高中数学必修二直线与圆方面的知识点
- 格式:doc
- 大小:257.50 KB
- 文档页数:5
高二数学直线与圆知识点直线与圆是高中数学中的基础知识,也是解析几何的重要内容之一。
掌握直线与圆的性质和关系,对于理解几何图形的性质、解题以及拓展数学思维都有重要意义。
本文将介绍高二数学中与直线与圆相关的知识点。
一、直线的基本性质1. 直线的定义:直线是由无限多个点构成,且任意两点都在这条直线上。
2. 直线的表示方式:直线可以用两个点表示,也可以用方程表示。
3. 直线的斜率:斜率是直线的重要性质之一,可以用来描述直线的倾斜程度。
直线的斜率可以通过两点的坐标计算得到。
二、圆的基本性质1. 圆的定义:圆是平面上到一个定点距离固定的点的轨迹。
定点称为圆心,距离称为半径。
2. 圆的表示方式:圆可以用圆心和半径表示。
3. 弧长和扇形面积:圆上的弧长是圆心角所对的弧段的长度,扇形面积是圆心角所对的扇形的面积。
三、直线与圆的关系1. 直线和圆的位置关系:直线可以与圆相切、相离、相交。
相切时,直线只与圆相切于一点;相离时,直线与圆没有公共点;相交时,直线与圆相交于两个点。
2. 切线的性质:切线是与圆相切于一点的直线,切线与半径垂直。
3. 弦的性质:弦是圆上任意两点之间的线段,圆心角等于弦所对的弧的一半。
4. 弦切角的性质:弦切角是弦和切线的夹角,弦切角等于所对弧的圆心角。
四、直线与圆的方程1. 直线的方程:直线可以用点斜式、一般式、截距式等多种形式表示。
2. 圆的方程:圆的方程可以用标准方程和一般方程来表示,其中标准方程是以圆心为原点,半径为r的圆的方程。
五、直线与圆的相关定理1. 切线定理:切线与半径垂直,且切点在切线上。
2. 弦切定理:切线与弦所夹角等于所对的弧的圆心角。
3. 弧切定理:切线与弦所夹的圆心角等于所对的弧的一半。
六、直线与圆的相关应用1. 直线与圆的位置关系的应用:可以根据直线与圆的位置关系求出点的坐标、判断线段的长度等。
2. 直线与圆的方程的应用:可以通过直线和圆的方程求解交点的坐标、判断直线与圆是否相交等。
直线与圆的位置关系知识集结知识元不含有参数的直线与圆位置关系知识讲解1.直线与圆的位置关系1.直线与圆的位置关系2.判断直线与圆的位置关系的方法直线Ax+By+C=0与圆(x﹣a)2+(y﹣b)2=r2(r>0)的位置关系的判断方法:(1)几何方法:利用圆心到直线的d和半径r的关系判断.圆心到直线的距离d=①相交:d<r②相切:d=r③相离:d>r(2)代数方法:联立直线与圆的方程,转化为一元二次方程,用判别式△判断.由消元,得到一元二次方程的判别式△①相交:△>0②相切:△=0③相离:△<0.例题精讲不含有参数的直线与圆位置关系例1.已知点P在单位圆x2+y2=1上运动,P到直线3x﹣4y﹣10=0与x=3的距离分为d1、d 2,则d1+d2的最小值是.例2.点P是直线x+y﹣2=0上的动点,点Q是圆x2+y2=1上的动点,则线段PQ长的最小值为.例3.经过圆x2+y2﹣2x+2y=0的圆心且与直线2x﹣y=0平行的直线方程是()A.2x﹣y﹣3=0B.2x﹣y﹣1=0C.2x﹣y+3=0D.x+2y+1=0含有参数类型直线与圆的位置关系知识讲解1.直线与圆的位置关系1.直线与圆的位置关系2.判断直线与圆的位置关系的方法直线Ax+By+C=0与圆(x﹣a)2+(y﹣b)2=r2(r>0)的位置关系的判断方法:(1)几何方法:利用圆心到直线的d和半径r的关系判断.圆心到直线的距离d=①相交:d<r②相切:d=r③相离:d>r(2)代数方法:联立直线与圆的方程,转化为一元二次方程,用判别式△判断.由消元,得到一元二次方程的判别式△①相交:△>0②相切:△=0③相离:△<0.例题精讲含有参数类型直线与圆的位置关系例1.已知△ABC的三边长为a,b,c,满足直线ax+by+2c=0与圆x2+y2=4相离,则△ABC是()A.直角三角形B.锐角三角形C.钝角三角形D.以上情况都有可能例2.直线ax﹣y+a=0(a≥0)与圆x2+y2=9的位置关系是()A.相交B.相切C.相离D.相切或相离例3.圆x2+y2+4x﹣2y﹣1=0上存在两点关于直线ax﹣2by+2=0(a>0,b>0)对称,则的最小值为()A.8B.9C.16D.18简单切线类型知识讲解1.圆的切线方程圆的切线方程一般是指与圆相切的直线方程,特点是与圆只有一个交点,且过圆心与切点的直线垂直切线.圆的切线方程的类型:(1)过圆上一点的切线方程:对于这种情况我们可以通过圆心与切点的连线垂直切线求出切线的斜率,继而求出直线方程(2)过圆外一点的切线方程.这种情况可以先设直线的方程,然后联立方程求出他们只有一个解(交点)时斜率的值,进而求出直线方程.例题精讲简单切线类型例1.设点A为圆(x﹣1)2+y2=1上的动点,PA是圆的切线,且|PA|=1,则P点的轨迹方程为()A.y2=2x B.(x﹣1)2+y2=4C.y2=﹣2x D.(x﹣1)2+y2=2例2.已知圆的方程是x2+y2=1,则经过圆上一点M(1,0)的切线方程是()A.x=1B.y=1C.x+y=1D.x﹣y=1例3.'已知圆C的方程为x2+y2﹣2x+4y﹣3=0,直线l:x﹣y+t=0.若直线l与圆C相切,求实数t的值.'简单弦长问题知识讲解弦长问题一、求直线与圆相交时的弦长有三种方法(1)交点法:将直线方程与圆的方程联立,求出交点A,B的坐标,根据两点间的距离公式|AB|=求解.(2)弦长公式:如图所示,将直线方程与圆的方程联立,设直线与圆的两交点分别是A(x1,y1),B(x2,y2),则|AB|==|x1-x2|=|y1-y2|(直线l的斜率k存在).(3)几何法:如图,直线与圆C交于A,B两点,设弦心距为d,圆的半径为r,弦长为|AB|,则有()2+d2=r2,即|AB|=2.通常采用几何法较为简便。
高中数学之直线与圆的方程一、概念理解:1、倾斜角:①找α:直线向上方向、x 轴正方向; ②平行:α=0°;③范围:0°≤α<180° 。
2、斜率:①找k :k=tan α (α≠90°); ②垂直:斜率k 不存在; ③范围: 斜率 k ∈ R 。
3、斜率与坐标:12122121tan x x y y x x y y k --=--==α①构造直角三角形(数形结合); ②斜率k 值于两点先后顺序无关; ③注意下标的位置对应。
4、直线与直线的位置关系:222111:,:b x k y l b x k y l +=+= ①相交:斜率21k k ≠(前提是斜率都存在)特例----垂直时:<1> 0211=⊥k k x l 不存在,则轴,即; <2> 斜率都存在时:121-=•k k 。
②平行:<1> 斜率都存在时:2121,b b k k ≠=; <2> 斜率都不存在时:两直线都与x 轴垂直。
