速率的1/3,在积累阶段以后尤为如此。