高分子聚合物的取向表征
- 格式:wps
- 大小:20.50 KB
- 文档页数:3
聚合物表征式中,Π为聚合物样品中高分子链及微晶体沿样品被拉伸方向的取向度,H°为赤道线上Debye环强度分布曲线的半高宽度。
Π值没有明确物理意义,只能做相对比较的参考数据。
固体聚合物形貌的表征同种高分子聚合物中的凝聚状态是随外部因素的不同而不同的,所谓外部因素,包括制备条件(合成条件),受外力情况(剪切力、振动剪切,力的大小和频率等),温度变化的历程等情况。
而固体聚合物凝聚态结构的差异,更直接影响到聚合物作为材料使用时的性能。
因此观察固体聚合物表面、断面及内部的微相分离结构,微孔及缺欠的分布,晶体尺寸、性状及分布,以及纳米尺度相分散的均匀程度等形貌特点,将为我们改进聚合物的加工制备条件,共混组份的选择,材料性能的优化提供数据。
表征方法与仪器:扫描电镜、透射电镜、原子力显微镜、扫描隧道显微镜原子力显微镜(AFM):用原子力显微镜表征聚合物表面的形貌。
原子力显微镜使用微小探针来扫描被测聚合物的表面,当探针尖接近样品时,样品分子和探针尖端将产生范德华力。
因高分子种类、结构的不同、产生范德华力的大小也不同。
记录范德华力变化的情况,从而"观察"到聚合物表面的形貌。
由于原子力显微镜探针对聚合物表面的扫描是三维扫描,因此原子力显微镜形成的图像是聚合物表面的三维形貌。
用原子力显微镜可以观察聚合物表面的形貌,高分子链的构象,高分子链堆砌的有序情况和取向情况,纳米结构中相分离尺寸的大小和均匀程度,晶体结构、形状,结晶形成过程等信息。
扫描隧道显微镜(STM):用扫描隧道显微镜表征导电高聚物表面的形貌。
同原子力显微镜类似,扫描隧道显微镜也是利用微小探针对被测导电聚合物的表面进行扫描,当探针和导电聚合物的分子接近时,在外电场作用下,将在导电聚合物和探针之间,产生微弱的"隧道电流"。
因此测量"隧道电流"的发生点在聚合物表面的分布情况,可以"观察"到导电聚合物表面的形貌信息。
高分子物理答案详解〔第三版〕第1章高分子的链结构1.写出聚氯丁二烯的各种可能构型。
等。
2.构象与构型有何区别?聚丙烯分子链中碳—碳单键是可以旋转的,通过单键的内旋转是否可以使全同立构聚丙烯变为间同立构聚丙烯?为什么?答:〔1〕区别:构象是由于单键的内旋转而产生的分子中原子在空间位置上的变化,而构型那么是分子中由化学键所固定的原子在空间的排列;构象的改变不需打破化学键,而构型的改变必须断裂化学键。
〔2〕不能,碳-碳单键的旋转只能改变构象,却没有断裂化学键,所以不能改变构型,而全同立构聚丙烯与间同立构聚丙烯是不同的构型。
3.为什么等规立构聚丙乙烯分子链在晶体中呈31螺旋构象,而间规立构聚氯乙烯分子链在晶体中呈平面锯齿构象?答〔1〕由于等归立构聚苯乙烯的两个苯环距离比其范德华半径总和小,产生排斥作用,使平面锯齿形〔…ttt…〕构象极不稳定,必须通过C-C键的旋转,形成31螺旋构象,才能满足晶体分子链构象能最低原那么。
〔2〕由于间规聚氯乙烯的氯取代基分得较开,相互间距离比范德华半径大,所以平面锯齿形构象是能量最低的构象。
4.哪些参数可以表征高分子链的柔顺性?如何表征?答:〔1〕空间位阻参数〔或称刚性因子〕,值愈大,柔顺性愈差;〔2〕特征比Cn,Cn值越小,链的柔顺性越好;〔3〕连段长度b,b值愈小,链愈柔顺。
5.聚乙烯分子链上没有侧基,内旋转位能不大,柔顺性好。
该聚合物为什么室温下为塑料而不是橡胶?答:这是由于聚乙烯分子对称性好,容易结晶,从而失去弹性,因而在室温下为塑料而不是橡胶。
6.从结构出发,简述以下各组聚合物的性能差异:〔1〕聚丙烯睛与碳纤维;〔2〕无规立构聚丙烯与等规立构聚丙烯;〔3〕顺式聚1,4-异戊二烯〔天然橡胶〕与反式聚1,4-异戊二烯〔杜仲橡胶〕。