③重合: 斜率都存在时:2121,b b k k ==; 二、方程与公式: 1、直线的五个方程:①点斜式:)(00x x k y y -=- 将已知点k y x 与斜率),(00直接带入即可; ②斜截式:b kx y += 将已知截距k b 与斜率),0(直接带入即可;③两点式:),(2121121121y y x x x x x x y y y y ≠≠--=--其中, 将已知两点),(),,(2211y x y x 直接带入即可;④截距式:1=+bya x 将已知截距坐标),0(),0,(b a 直接带入即可; ⑤一般式:0=++C By Ax ,其中A 、B 不同时为0 用得比较多的是点斜式、斜截式与一般式。
2、求两条直线的交点坐标:直接将两直线方程联立,解方程组即可3、距离公式:①两点间距离:22122121)()(y y x x P P -+-= ②点到直线距离:2200BA C By Ax d +++=③平行直线间距离:2221BA C C d +-=4、中点、三分点坐标公式:已知两点),(),,(2211y x B y x A①AB 中点),(00y x :)2,2(2121y y x x ++ ②AB 三分点),(),,(2211t s t s :)32,32(2121y y x x ++ 靠近A 的三分点坐标 )32,32(2121y y x x ++ 靠近B 的三分点坐标 中点坐标公式,在求对称点、第四章圆与方程中,经常用到。
高中数学必修2知识点——直线与圆整理徐福扬一、直线与方程(1)直线的倾斜角定义:x 轴正向与直线向上方向之间所成的角叫直线的倾斜角。
特别地,当直线与x 轴平行或重合时,我们规定它的倾斜角为0度。
因此,倾斜角的取值范围是0°≤α<180°(2)直线的斜率①定义:倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜率。
直线的斜率常用k 表示。
即。
斜率反映直tan k α=线与轴的倾斜程度。
当时,; 当时,; 当时,[) 90,0∈α0≥k () 180,90∈α0<k 90=α不存在。
k ②过两点的直线的斜率公式: )(211212x x x x y y k ≠--=注意下面四点:(1)当时,公式右边无意义,直线的斜率不21x x =存在,倾斜角为90°;(2)k 与P 1、P 2的顺序无关;(3)以后求斜率可不通过倾斜角而由直线上两点的坐标直接求得;(4)求直线的倾斜角可由直线上两点的坐标先求斜率得到。
(3)直线方程①点斜式:直线斜率k ,且过点)(11x x k y y -=-()11,y x 注意:当直线的斜率为0°时,k=0,直线的方程是y=y 1。
当直线的斜率为90°时,直线的斜率不存在,它的方程不能用点斜式表示.但因l 上每一点的横坐标都等于x 1,所以它的方程是x=x 1。
②斜截式:,直线斜率为k ,直线在y 轴上的截距为b b kx y +=③两点式:()直线两点,112121y y x x y y x x --=--1212,x x y y ≠≠()11,y x ()22,y x ④截矩式:1x y ab+=其中直线与轴交于点,与轴交于点,即与轴、轴l x (,0)a y (0,)b l x y 的截距分别为。
,a b ⑤一般式:(A ,B 不全为0)0=++C By Ax注意:各式的适用范围 特殊的方程如:○1○2平行于x 轴的直线:(b 为常数); 平行于y 轴的直线:b y =(a 为常数);a x =(5)直线系方程:即具有某一共同性质的直线(一)平行直线系平行于已知直线(是不全为0的常数)0000=++C y B x A 00,B A 的直线系:(C 为常数)000=++C y B x A (二)过定点的直线系(ⅰ)斜率为k 的直线系:,直线过定点()00x x k y y -=-;()00,y x (ⅱ)过两条直线,的0:1111=++C y B x A l 0:2222=++C y B x A l 交点的直线系方程为(为参数),其中直线不在直线()()0222111=+++++C y B x A C y B x A λλ2l 系中。
两直线的交点坐标、两点间的距离【知识梳理】1.两直线的交点坐标23.(1)公式:点P 1(x 1,y 1),P 2(x 2,y 2)间的距离公式|P 1P 2|=(x 1-x 2)2+(y 1-y 2)2.(2)文字叙述:平面内两点的距离等于这两点的横坐标之差与纵坐标之差的平方和的算术平方根.【常考题型】题型一、两条直线的交点问题【例1】 判断下列各组直线的位置关系.如果相交,求出交点的坐标: (1)l 1:5x +4y -2=0,l 2:2x +y +2=0; (2)l 1:2x -6y +3=0,l 2:y =13x +12;(3)l 1:2x -6y =0,l 2:y =13x +12.【类题通法】判断两直线的位置关系,关键是看两直线的方程组成的方程组的解的情况.(1)解方程组的重要思想就是消元,先消去一个变量,代入另外一个方程能解出另一个变量的值.(2)解题过程中注意对其中参数进行分类讨论. (3)最后把方程组解的情况还原为直线的位置关系. 【对点训练】1.判断下列各对直线的位置关系.若相交,求出交点坐标: (1)l 1:2x +y +3=0,l 2:x -2y -1=0; (2)l 1:x +y +2=0,l 2:2x +2y +3=0.题型二、直线恒过定点问题【例2】 求证:不论m 为何实数,直线(m -1)x +(2m -1)y =m -5都过某一定点.【类题通法】解含有参数的直线恒过定点的问题(1)方法一:任给直线中的参数赋两个不同的值,得到两条不同的直线,然后验证这两条直线的交点就是题目中含参数直线所过的定点,从而问题得解.(2)方法二:含有一个参数的二元一次方程若能整理为A 1x +B 1y +C 1+λ(A 2x +B 2y +C 2)=0,其中λ是参数,这就说明了它表示的直线必过定点,其定点可由方程组⎩⎪⎨⎪⎧A 1x +B 1y +C 1=0,A 2x +B 2y +C 2=0解得.若整理成y -y 0=k (x -x 0)的形式,则表示的所有直线必过定点(x 0,y 0).【对点训练】2.求经过两直线l1:3x+4y-2=0和l2:2x+y+2=0的交点且过坐标原点的直线l的方程.题型三、两点间距离公式的应用【例3】已知点A(1,1),B(5,3),C(0,3),求证:△ABC为直角三角形.【类题通法】1.计算两点间距离的方法(1)对于任意两点P1(x1,y1)和P2(x2,y2),则|P1P2|=(x2-x1)2+(y2-y1)2.(2)对于两点的横坐标或纵坐标相等的情况,可直接利用距离公式的特殊情况求解.2.解答本题还要注意构成三角形的条件.【对点训练】3.已知点A(-1,2),B(2,7),在x轴上求一点P,使|P A|=|PB|,并求|P A|的值.【练习反馈】1.直线3x+2y+6=0和2x+5y-7=0的交点的坐标为()A.(-4,-3)B.(4,3)C.(-4,3) D.(3,4)2.已知点A(-2,-1),B(a,3),且|AB|=5,则a的值为()A.1 B.-5C.1或-5 D.1-或53.设Q(1,3),在x轴上有一点P,且|PQ|=5,则点P的坐标是________.4.若p,q满足p-2q=1,直线px+3y+q=0必过一个定点,该定点坐标为________.5.