数学 九年级 上册 北师版
第 一
特殊平行四边形
章
1 第2课时 菱形的判定
-
第2课时 菱形的判定
探究与应用
课堂小结与检测
探
探究一 菱形的判定定理1
究 与
[启发猜想]
应 根据菱形的定义,有一组邻边相等的平行四边形是菱形可以
用
判定一个平行四边形是菱形.想一想除了菱形的定义之外,
对角线满足什么条件时可以判定一个平行四边形是菱形?
用
证明:∵D,E,F分别是AB,AC,BC的中点,
∴DE=12BC=CF,DF=12AC=CE. 又∵AC=BC,∴DE=CF=DF=CE.
∴四边形DFCE是菱形.
图1-1-17
探 得 方法 究 判定一个四边形是菱形的思路
与
应 (1)证明四边形的四边相等; 用 (2)先证明四边形是平行四边形,再证明一组邻边相等或对角
线垂直.
探
应用三 通过折纸制作菱形
究 与
例3 小颖通过折纸得到一个菱形,其做法如下:如图1-1-18,
应 先将一张长方形的纸对折、再对折,然后沿图中的虚线剪
用
Hale Waihona Puke 下,将纸展开,就得到了一个菱形.你能说说小颖这样做的道
理吗?
图1-1-18
探 解:小颖这样做的道理是:
究
与 方法1:根据折叠可知,小颖剪下来的四边形的四条边相等,根据定
堂
小 得到的△DBC与原△ABC拼成四边形ABDC,则能直接判定四
结 与
边形ABDC是菱形的依据是 四边相等的四边形是菱形 .
检
测
图1-1-20
课 3.如图1-1-21,▱ABCD的对角线AC,BD相交于点O,且AB=13,