电力电子技术第二章整流器
- 格式:ppt
- 大小:8.95 MB
- 文档页数:100
现代电力电子技术导论绪论电力电子技术在现代社会中扮演着至关重要的角色。
随着电子技术的迅速发展,电力电子技术的应用范围不断扩大,涉及到能源转换、能源管理、电动车辆、可再生能源等领域。
本文将介绍现代电力电子技术的基本原理、应用和未来发展方向。
第一章:电力电子器件1.1 电力电子器件概述1.1.1 电力电子器件的定义和分类1.1.2 电力电子器件的特点和性能指标1.2 二极管和整流器1.2.1 二极管的基本原理和特性1.2.2 整流器的基本原理和分类1.3 可控硅器件1.3.1 可控硅的基本原理和特性1.3.2 可控硅的应用和发展趋势1.4 晶闸管和弱级别器件1.4.1 晶闸管的基本原理和特性1.4.2 弱级别器件的基本原理和应用第二章:电力电子转换器2.1 电力电子转换器的概述2.1.1 电力电子转换器的基本结构和工作原理 2.1.2 电力电子转换器的应用领域2.2 直流-直流变换器2.2.1 升压转换器的原理和应用2.2.2 降压转换器的原理和应用2.3 直流-交流变换器2.3.1 单相桥式可控整流器的原理和应用2.3.2 三相桥式可控整流器的原理和应用2.4 交流-交流变换器2.4.1 交流-交流变换器的基本原理和分类2.4.2 交流-交流变换器的应用和发展趋势第三章:现代电力电子应用3.1 电力电子在电能质量控制中的应用3.1.1 电能质量的定义和评价指标3.1.2 电力电子器件在电能质量控制中的应用 3.2 电力电子在电动车辆中的应用3.2.1 电动车辆的概述和分类3.2.2 电力电子技术在电动车辆中的应用3.3 电力电子在可再生能源中的应用3.3.1 可再生能源的定义和分类3.3.2 电力电子技术在可再生能源中的应用案例第四章:现代电力电子技术的发展趋势4.1 多电平和多能源的电力电子系统4.1.1 多电平变换技术的原理和应用4.1.2 多能源系统的概念和特点4.2 高频和高效率的电力电子转换技术4.2.1 高频电力电子转换技术的优势和挑战4.2.2 高效率电力电子转换技术的研究方向4.3 智能和可靠的电力电子系统4.3.1 智能电力电子系统的特点和应用4.3.2 可靠性设计在电力电子系统中的重要性结语现代电力电子技术在电力转换和能源管理方面具有重要的意义。
21. 单相半波可控整流电路对电感负载供电, L =20mH , U 2=100V ,求当 α=0 和 60 时的负载电流 I d ,并画出 u d 与 i d 波形。
解: α=0 时,在电源电压 u 2 的正半周期晶闸管导通时,负载电感 导通时刻,负载电流为零。
在电源电压u 2 的负半周期,负载电感导通。
因此,在电源电压 u 2 的一个周期里,以下方程均成立:L di d 2U 2 sin tdt2考虑到初始条件:当 t =0时 i d =0可解方程得:2U 2 i d(1 cos t)L1 2 2U 22(1 cos t)d( t) L2U 2=2u d 与 i d 的波形如下图:量在 u 2负半周期180 ~300 期间释放,因此在 u 2 一个周期中 60 ~300 期间以下微分方程成 立: L d d itd2U 2 sin t其平均值为此时 u d 与 i d 的波形如下图:α = 60 °时, L 储能, 电感 L 储藏的能L 储能,在晶闸管开始 L 释放能量,晶闸管继续I d考虑初始条件:当t = 60 时 i d = 0 可解方程得:i d2U 2 L 1( cos t)I d52U 2 1 33 2U L 2 (12 cos t)d( t) =2U 22L =11.25(A)2.图2-9 为具有变压器中心抽头的单相全波可控整流电路,问该变压器还有直流磁化问题吗?试说明:①晶闸管承受的最大反向电压为2 2U2 ;②当负载是电阻或电感时,其输出电压和电流的波形与单相全控桥时相同。
答:具有变压器中心抽头的单相全波可控整流电路,该变压器没有直流磁化的问题。
因为单相全波可控整流电路变压器二次测绕组中,正负半周内上下绕组内电流的方向相反,波形对称,其一个周期内的平均电流为零,故不会有直流磁化的问题。