分别求经过两条直线2x+y-3=0和x-y=0的交点,且符合下列条件的直线方程.(1)平行于直线l1:4x-2y-7=0;(2)垂直于直线l2:3x-2y+4=0.题型一、两条直线的交点问题【例1】 判断下列各组直线的位置关系.如果相交,求出交点的坐标: (1)l 1:5x +4y -2=0,l 2:2x +y +2=0; (2)l 1:2x -6y +3=0,l 2:y =13x +12;(3)l 1:2x -6y =0,l 2:y =13x +12.[解] (1)解方程组⎩⎪⎨⎪⎧5x +4y -2=0,2x +y +2=0,得⎩⎨⎧x =-103,y =143.所以l 1与l 2相交,且交点坐标为⎝⎛⎭⎫-103,143. (2)解方程组⎩⎪⎨⎪⎧2x -6y +3=0,①y =13x +12,②②×6整理得2x -6y +3=0.因此,①和②可以化成同一个方程,即①和②表示同一条直线,l 1与l 2重合.(3)解方程组⎩⎪⎨⎪⎧2x -6y =0,①y =13x +12,②②×6-①得3=0,矛盾.方程组无解,所以两直线无公共点,l 1∥l 2. 【类题通法】判断两直线的位置关系,关键是看两直线的方程组成的方程组的解的情况.(1)解方程组的重要思想就是消元,先消去一个变量,代入另外一个方程能解出另一个变量的值.(2)解题过程中注意对其中参数进行分类讨论. (3)最后把方程组解的情况还原为直线的位置关系. 【对点训练】1.判断下列各对直线的位置关系.若相交,求出交点坐标:(1)l 1:2x +y +3=0,l 2:x -2y -1=0; (2)l 1:x +y +2=0,l 2:2x +2y +3=0.解:(1)解方程组⎩⎪⎨⎪⎧ 2x +y +3=0,x -2y -1=0,得⎩⎪⎨⎪⎧x =-1,y =-1,所以直线l 1与l 2相交,交点坐标为(-1,-1).(2)解方程组⎩⎪⎨⎪⎧x +y +2=0,①2x +2y +3=0,②①×2-②,得1=0,矛盾,方程组无解.所以直线l 1与l 2无公共点,即l 1∥l 2.题型二、直线恒过定点问题【例2】 求证:不论m 为何实数,直线(m -1)x +(2m -1)y =m -5都过某一定点. [证明] 法一:取m =1时,直线方程为y =-4;取m =12时,直线方程为x =9.两直线的交点为P (9,-4),将点P 的坐标代入原方程左边=(m -1)×9+(2m -1)×(-4)=m -5.故不论m 取何实数,点P (9,-4)总在直线(m -1)x +(2m -1)y =m -5上, 即直线恒过点P (9,-4).法二:原方程化为(x +2y -1)m +(-x -y +5)=0. 若对任意m 都成立,则有⎩⎪⎨⎪⎧ x +2y -1=0,x +y -5=0,得⎩⎪⎨⎪⎧x =9,y =-4.所以不论m 为何实数,所给直线都过定点P (9,-4). 【类题通法】解含有参数的直线恒过定点的问题(1)方法一:任给直线中的参数赋两个不同的值,得到两条不同的直线,然后验证这两条直线的交点就是题目中含参数直线所过的定点,从而问题得解.(2)方法二:含有一个参数的二元一次方程若能整理为A 1x +B 1y +C 1+λ(A 2x +B 2y +C 2)=0,其中λ是参数,这就说明了它表示的直线必过定点,其定点可由方程组⎩⎪⎨⎪⎧A 1x +B 1y +C 1=0,A 2x +B 2y +C 2=0解得.若整理成y -y 0=k (x -x 0)的形式,则表示的所有直线必过定点(x 0,y 0).【对点训练】2.求经过两直线l 1:3x +4y -2=0和l 2:2x +y +2=0的交点且过坐标原点的直线l 的方程.解:法一:由方程组⎩⎪⎨⎪⎧3x +4y -2=0,2x +y +2=0,解得⎩⎪⎨⎪⎧x =-2,y =2,即l 1与l 2的交点坐标为(-2,2).∵直线过坐标原点,所以其斜率k =2-2=-1,直线方程为y =-x ,一般式为x +y =0.法二:∵l 2不过原点,∴可设l 的方程为3x +4y -2+λ(2x +y +2)=0(λ∈R ), 即(3+2λ)x +(4+λ)y +2λ-2=0. 将原点坐标(0,0)代入上式,解得λ=1, ∴l 的方程为5x +5y =0,即x +y =0.题型三、两点间距离公式的应用【例3】 已知点A (1,1),B (5,3),C (0,3),求证:△ABC 为直角三角形. [证明] 法一:∵|AB |=(5-1)2+(3-1)2=25,|AC |=(0-1)2+(3-1)2=5, 又|BC |=(5-0)2+(3-3)2=5,∴|AB |2+|AC |2=|BC |2, ∴△ABC 为直角三角形.法二:∵k AB =3-15-1=12,k AC =3-10-1=-2,∴k AB ·k AC =-1,∴AB ⊥AC ,∴△ABC 是以A 为直角顶点的直角三角形.【类题通法】1.计算两点间距离的方法(1)对于任意两点P 1(x 1,y 1)和P 2(x 2,y 2),则|P 1P 2|=(x 2-x 1)2+(y 2-y 1)2.(2)对于两点的横坐标或纵坐标相等的情况,可直接利用距离公式的特殊情况求解. 2.解答本题还要注意构成三角形的条件. 【对点训练】3.已知点A (-1,2),B (2,7),在x 轴上求一点P ,使|P A |=|PB |,并求|P A |的值. 解:设所求点P (x,0),于是由|P A |=|PB |得(x +1)2+(0-2)2=(x -2)2+(0-7)2,即x 2+2x +5=x 2-4x +11,解得x =1. 所以,所求P 点坐标为(1,0),|P A |=(1+1)2+(0-2)2=2 2.【练习反馈】1.直线3x +2y +6=0和2x +5y -7=0的交点的坐标为( ) A .(-4,-3) B .(4,3) C .(-4,3)D .(3,4)解析:选C 由方程组⎩⎪⎨⎪⎧ 3x +2y +6=0,2x +5y -7=0,得⎩⎪⎨⎪⎧x =-4,y =3.2.已知点A (-2,-1),B (a,3),且|AB |=5,则a 的值为( ) A .1 B .-5 C .1或-5 D .1-或5解析:选C ∵|AB |=(a +2)2+(3+1)2=5,∴a =-5或a =1.3.设Q (1,3),在x 轴上有一点P ,且|PQ |=5,则点P 的坐标是________. 解析:由题意设P (a,0),则|PQ |=(a -1)2+(0-3)2=5,解得a -1=±4,即a =5或-3.故点P 的坐标是(5,0)或(-3,0).答案:(5,0)或(-3,0)4.若p ,q 满足p -2q =1,直线px +3y +q =0必过一个定点,该定点坐标为________. 解析:因为p =2q +1代入整理:(2x +1)q +3y +x =0对q 为一切实数恒成立,即2x +1=0,且3y +x =0,所以x =-12,y =16.答案:⎝⎛⎭⎫-12,16 5.分别求经过两条直线2x +y -3=0和x -y =0的交点,且符合下列条件的直线方程. (1)平行于直线l 1:4x -2y -7=0; (2)垂直于直线l 2:3x -2y +4=0.解:解方程组⎩⎪⎨⎪⎧2x +y -3=0,x -y =0,得交点P (1,1).(1)若直线与l 1平行, ∵k 1=2, ∴斜率k =2,∴所求直线方程为y -1=2(x -1) 即:2x -y -1=0. (2)若直线与l 2垂直, ∵k 2=32,∴斜率k =-1k 2=-23,∴y -1=-23(x -1)即:2x +3y -5=0.。