〔4〕高密度聚乙烯、低密度聚乙烯与交联聚乙烯。
(1)线性高分子梯形高分子(2 非晶高分子结晶性高分子(3)柔性(4)高密度聚乙烯为平面锯齿状链,为线型分子,模量高,渗透性小,结晶度高,具有好的拉伸强度、劲度、耐久性、韧性;低密度聚乙烯支化度高于高密度聚乙烯〔每1000 个主链C 原子中约含15~35 个短支链〕,结晶度较低,具有一定的韧性,放水和隔热性能较好;交联聚乙烯形成了立体网状的结构,因此在韧性、强度、耐热性等方面都较高密度聚乙烯和低密度聚乙烯要好。
高分子的取向结构和液晶结构一、高分子的取向结构1、概念高分子的取向是指在外力(拉伸、牵引、挤出)作用下,其大分子链、链段或结晶高分子中的晶体结构沿外力作用方向排列的现象。
高分子链在伸展状态下,其长度是宽度的几百、几千乃至几万倍,因此在结构上具有悬殊的不对称性。
在诸如挤出、牵伸、压延、吹塑等在外力作用下均可发生分子链的取向现象。
取向态和结晶态尽管都与高分子的有序排列有关,但它们的有序程度不同。
取向态是一维或二维在一定程度上有序,而结晶态则是三维有序。
通常,对于未取向的高分子材料来说,链段的取向是随机的,这样的材料客观上是各相同性的,而取向的高分子材料,其链段在某些方向上择优取向,呈现各向异性。
2、取向高聚物的性能对于取向的高分子材料来说其力学性能、光学性质及热性能等方面发生了较大的变化。
比如在力学性能中,抗张强度和疲劳强度在取向方向上显著增加,而与取向方向相垂直的方向则下降。
因此,人们可以通过取向现象来改善产品的某些性能。
3、取向方式取向方式分为单轴取向和双轴取向。
单轴取向是指材料只沿一个方向拉伸,长度增加,厚度和宽度减少,大分子链或链段沿拉伸方向择优取向。
双轴取向是指材料沿两个垂直的方向拉伸,面积增加,厚度减少,大分子链或链段倾向于与拉伸平面平行排列。
单轴取向可通过单向拉伸等方法在材料的一维方向上施以应力来实现,如合成纤维中的牵伸是单轴取向。
而双轴取向长常通过双向拉伸、吹塑等过程来实现,用于薄膜制品。
4、高分子的取向机理取向过程是分子在外力作用下的有序化过程。
外力除去后,分子热运动使分子趋向于无序化,即称为解取向过程。
同时取向的过程是在外力作用下运动单元运动的过程。
必须克服高聚物内部的粘滞阻力,因而完成取向过程要一定的时间。
4.1 各取向单元的取相机理(1)链段取向:通过单键的内旋转引起的链段运动来完成,这种取向在玻璃化温度以上就可以进行。
(2)分子链取向:通过各链段的协同运动来完成,只有在粘流态下才能实现。
高分子聚合物的取向表征
用途
高分子和它的链段本身具有较大的长度,因此在空间上必然指向一定的方向。
当高分子链段在空间随机取向时,由概率论可知,此时分子或分子链段指向各个方向的几率是相同的。
在宏观上,高分子的这种取向方式使高分子聚合物在各个方向上呈现相同的品质,即各向同性性质。
高分子链段也可能沿某些方向规整地周期性排列,从而形成高分子晶体。
在一些条件下,如外力,流动等,相当数量的高分子链段会平行指向同一方向,由此形成的高分子聚集态结构被称作取向态结构。
高分子链段平行地向同一方向排列的现象叫做高分子聚合物的取向。
表征方法及原理
1.高分子聚合物中分子链的取向度
1.1 高分子聚合物的取向
由于高分子聚合物取向后多数分子链段指向同一个方向,在这一方向上,高分子聚合物的宏观性能显然与其他方向存在差异,材料呈各项异性性质。
在力学性能上,取向方向的强度、刚度会明显提高,而与之垂直方向上的强度和刚度则可能会降低。
在光学性能上,高分子聚合物的取向导致双折射现象的出现。
热性能上,热膨胀系数在取向和非取向方向上不同。
高分子聚合物在外力作用下的取向有两种方式:
l 单轴取向
l 双轴取向
单轴取向:高分子聚合物在单一方向上被外力拉伸;聚合物的长度增加,厚度和宽度减小。