以下分析晶闸管承受最大反向电压及输出电压和电流波形的情况。
①以晶闸管VT 2为例。
电力电子技术 ( 第二版 ) 第 2 章答案第 2 章可控整流器与有源逆变器习题解答2-1 拥有续流二极管的单相半波可控整流电路,电感性负载,电阻为5Ω,电感为 0.2H,电源电压U2为 220V,直流均匀电流为10A,试计算晶闸管和续流二极管的电流有效值,并指出其电压定额。
解:由直流输出电压均匀值U d的关系式:1 cosU d0.45U 22已知直流均匀电流I d为10A,故得:U d I d R 10 5 50A能够求得控制角α为:2U d1250cos0.451 00.45U2220则α =90°。
因此,晶闸管的电流有效值求得,I VT1I d2d t I d 2I d1I d 5A2222续流二极管的电流有效值为: I VD R I d 8.66 A2晶闸管蒙受的最大正、反向电压均为电源电压的峰值U M2U2,考虑 2~3 倍安全裕量,晶闸管的额定电压为U TN 2~ 3U M 2~ 3 311 622~ 933V续流二极管蒙受的最大反向电压为电源电压的峰值U M2U2,考虑 2~3 倍安全裕量,续流二极管的额定电压为U TN2~ 3U M2~ 3 311 622~ 933V2-2 拥有变压器中心抽头的单相双半波可控整流电路如图2-44 所示,问该变压器能否存在直流磁化问题。
试说明晶闸管蒙受的最大反向电压是多少?当负载是电阻或许电感时,其输出电压和电流的波形与单相全控桥时能否相同。
解:因为单相双半波可控整流电路变压器二次测绕组中,正负半周内上下绕组内电流的方向相反,波形对称,其一个周期内的均匀电流为零,故不会有直流磁化的问题。
剖析晶闸管蒙受最大反向电压及输出电压和电流波形的状况:(1)以晶闸管VT2为例。
当VT1导通时,晶闸管VT2经过VT1与2个变压器二次绕组并联,因此 VT2蒙受的最大电压为 2 2U 2。
(2)当单相全波整流电路与单相全控桥式整流电路的触发角相同时,关于电阻负载:(0 ~ )时期无晶闸管导通,输出电压为0;(~)时期,单相全波电路中 VT1 导通,单相全控桥电路中VT1、VT4导通,输出电压均与电源电压u2相等;(~)时期,均无晶闸管导通,输出电压为0;(~ 2)时期,单相全波电路中VT2导通,单相全控桥电路中VT2、VT3导通,输出电压等于u2。
《电力电子技术》课程标准一、课程基本信息(二)专业概况1、培养目标本课程以基于工作过程的课程开发理念为指导,以职业能力培养和职业素养养成为重点,根据技术领域和职业岗位(群)的任职要求,融合维修电工职业资格标准,以变流与变频典型工作过程,以来源于企业的实际案例为载体,以理实一体化的教学实训室为工作与学习场所,对课程内容进行序化,要求学生在对电力电子器件及应用有初步认识的基础上,能组建并调试简单直流调速系统、调光灯,能对开关电源进行检查与简单故障的维修,能使用和维护变频器。
通过任务驱动教学及任务单的完成提高学生积极的行动意识和职业规划能力,培养学生的创新创业能力,为后续课程学习作前期准备,为学生顶岗就业夯实基础,同时使学生具备较强的工作方法能力和社会能力2、岗位面向电力电子技术广泛应用于各个行业。
如工业生产中的交流调速、直流调速、感应加热、焊接、电解、电镀等交通运输业的电力机车、轻轨、地铁、电动汽车等电力行业的高压直流输电、无功补偿、电力滤波等电子装置用的开关电源、UPS电源等;风光发电系统的最大功率跟踪、并网离网逆变器等;航空航天、核反应、家用电器等诸多领域都有电力电子技术的身影。
显而易见,学好“电力电子技术”这门课程,对电气专业学生后续课程的学习和毕业后的工作是多么重要。
3、专业核心能力(1)了解电力电子技术的发展概况、技术动向和新的应用领域。
掌握普通晶闸管、可关断晶闸管、电力晶体管、功率场效应管和绝缘门极晶体管等电力电子器件的工作原理、主要参数、控制电路及选用测试方法。
(2)掌握常用的相控整流电路和有源逆变电路的基本原理、波形画法、主要参数计算、元件选择以及掌握晶闸管电路的过压、过流等保护方法和元件的估算。