高二《直线与圆》知识点总结直线与圆是高中数学中的重要内容,它们在几何学和代数学中具有广泛的应用。
掌握了直线与圆的相关知识,对于理解和解决几何和代数问题都有很大的帮助。
本文将对高二学生需要掌握的直线与圆的知识点进行总结。
一、直线与圆的基本概念和性质:1. 直线的定义和性质:直线是一条无限延伸的连续直线,具有无宽度和无端点的特点。
直线的特征是经过其中任意两点的直线上的所有点。
2. 圆的定义和性质:圆是由平面上到一个固定点的距离相等的所有点组成的集合。
圆由圆心和半径唯一确定,其中半径是圆心到圆上任意一点的距离。
3. 直线与圆的位置关系:直线与圆的位置关系有三种情况:相离、相切和相交。
相离表示直线与圆没有任何交点;相切表示直线与圆有且仅有一个交点;相交表示直线与圆有两个交点。
4. 切线的定义和性质:切线是与圆相切且与圆的切点相同的直线,切线与半径垂直。
二、直线与圆的方程和解析几何:1. 直线的一般方程:直线的一般方程可以写为Ax + By + C = 0,其中A、B、C为常数。
2. 直线的斜截式方程:直线的斜截式方程可以写为y = kx + b,其中k为直线的斜率,b为直线与y轴的截距。
3. 圆的方程:圆的方程可以写为(x-a)² + (y-b)² = r²,其中(a,b)为圆心坐标,r为半径。
4. 直线与圆的位置关系的方程:要判断直线和圆的位置关系,可以将直线的方程代入圆的方程,并解方程得到判别式。
判别式小于0时,直线和圆相离;判别式等于0时,直线和圆相切;判别式大于0时,直线和圆相交。
三、直线与圆的交点和切线:1. 直线与圆的交点:若要求直线与圆的交点,可以将直线的方程代入圆的方程,并解方程得到交点的坐标。
2. 切线的判定和方程:若要确定直线是否为圆的切线,可以计算直线的斜率,然后计算圆心到直线的距离。
若斜率与圆心到直线的距离相等,则直线为圆的切线。
切线方程可以使用直线方程得出。
4.2.1 直线与圆的位置关系1.知道直线与圆的位置关系的分类.2.能根据方程,判断直线和圆的位置关系. 3.能够解决有关直线和圆的位置关系的问题.直线A x +B y +C =0与圆(x -a)2+(y -b)2=r 2的位置关系及判断【做一做】 直线3x +4y +12=0与圆(x -1)+(y +1)=9的位置关系是( ) A .过圆心 B .相切 C .相离 D .相交答案:两 一 零 < = > > = < 【做一做】 D代数法与几何法的比较剖析:代数法的运算量较大,几何法的运算量较小,并且也简单、直观.受思维定式的影响,看到方程就想解方程组,自然就想到代数法.【例】 若直线4x -3y +a =0与圆x 2+y 2=100:①相交;②相切;③相离,试分别求实数a 的取值范围.解法一:(代数法)由方程组⎩⎪⎨⎪⎧4x -3y +a =0,x 2+y 2=100,消去y ,得25x 2+8a x +a 2-900=0.则Δ=(8a)2-4×25(a 2-900)=-36a 2+90 000.①当直线和圆相交时,Δ>0,即-36a 2+90 000>0,解得-50<a <50; ②当直线和圆相切时,Δ=0,解得a =50或a =-50; ③当直线和圆相离时,Δ<0,解得a <-50或a >50. 解法二:(几何法)圆x 2+y 2=100的圆心为(0,0),半径r =10,则圆心到直线4x -3y +a =0的距离d =|a|32+42=|a|5.①当直线和圆相交时,d<r ,即|a|5<10,所以-50<a <50;②当直线和圆相切时,d =r ,即|a|5=10,所以a =50或a =-50;③当直线和圆相离时,d>r ,即|a|5>10,所以a <-50或a >50.处理直线与圆的位置关系的代数法和几何法,都具有普遍性,都要熟练掌握.由这两种解法可看到,几何法比代数法运算量要小,也比较简单、直观.题型一:直线与圆的相交问题【例1】 过点(-4,0)作直线l 与圆x 2+y 2+2x -4y -20=0交于A ,B 两点,如果|AB|=8,求直线l 的方程.反思:(1)讨论直线与圆的相交问题时,通常情况下不求出交点坐标.利用半径、半弦和弦心距组成的直角三角形,由勾股定理能解决弦长问题.(2)解答本题时易出现漏掉x +4=0的错误结果,导致这种错误的原因是对直线点斜式方程存在的条件理解不透,从而思维不严密,分类不完整.题型二:直线与圆的相切问题【例2】 求经过点(1,-7)且与圆x 2+y 2=25相切的直线方程.反思:解决直线与圆的相切问题时,通常利用圆心到切线的距离等于半径来解决.答案:【例1】 解:将圆的方程配方得(x +1)2+(y -2)2=25,由圆的性质可得,圆心到直线l 的距离d =(25)2-⎝⎛⎭⎫822=3.当l 的斜率不存在时,x =-4满足题意.当l 的斜率存在时,设方程为y =k (x +4),即kx -y +4k =0.由点到直线的距离公式,得3=|-k -2+4k |1+k 2,解得k =-512.所以直线l 的方程为5x +12y +20=0.综上所述,直线l 的方程为x +4=0或5x +12y +20=0.【例2】 解:(1)当直线斜率不存在时,其方程为x =1,不与圆相切;(2)当直线斜率存在时,设斜率为k ,则切线方程为y +7=k (x -1),即kx -y -k -7=0.∴|-k -7|k 2+(-1)2=5,解得k =43或k =-34.∴所求切线方程为y +7=43(x -1)或y +7=-34(x -1),即4x -3y -25=0或3x +4y +25=0.1.(2011·山东济南一模)若圆C 的半径为1,圆心在第一象限,且与直线4x -3y =0和x 轴都相切,则该圆的标准方程是( )A .(x -2)2+(y -1)2=1B .(x -2)2+(y +1)2=1C .(x +2)2+(y -1)2=1D .(x -3)2+(y -1)2=1 2.圆x 2+y 2-2x +4y -20=0截直线5x -12y +c =0所得的弦长为8,则c 的值是( ) A .10 B .10或-68 C .5或-34 D .-683.直线l:3x-4y-5=0被圆x2+y2=5所截得的弦长为__________.4.(2011·北京丰台高三期末)过点(-3,4)且与圆(x-1)2+(y-1)2=25相切的直线方程为__________.5.已知一个圆C与y轴相切,圆心C在直线l1:x-3y=0上,且在直线l2:x-y=0上截得的弦长为C的方程.答案:1.A 2.B 3.4 4.4x-3y+24=05.解:∵圆心C在直线l1:x-3y=0上,∴可设圆心为C(3t,t).又∵圆C与y轴相切,∴圆的半径为r=|3t|.再由弦心距、半径、弦长的一半组成的直角三角形,可得2+2=|3t|2,解得t=±1.∴圆心为(3,1)或(-3,-1),半径为3.故所求圆的方程为(x-3)2+(y-1)2=9或(x+3)2+(y+1)2=9.。