分子链受外力的影响指向受力方向。
双轴取向:外力在两个互相垂直的方向拉伸高分子聚合物。
聚合物的在受力方向的长度增加,厚度减小,高分子链段相对于拉伸平面平行排列,在拉伸平面内则为随机排列。
可见,双轴取向后,高分子聚合物在拉伸平面内的性能呈各项同性。
1.2 取向度
高分子聚合物中分子链段向特定方向排列的程度叫做取向度。
取向度一般用取向函数F表示:
F=0.5 (3cos2θ —1)
在定义取向函数时,通常取一特定的方向(如拉伸方向)作为参考方向,取分子的链轴方向与参考方向的夹角为取向角,θ。
对于实际的高分子聚合物,θ不是一个定值,而是按一定的方式分布,因此取向函数方程中的θ往往采用实际取向角的平均值。
2.取向度的测定方法
2.1 广角X射线衍射法(W AXS)
选定取向单元(例如高分子主链轴、高聚物结晶主轴),然后选择取向度的参考方向,如拉伸方向。
用广角X射线衍射仪获取样品的衍射图,取赤道线上Debye环(常用最强环)的强度分布曲线的半高宽(单位为“度”),计算聚合物样品中高分子链及微晶体的取向度:
式中,Π为聚合物样品中高分子链及微晶体沿样品被拉伸方向的取向度,H°为赤道线上Debye环强度分布曲线的半高宽度。
Π值没有明确物理意义,只能做相对比较的参考数据。
2.2 双折射法表征纤维的取向度。
用偏光显微镜观测浸于油中的纤维。
“浸油”是已知折光指数的油剂。
变换不同折光指数的油
剂浸泡纤维并置于偏光显微镜上进行观测,直至偏光显微镜目镜中不再出现纤维和浸油界面因折射率不同而出现的黑线带(贝克线)为止。
此时,浸油的折光指数就是纤维在某一个方向的折光指数(例称为n││)。
旋转载物台90度,用同样的方法测定纤维垂直于前一方向的折光指数(例称为n┴)。
纤维在二个相互垂直方向折光指数的差值Δn,可以用来定性表征该纤维的取向度。
Δn=│n││-n┴│。
需要指出的是,由双折射法确定的取向度△n是被观测段内聚合物的取向,用其代表整个纤维中高分子链的取向时需要小心。
2.3 声波传播法
沿分子链方向传播的声波是通过分子内键合原子的振动完成的,速度较快。
在垂直于分子链的方向,声波的传播要靠非键合原子间的振动,速度较慢。
声波在未取向高分子聚合物中的传播速度与其在小分子液体中的传播差不多,约为1~2km/s。
在取向高分子聚合物的取向方向上,声波的传播速度则可以达到5~10km/s。
如声波在未取向试样的传播速度为cu在取向试样中沿取向方向的传播速度为co,则高分子聚合物的取向度:
F=1-(cu/co)2
2.4 红外二向色性
红外光偏振光通过被测试样时,试样中某基团的吸光强度A与振动偶极矩M的变化方向有关。
电矢量方向与偶极矩变化方向平行时红外吸收最大,而当这两个方向垂直时则不产生吸收。
这种现象被叫做红外二向色性。
未取向高分子聚合物M的变化方向呈均匀性分布,而取向高分子聚合物的M也发生取向,因此,高分子聚合物的取向度可以用红外二向色性来表征。
二向色性之比与取向度的关系为:
其中,α为基团振动时跃迁偶极矩与分子链方向的夹角。
完全取向时,F=1;二向色性最大;随机取向时,F=0,二向色性消失。
二向色性仅与高分子的性质有关,与所处的凝聚态无关。
因此它既可以用来研究晶态高分子聚合物的取向,也可以用来研究非晶态高分子聚合物的取向。
根据所选择的红外光谱谱带的不同,可以分别确定晶区和非晶区的取向,也可以确定整个材料的的平均取向,根据振动谱带是侧基还是主链的基团,可以区分主链和侧基的取向。
红外二向色性法可以获得广泛的取向参数。
所用仪器
偏光显微镜(PLM)
广角x射线衍射仪(W AXS)
红外光谱仪
参考文献
1、“现代高分子物理学”(P.670),殷敬华、莫志深主编,科学出版社,2001年。