第1页共1页(3)掌握常用触发电路工作原理、波形分析,根据要求选择恰当的触发电路和集成触发器件。
(4)掌握由电力电子器件组成的交流调压电路、逆变电路、变频电路、斩波电路等基本原理。
(5)具有一定的电力电子电路实验和调试的能力。
1. 单相半波可控整流电路对电感负载供电,L =20mH ,U 2=100V ,求当α=0︒和60︒时的负载电流I d ,并画出u d 与i d 波形。
解:α=0︒时,在电源电压u 2的正半周期晶闸管导通时,负载电感L 储能,在晶闸管开始导通时刻,负载电流为零。
在电源电压u 2的负半周期,负载电感L 释放能量,晶闸管继续导通。
因此,在电源电压u 2的一个周期里,以下方程均成立:t U ti Lωsin 2d d 2d= 考虑到初始条件:当ωt =0时i d =0可解方程得:)cos 1(22d t L U i ωω-= ⎰-=πωωωπ202d )(d )cos 1(221t t L U I =LU ω22=22.51(A)u d 与i d 的波形如下图:当α=60°时,在u 2正半周期60︒~180︒期间晶闸管导通使电感L 储能,电感L 储藏的能量在u 2负半周期180︒~300︒期间释放,因此在u 2一个周期中60︒~300︒期间以下微分方程成立:t U ti Lωsin 2d d 2d= 考虑初始条件:当ωt =60︒时i d =0可解方程得:)cos 21(22d t L U i ωω-=其平均值为)(d )cos 21(2213532d t t L U I ωωωπππ-=⎰=L U ω222=11.25(A)此时u d 与i d 的波形如下图:2.图2-9为具有变压器中心抽头的单相全波可控整流电路,问该变压器还有直流磁化2U;②当负载是电阻或电感时,其问题吗?试说明:①晶闸管承受的最大反向电压为22输出电压和电流的波形与单相全控桥时相同。
答:具有变压器中心抽头的单相全波可控整流电路,该变压器没有直流磁化的问题。
因为单相全波可控整流电路变压器二次测绕组中,正负半周内上下绕组内电流的方向相反,波形对称,其一个周期内的平均电流为零,故不会有直流磁化的问题。
以下分析晶闸管承受最大反向电压及输出电压和电流波形的情况。
第2章 可控整流器与有源逆变器习题解答2-1 具有续流二极管的单相半波可控整流电路,电感性负载,电阻为5Ω,电感为0.2H ,电源电压2U 为220V ,直流平均电流为10A ,试计算晶闸管和续流二极管的电流有效值,并指出其电压定额。
解:由直流输出电压平均值d U 的关系式:2cos 145.02α+=U U d 已知直流平均电流d I 为10A ,故得:A R I U d d 50510=⨯==可以求得控制角α为:0122045.0502145.02cos 2≈-⨯⨯=-=U U d α 则α=90°。
所以,晶闸管的电流有效值求得, ()A I I I t d I I d d d d VT 521222212==-=-==⎰ππππαπωππα 续流二极管的电流有效值为:A I I d VD R 66.82=+=παπ 晶闸管承受的最大正、反向电压均为电源电压的峰值22U U M =,考虑2~3倍安全裕量,晶闸管的额定电压为()()V U U M TN 933~6223113~23~2=⨯==续流二极管承受的最大反向电压为电源电压的峰值22U U M =,考虑2~3倍安全裕量,续流二极管的额定电压为()()V U U M TN 933~6223113~23~2=⨯==2-2 具有变压器中心抽头的单相双半波可控整流电路如图2-44所示,问该变压器是否存在直流磁化问题。
试说明晶闸管承受的最大反向电压是多少?当负载是电阻或者电感时,其输出电压和电流的波形与单相全控桥时是否相同。
解:因为单相双半波可控整流电路变压器二次测绕组中,正负半周上下绕组电流的方向相反,波形对称,其一个周期的平均电流为零,故不会有直流磁化的问题。
分析晶闸管承受最大反向电压及输出电压和电流波形的情况:(1) 以晶闸管 2VT 为例。