直线与圆的方程【基础知识归纳】 1.直线方程 (略) 4. 圆的方程 (2)圆的方程标准式 一般式:220xy Dx Ey F ++++=(2240D E F +->).其中圆心为,22D E ⎛⎫-- ⎪⎝⎭参数方程:cos sin x r y r αα=⎧⎨=⎩,cos (sin x a r y b r ααα=+⎧⎨=+⎩是参数). 5. 点与圆的位置关系 判断点(,)P x y 与圆2()x a -+22()y b r -=的位置关系代入方程看符号.6.直线与圆的位置关系直线与圆的位置关系有:相离、相切和相交.有两种判断方法:(1)代数法:(判别式法)0,0,0∆>∆=∆<时分别相离、相交、相切.(2)几何法:圆心到直线的距离,,d r d r d r >=<时相离、相交、相切.7.弦长求法(1)几何法:弦心距d ,圆半径r ,弦长l ,则2222l d r ⎛⎫+= ⎪⎝⎭.(2)解析法:用韦达定理,弦长公式.8.圆与圆的位置关系 看|O 1O 2|与22r r +和|22r r -|的大小关系.【典型例题解析】 题型2 :直线的斜率【例2】(安徽卷)若过点(4,0)A 的直线l 与曲线22(2)1x y -+=有公共点,则直线l 的斜率的取值范围为 ( )A.[ B.(C.,33⎡-⎢⎣⎦D.33⎛⎫-⎪ ⎪⎝⎭【答案】C 题型3 直线的方程【例3】(浙江)直线210x y -+=关于直线1x =对称的直线方程是 ( ) A.210x y +-= B.210x y +-=C.230x y +-=D.230x y +-= 【答案】D题型4:直线方程的综合题 【例4】(江苏)在平面直角坐标系中,设三角形ABC 的顶点分别为A (0,a ),B (b ,0),C (c ,0) ,点P (0,p )在线段AO 上(异于端点),设a,b,c, p 均为非零实数,直线BP ,CP 分别交AC , AB 于点 E ,F ,一同学已正确算的OE 的方程:11110x y b c p a ⎛⎫⎛⎫-+-= ⎪ ⎪⎝⎭⎝⎭,请你求OF 的方程: ___________________. 【答案】11110x y c b p a ⎛⎫⎛⎫-+-= ⎪ ⎪⎝⎭⎝⎭【解析】直线AB 的方程为1=+ayb x ①直线CP 的方程为1=+p yc x ② ②-①得11110x y c b p a ⎛⎫⎛⎫-+-= ⎪ ⎪⎝⎭⎝⎭,直线AB 与CF 的交点F 坐标满足此方程,原点O 的坐标也满足此方程,所以OF 的方程为11110x y c b p a ⎛⎫⎛⎫-+-= ⎪⎪⎝⎭⎝⎭. 若敢于类比猜想,交换x 的系数中b 、c 的位置,便很快可得结果.题型5:直线与直线的位置关系【例5】(福建)已知两条直线2y ax =-和(2)1y a x =++互相垂直,则a 等于 ( ) A .2 B .1 C .0 D .1-【答案】 D 题型6:点与直线的位置关系【例6】(湖南)圆224x y x +--4100y -=上的点到直线014=-+y x 的最大距离与最小距离的差是 ( )A .36B . 18 C. 26 D . 25【答案】C 题型7:平行线间的距离【例7】(四川)如图,1l 、2l 、3l 是同一平面内的三条平行直线,1l 与2l 间的距离是1,2l 与3l 间的距离是2,正三角形ABC 的三顶点分别在1l 、2l 、3l 上,则△ABC 的边长是 ( )A .23 B .364 C .3174 D .2213【答案】D 【解析】过点C作2l 的垂线4l ,以2l 、4l 为x 轴、y 轴建立平面直角坐标系.设(,1)A a 、(,0)B b 、(0,2)C -,由AB BC AC ==知222()149a b b a -+=+=+=边长2,检验A :222()14912a b b a -+=+=+=,无解;检验B :22()14a b b -+=+23293a =+=,无解;检验D :22()14a b b -+=+22893a =+=,正确.题型8:动点的轨迹方程 【例8】(四川)已知O 的方程是2220x y +-=,'O 的方程是22x y +8100x -+=,由动点P 向O 和'O 所引的切线长相等,则动点P 的轨迹方程是_________________【答案】32x =【解析】O :圆心(0,0)O ,半径2r =;'O :圆心'(4,0)O ,半径'6r =.设(,)P x y ,由切线长相等得222x y +-=2238102x y x x +-+⇒=. 【例9】(上海)如图9-1-4,在平面直角坐标系中,Ω是一个与x 轴的正半轴、y 轴的正半轴分别相切于点C 、D 的定圆所围成的区域(含边界),A 、B 、C 、D 是该圆的四等分点.若点()P x y ,、点()P x y ''',满足x x '≤且y y '≥,则称P 优于P '.如果Ω中的点Q 满足:不存在Ω中的其它点优于Q ,那么所有这样的点Q 组成的集合是劣弧 ( )A.弧ABB .弧BC C .弧CDD .弧DA 【答案】D【解析】分别在弧AB 、弧BC 、弧CD 、弧DA 上任意取一点Q ,只有在弧DA 上的点Q 满足不存在Ω中的其它点优于Q ,故选D .【例10】(北京)平面α的斜线AB 交α于点B ,过定点A 的动直线l 与AB 垂直,且交α于点C ,则动点C 的轨迹是 ( )A .一条直线B .一个圆C .一个椭圆D .双曲线的一支【答案】A【解析】如图9-1-5所示,因为过定点A 的动直线l 与AB 垂直,直线l 绕定点A 旋转形成一个平面,这个平面与平面α相交,有一条交线,点C 在这条交线上,所以点C 的轨迹是这条交线.故选A . 题型9:圆的方程【例11】(重庆)以点(2,-1)为圆心且与直线3450x y -+=相切的圆的方程为 ( )A .22(2)(1)3x y -++= B .22(2)(1)3x y ++-= C .22(2)(1)9x y -++= D .22(2)(1)3x y ++-=【答案】C【例12】(福建)若直线3x +4y +m =0与圆 ⎩⎨⎧+-=+=θθsin 2cos 1y x (θ为参数)没有公共点,则实数m 的取值范围是 .题型10:直线与圆的位置关系【例13】(辽宁)已知圆C 与直线x -y =0 及x -y -4=0都相切,圆心在直线x +y =0上,则圆C 的方程为 ( )A.22(1)(1)2x y ++-=B.22(1)(1)2x y -++=C.22(1)(1)2x y -+-= D. 22(1)(1)2x y +++=【答案】B题型11:圆与圆的位置关系 【例14】(山东)与直线x y +-20=和曲线221212540x y x y +--+=都相切的半径最小的圆的标准方程是_____ABCDO xy Ω αCB A【答案】22(2)(2)2x y -+-=【解析】曲线化为22(6)(6)18x y -+-=,其圆心到直线20x y +-=的距离为6625 2.2d +-==所求的最小圆的圆心在直线y x =上,其到直线的距离为2,圆心坐标为(2,2).标准方程为22(2)(2)2x y -+-=.【重点方法提炼】(1)在确定直线的斜率、倾斜角时,首先要注意斜率存在的条件,其次要注意倾角的范围.(2)在利用直线的截距式解题时,要注意防止由于“零截距”造成丢解的情况.如题目条件中出现直线在两坐标轴上的“截距相等”“截距互为相反数”“在一坐标轴上的截距是另一坐标轴上的截距的m 倍(m >0)”等时,采用截距式就会出现“零截距”,从而丢解.此时最好采用点斜式或斜截式求解.(3)在利用直线的点斜式、斜截式解题时,要注意防止由于“无斜率”,从而造成丢解.如在求过圆外一点的圆的切线方程时或讨论直线与圆锥曲线的位置关系时,或讨论两直线的平行、垂直的位置关系时,一般要分直线有无斜率两种情况进行讨论.(4)有关圆的问题解答时,应注意利用圆的平面几何性质,如圆与直线相切、相交的性质,圆与圆相切的性质,这样可以使问题简化.(5)对本章中介绍的独特的数学方法——坐标法要引起足够重视.要注意学习如何借助于坐标系,用代数方法来研究几何问题,体会这种数形结合的思想.(6)首先将几何问题代数化,用代数的语言描述几何要素及其关系,进而将几何问题转化为代数问题;处理代数问题;分析代数结果的几何含义,最终解决几何问题.这种思想应贯穿平面解析几何教学的始终.【实战演习】 一.选择题 1.(湖南重点中学联考)过定点()2,1P作直线l 分别交x 轴、y 轴正向于A 、B 两点,若使△ABC (O 为坐标原点)的面积最小,则l 的方程是 ( )A.30x y +-= B.350x y +-= C.250x y +-= D.240x y +-=2.(湖北重点中学联考)若P (2,-1)为圆(x -1)2+y 2=25的弦AB 的中点,则直线AB 的方程是 ( )A.x -y -3=0B.2x +y -3=0C.x +y -1=0D.2x -y -5=0 3.(陕西)过原点且倾斜角为60︒的直线被圆学2240xy y +-=所截得的弦长为( )A .3 B .2 C .6 D .234.(宁夏海南)已知圆1C :2(1)x ++2(1)y -=1,圆2C 与圆1C 关于直线10x y --=对称,则圆2C 的方程为 ( )A .2(2)x ++2(2)y -=1 B .2(2)x -+2(2)y +=1 C .2(2)x ++2(2)y +=1 D .2(2)x -+2(2)y -=1 5.(重庆)直线1y x =+与圆221x y +=的位置关系为 ( )A .相切B .相交但直线不过圆心C .直线过圆心D .相离 6.(重庆)圆心在y 轴上,半径为1,且过点(1,2)的圆的方程为 ( )A .22(2)1xy +-=B .22(2)1xy ++= C .22(1)(3)1x y -+-=D .22(3)1xy +-=7.(湖北)过点(11,2)A 作圆22241640x y x y ++--=的弦,其中弦长为整数的共有 ()A.16条B. 17条C. 32条D. 34条8.(北京)过直线y x =上的一点作圆22(5)(1)2x y -+-=的两条切线12l l ,,当直线12l l ,关于y x =对称时,它们之间的夹角为 ( )A .30 B .45 C .60 D .90二.填空题 9.(上海)已知1:210l x my ++=与2:31l y x =-,若两直线平行,则m 的值为____________.10.(天津)已知圆C 的圆心与点(2,1)P -关于直线1y x =+对称.直线34110x y +-=与圆C 相交于B A ,两点,且6=AB ,则圆C 的方程为____________. 11.(四川)若⊙221:5O xy +=与⊙222:()20()O x m y m R -+=∈相交于A 、B 两点,且两圆在点A 处的切线互相垂直,则线段AB 的长度是 w . 12.(全国)若直线m 被两平行线12:10:30l x y l x y -+=-+=与所截得的线段的长为22,则m 的倾斜角可以是: ①15②30 ③45 ④60⑤75其中正确答案的序号是 .(写出所有正确答案的序号)13.(天津)若圆224xy +=与圆22260x y ay ++-=(a >0)的公共弦的长为23,则a =___________.14.(辽宁)已知圆C 与直线x -y =0 及x -y -4=0都相切,圆心在直线x +y =0上,则圆C 的方程为_____________. 三.解答题15. (广西重点中学第一次联考)设直线l 过点A (2,4),它被平行线 x –y +1=0与x -y -l=0所截得的线段的中点在直线x +2y -3=0上,求直线l 的方程.16.(北京)已知菱形ABCD 的顶点A C ,在椭圆2234x y +=上,对角线BD 所在直线的斜率为1.(Ⅰ)当直线BD 过点(01),时,求直线AC 的方程;(Ⅱ)当60ABC ∠=时,求菱形ABCD 面积的最大值.17.(江苏)设平面直角坐标系xoy 中,设二次函数()()22f x x x b x R =++∈的图象与两坐标轴有三个交点,经过这三个交点的圆记为C .求:(Ⅰ)求实数b 的取值范围; (Ⅱ)求圆C 的方程;(Ⅲ)问圆C 是否经过某定点(其坐标与b 无关)?请证明你的结论. 18.(海淀一模)在平面直角坐标系中,N 为圆A :16)1(22=++y x 上的一动点,点B (1,0),点M 是BN 中点,点P 在线段AN 上,且.0=⋅BN MP(Ⅰ)求动点P 的轨迹方程;(Ⅱ)试判断以PB 为直径的圆与圆22y x+=4的位置关系,并说明理由. 19.(西城一模)在面积为9的ABC ∆中,4tan 3BAC ∠=-,且DB CD 2=.现建立以A 点为坐标原点,以BAC ∠的平分线所在直线为x 轴的平面直角坐标系,如图所示. (Ⅰ)求AB 、AC 所在的直线方程;(Ⅱ)求以AB 、AC 所在的直线为渐近线且过点D 的双曲线的方程;(Ⅲ)过D 分别作AB 、AC 所在直线的垂线DF 、DE (E 、F 为垂足),求DE DF ⋅的值. 20.(朝阳一模)已知点,A B 分别是射线()1:0l y x x =≥,2:l y x =-()0x ≥上的动点,O 为坐标原点,且OAB ∆ 的面积为定值2.(Ⅰ)求线段AB 中点M 的轨迹C 的方程;(Ⅱ)过点()0,2N 作直线l ,与曲 线C 交于不同的两点,P Q ,与射线12,l l 分别交于点,R S ,若点,P Q 恰为线段RS 的两个三等分点,求此时直线l 的方程.参考答案一.选择题1.【答案】D 【解析】由题设,可知12ABCS ab ∆=,且211a b+=, ∴222ab a b a b =+≥⋅22228.ab ab ab =⋅⇒≥⇒≥且仅当2422a b a b a ab b ==⎧⎧⇒⎨⎨+==⎩⎩时,8ab =.∴ l 的方程为:1240.42x y x y +=⇒+-= ∴应选D.2.【答案】A 【解析】由(x -1)2+y 2=25知圆心为Q (1,0).