当1VT 导通时,晶闸管2VT 通过1VT 与2个变压器二次绕组并联,所以2VT 承受的最大电压为222U 。
电力电子技术中的整流器有什么作用电力电子技术的发展在现代电气工程中起到了至关重要的作用。
其中,整流器是电力电子技术中的一个重要组成部分,它主要用于将交流电转换为直流电。
整流器的作用广泛,包括各个领域的电力系统、电动机驱动以及新能源发电等。
本文将就电力电子技术中整流器的具体作用进行探讨。
一、电力系统中的整流器在电力系统中,整流器的作用主要是将交流电转换为直流供电。
交流电由于其特点,在一些领域内并不能满足需求,需要将其转换为直流电,例如高压直流输电系统。
高压直流输电系统采用整流器将交流电转换为直流电以降低输电损耗,提高电能传输效率。
此外,交流输电系统中的交流电也可通过整流器转换为直流电,供给直流负载。
二、电动机驱动中的整流器在电动机驱动中,整流器起到了将交流电转换为直流电的重要作用。
电机的转子需要通过电流来产生磁场,从而转动。
而大部分电动机采用的是交流电源供电,因此需要通过整流器将交流电转变为直流电。
整流器将电网供电的交流电转换为直流电,然后通过逆变器将直流电转换为交流电,供给电动机驱动。
整流器的使用不仅使电动机的驱动更加可靠和高效,还减少了环境对电动机传动系统的影响。
三、新能源发电中的整流器在新能源发电领域,整流器的作用也不可忽视。
例如,太阳能光伏发电系统中,光伏电池将太阳光能转化为直流电,但交流电是电网的标准供应形式。
这时就需要采用整流器将光伏电池输出的直流电转换为交流电,然后再注入电网。
同样地,在风力发电系统中,风力涡轮机通过风能旋转,产生交流电,也需要通过整流器将交流电转换为直流电,再转换为交流电注入电网。
总结一下,电力电子技术中的整流器作用重大。
在电力系统中,整流器将交流电转换为直流电,优化能量传输过程;在电机驱动中,整流器将交流电转换为直流电,提高电动机的可靠性和效率;在新能源发电中,整流器将可再生能源产生的直流电转换为交流电,实现与电网的连接。
整流器的应用不仅使得电力系统更加灵活和高效,而且促进了可持续能源的发展与利用。
第2章 可控整流器与有源逆变器习题解答2-1 具有续流二极管的单相半波可控整流电路,电感性负载,电阻为5Ω,电感为,电源电压2U 为220V ,直流平均电流为10A ,试计算晶闸管和续流二极管的电流有效值,并指出其电压定额。
解:由直流输出电压平均值d U 的关系式:2cos 145.02α+=U U d 已知直流平均电流d I 为10A ,故得:A R I U d d 50510=⨯==可以求得控制角α为:0122045.0502145.02cos 2≈-⨯⨯=-=U U d α 则α=90°。
所以,晶闸管的电流有效值求得, ()A I I I t d I I d d d d VT 521222212==-=-==⎰ππππαπωππα 续流二极管的电流有效值为:A I I d VD R 66.82=+=παπ 晶闸管承受的最大正、反向电压均为电源电压的峰值22U U M =,考虑2~3倍安全裕量,晶闸管的额定电压为()()V U U M TN 933~6223113~23~2=⨯==续流二极管承受的最大反向电压为电源电压的峰值22U U M =,考虑2~3倍安全裕量,续流二极管的额定电压为()()V U U M TN 933~6223113~23~2=⨯==2-2 具有变压器中心抽头的单相双半波可控整流电路如图2-44所示,问该变压器是否存在直流磁化问题。
试说明晶闸管承受的最大反向电压是多少当负载是电阻或者电感时,其输出电压和电流的波形与单相全控桥时是否相同。
解:因为单相双半波可控整流电路变压器二次测绕组中,正负半周内上下绕组内电流的方向相反,波形对称,其一个周期内的平均电流为零,故不会有直流磁化的问题。
分析晶闸管承受最大反向电压及输出电压和电流波形的情况:(1) 以晶闸管 2VT 为例。
当1VT 导通时,晶闸管2VT 通过1VT 与2个变压器二次绕组并联,所以2VT 承受的最大电压为222U 。