据k QP ·k AB =-1,∴k AB =-QPk 1=1(其中k QP =1201---=-1).∴AB 的方程为y =(x -2)-1=x -3,即x -y -3=0.∴ 应选A. 3. 【答案】D 【解析】直线方程3y x =,圆的方程为:22(2)4x y +-=∴圆心(0,2)到直线的距离223021(3)(1)d ⨯-==+-,由垂径定理知所求弦长为 *2222123d =-=,选D .4.【答案】B 【解析】设圆2C 的圆心为(a ,b ),则依题意,有111022111a b b a -+⎧--=⎪⎪⎨-⎪=-⎪+⎩,解得22a b =⎧⎨=-⎩,对称圆的半径不变,为1.5.【答案】B 【解析】圆心(0,0)为到直线1y x =+,即10x y -+=的距离2d ==,而012<<,选B. 6.【答案】A 【解法】设圆心坐标为(0,)b ,1=,解得2b =,故圆的方程为22(2)1x y +-=.7.【答案】C 【解析】由已知得圆心为P(-1,2),半径为13,显然过A 点的弦长中最长的是直径,此时只有一条,其长度为26,过A 点的弦长中最短的是过A 点且垂直于线段PA 的弦,也只有一条,其长度为10(PA 的长为12,弦长=2221213-=10),而其它的弦可以看成是绕A 点不间断旋转而成的,并且除了最长与最短的外,均有两条件弦关于过A 点的直径对称,所以所求的弦共有2(26-10-1)+2=32.故选C .8.【答案】C 【解析】此圆的圆心为C (5,1),半径2=r .设直线x y l =:上的点P 符合要求,连结PC ,则由题意知l PC ⊥,又22215=-=PC .设2l 与⊙C 切于点A ,连结AC ,则2=AC .在PAC ∆Rt 中,21=PCAC ,∴︒=∠30APC , ∴l 1与l 2的夹角为60°. 故选C. 二.填空题9.【答案】32-【解析】 2123113m m =≠⇒=---. 10.【答案】22(1)18x y ++=.【解析】圆C 的圆心与P (-2,1)关于直线y =x +1对称的圆心为(0,-1),设该圆的方程为.)1(222R y x =++设AB 中点为M ,连结CM 、CA ,在三角形CMA 中22222304(1)113,5||3,3318,CM AM R CM MA ⨯+⨯--===∴=+=+=又故圆的方程为.18)1(22=++y x11.【答案】4【解析】由题知)0,(),0,0(21m O O ,且53||5<<m ,又21AO A O ⊥,所以有525)52()5(222±=⇒=+=m m ∴452052=⋅⋅=AB .12.【答案】①或⑤【解析】两平行线间的距离为211|13|=+-=d,由图知直线m 与1l 的夹角为o 30,1l 的倾斜角为o 45,所以直线m 的倾斜角等于00754530=+o或00153045=-o .13.【答案】1【解析】由知22260xy ay ++-=,222)3()1(6=---+a a 解之得1=a .14.【答案】22(1)(1)2x y -++=【解析】圆心在x +y =0上,结合图象,或者验证A 、B 中圆心到两直线的距离等于半径2即可.三.解答题 15.【答案】3x -y -2=0【解析】由几何的基本的性质,被两平行线所截得的线段的中点一定在y =x 上,将x +2y -3=0与y =x 联立构成方程组解得交点的坐标为(1,1)点,又由直线l 过点A (2,4)由两点式得直线l 的方程为:3x -y -2=0. 16.【解析】(Ⅰ)由题意得直线BD 的方程为1y x =+.因为四边形ABCD 为菱形,所以AC BD ⊥.于是可设直线AC 的方程为y x n =-+.由2234x y y x n⎧+=⎨=-+⎩,得2246340x nx n -+-=.因为A C ,在椭圆上,所以212640n ∆=-+>,解得n <<. 设A ,B 两点坐标分别为1122()()x y x y ,,,,则1232nx x +=,212344n x x -=,11y x n =-+,22y x n =-+.所以122n y y +=.所以AC 的中点坐标为344n n ⎛⎫⎪⎝⎭,.由四边形ABCD 为菱形可知,点344n n ⎛⎫⎪⎝⎭,在直线1y x =+上, 所以3144n n=+,解得2n =-.所以直线AC 的方程为2y x =--,即20x y ++=.(Ⅱ)因为四边形ABCD 为菱形, 且60ABC ∠=,所以AB BC CA ==.所以菱形ABCD 的面积232S =.由(Ⅰ)可得22221212316()()2n AC x x y y -+=-+-= 所以S =234343316)n n ⎛-+<< ⎝⎭. 所以当0n =时,菱形ABCD 的面积取得最大值4317.【解析】本小题主要考查二次函数图象与性质、圆的方程的求法.(Ⅰ)令x =0,得抛物线与y 轴交点是(0,b );令()220f x x x b =++=, 由题意b ≠0 且Δ>0,解得b <1 且b ≠0(Ⅱ)设所求圆的一般方程为:2x 20y Dx Ey F ++++=,令y =0 得20x Dx F ++=.这与22x x b ++=0 是同一个方程,故D =2,F =b .令x =0 得2y Ey +=0,此方程有一个根为b ,代入得出E =―b ―1.所以圆C 的方程为222(1)0x y x b y b ++-++=.(Ⅲ)圆C 必过定点(0,1)和(-2,1).证明如下:将(0,1)代入圆C 的方程,左边=02+12+2×0-(b +1)+b =0,右边=0,所以圆C 必过定点(0,1). 同理可证圆C 必过定点(-2,1). 18.【解析】由点M 是BN 中点。
【高中数学】高中数学知识点:直线与圆的位置关系直线与圆的位置关系:由直线与圆的公共点的个数,得出结论以下直线和圆的三种边线关系:(1)相交:直线与圆有两个公共点时,叫做直线和圆相交,这时直线叫做圆的割线。
(2)切线:直线和圆存有唯一公共点时,叫作直线和圆切线,这时直线叫作圆的切线,唯一的公共点叫作切点。
(3)相离:直线和圆没有公共点时,叫做直线和圆相离。
其图像如下:直线和圆的位置关系的性质:(1)直线l和⊙o平行d<r(2)直线l和⊙o切线d=r;(3)直线l和⊙o嗟乎d>r。
直线与圆边线关系的认定方法:(1)代数法:判断直线ax+by+c=0和圆x2+y2+dx+ey+f=0的位置关系,可由面世mx2+nx+p=0,利用判别式△展开推论.△>0则直线与圆相交;△=0则直线与圆切线;△<0则直线与圆相离.(2)几何法:未知直线ax+by+c=0和圆,圆心到直线的距离d<r则直线和圆平行;d=r则直线和圆相切;d>r则直线和圆嗟乎.特别提醒:(1)上述两种方法,以利用圆心至直线的距离展开认定较为简便,而判别式法也适用于于直线与椭圆、双曲线、抛物线边线关系的推论.(2)直线与圆相交,应抓住半径、弦心距、半弦长组成的直角三角形,可使解法简单.直线与圆边线关系的认定方法列表如下:直线与圆相交的弦长公式:(1)几何法:如图所示,直线l与圆c平行于a、b两点,线段ab的长即为l与圆平行的弦长。
设弦心距为d,半径为r,弦为ab,则有|ab|=(2)代数法:直线l与圆处设直线l的斜率为k,则有当直线ab的倾斜角为直角,即为斜率不存有时,|ab|=。
高中数学必修2知识点——直线与圆
整理 徐福扬
一、直线与方程 (1)直线的倾斜角
定义:x 轴正向与直线向上方向之间所成的角叫直线的倾斜角。
特别地,当直线与x 轴平行或重合时,我们规定它的倾斜角为0度。
因此,倾斜角的取值范围是0°≤α<180° (2)直线的斜率
①定义:倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜率。
直线的斜率常用k 表示。
即tan k α=。
斜率反映直线与轴的倾斜程度。
当[) 90,0∈α时,0≥k ; 当() 180,90∈α时,0<k ; 当 90=α时,k 不存在。
②过两点的直线的斜率公式:)(211
21
2x x x x y y k ≠--=
注意下面四点:(1)当21x x =时,公式右边无意义,直线的斜率不存在,倾斜角为90°;
(2)k 与P 1、P 2的顺序无关;(3)以后求斜率可不通过倾斜角而由直线上两点的坐标直接求得;
(4)求直线的倾斜角可由直线上两点的坐标先求斜率得到。
(3)直线方程
①点斜式:)(11x x k y y -=-直线斜率k ,且过点()11,y x
注意:当直线的斜率为0°时,k=0,直线的方程是y=y 1。
当直线的斜率为90°时,直线的斜率不存在,它的方程
不能用点斜式表示.但因l 上每一点的横坐标都等于x 1,所以它的方程是x=x 1。
②斜截式:b kx y +=,直线斜率为k ,直线在y 轴上的截距为b ③两点式:
11
2121
y y x x y y x x --=--(1212,x x y y ≠≠)直线两点()11,y x ,()22,y x ④截矩式:1x y a
b
+=
其中直线l 与x 轴交于点(,0)a ,与y 轴交于点(0,)b ,即l 与x 轴、y 轴的截距分别为,a b 。
⑤一般式:0=++C By Ax (A ,B 不全为0)
注意:○
1各式的适用范围 ○2特殊的方程如:
平行于x 轴的直线:b y =(b 为常数); 平行于y 轴的直线:
a x =(a 为常数);
(5)直线系方程:即具有某一共同性质的直线 (一)平行直线系
平行于已知直线0000=++C y B x A (00,B A 是不全为0的常数)的直线系:000=++C y B x A (C 为常数) (二)过定点的直线系
(ⅰ)斜率为k 的直线系:()00x x k y y -=-,直线过定点()00,y x ;
(ⅱ)过两条直线0:1111=++C y B x A l ,0:2222=++C y B x A l 的交点的直线系方程为
()()0222111=+++++C y B x A C y B x A λ(λ为参数),其中直线2l 不在直线系中。
(6)两直线平行与垂直
当111:b x k y l +=,222:b x k y l +=时,
212121,//b b k k l l ≠=⇔;12121-=⇔⊥k k l l 注意:利用斜率判断直线的平行与垂直时,要注意斜率的存在与否。
(7)两条直线的交点
0:1111=++C y B x A l 0:2222=++C y B x A l 相交
交点坐标即方程组⎩⎨⎧=++=++00
222
111C y B x A C y B x A 的一组解。
方程组无解21//l l ⇔ ; 方程组有无数解⇔1l 与2l 重合
(8)两点间距离公式:设1122(,),A x y B x y ,()是平面直角坐标系
中的两个点,
则||AB =
(9)点到直线距离公式:一点()00,y x P 到直线
0:1=++C By Ax l 的距离2
2
00B
A C
By Ax d +++=
(10)两平行直线距离公式
在任一直线上任取一点,再转化为点到直线的距离进行求解。
二、圆与方程
圆的标准方程
1、圆的标准方程:222()()x a y b r -+-=
圆心为A(a,b),半径为r 的圆的方程
2、点00(,)M x y 与圆222()()x a y b r -+-=的关系的判断方法:
(1)2200()()x a y b -+->2r ,点在圆外 (2)2200()()x a y b -+-=2r ,点在圆上
(3)2200()()x a y b -+-<2r ,点在圆内 4.1.2 圆的一般方程
1、圆的一般方程:022=++++F Ey Dx y x
2、圆的一般方程的特点:
(1)①x2和y2的系数相同,不等于0. ②没有xy 这样的二次项.
(2)圆的一般方程中有三个特定的系数D 、E 、F ,因之只要求出这三个系数,圆的方程就确定了.
(3)、与圆的标准方程相比较,它是一种特殊的二元二次方程,代数特征明显,圆的标准方程则指出了圆心坐标与半径大小,几何特征较明显。
4.2.1 圆与圆的位置关系
1、用点到直线的距离来判断直线与圆的位置关系.
设直线l :0=++c by ax ,圆C :022=++++F Ey Dx y x ,圆的半径为r ,
圆心)2
,
2
(E
D -
-到直线的距离为d ,
则判别直线与圆的位置关系的依据有以下几点:
(1)当r d >时,直线l 与圆C 相离;(2)当r d =时,直线l 与圆C 相切;
(3)当r d <时,直线l 与圆C 相交; 4.2.2 圆与圆的位置关系
两圆的位置关系.
设两圆的连心线长为l ,则判别圆与圆的位置关系的依据有以下几点:
(1)当21r r l +>时,圆1C 与圆2C 相离;(2)当21r r l +=时,圆1C 与圆2C 外切;
(3)当<-||21r r 21r r l +<时,圆1C 与圆2C 相交;
(4)当||21r r l -=时,圆1C 与圆2C 内切;(5)当||21r r l -<时,圆1
C 与圆2C 内含;
4.2.3 直线与圆的方程的应用
1、利用平面直角坐标系解决直线与圆的位置关系;
2、过程与方法
用坐标法解决几何问题的步骤:
第一步:建立适当的平面直角坐标系,用坐标和方程表示问题中的几何元素,将平面几何问题转化为代数问题;
第二步:通过代数运算,解决代数问题; 第三步:将代数运算结果“翻译”成几何结论.
y
4.3.1空间直角坐标系
1、点M 对应着唯一确定的有序实数组),,(z y x ,x 、y 、z 分别是P 、Q 、R 在x 、y 、z 轴上的坐标
2、有序实数组),,(z y x ,对应着空间直角坐标系中的一点
3、空间中任意点M 的坐标都可以用有序实数组),,(z y x 来表示,该数组叫做点M 在此空间直角坐标系中的坐标,记M ),,(z y x ,x 叫做点M 的横坐标,y 叫做点M 的纵坐标,z 叫做点M 的
竖坐标。
4.3.2空间两点间的距离公式
1、空间中任意一点),,(1111z y x P 到点),,(2222z y x P 之间的距离公式
2
2122122121)()()(z z y y x x P P -+-+-=。