三年级奥林匹克数学专题讲解三阶幻方理论A篇和练习B篇
- 格式:doc
- 大小:136.50 KB
- 文档页数:4
三年级奥数教程第12讲三阶幻方三阶幻方就是将九个自然数填在3×3(三行三列)的正方形内,使每一行、每一列以及每一条对角线上的三个数的和都相等.三阶幻方是一种特殊的数阵图.例1、将1~9这九个数填入下图,使它成为一个三阶幻方.图12-1分析与解 1+2+…+8+9=45.所以,每行、每列、每条对角线的三个数的和是15(=45÷3).从1到9中,三个不同的数相加等于15,只可能是9+5+1,9+4+2,8+6+1,8+5+2,8+4+3,7+6+2,7+5+3.6+5+4这八个式子.其中只有5出现四次,因此5一定在中心.在式子中出现三次的只有8、6、4、2这四个数,因此这四个数应当在四个角上.从而将三阶幻方完成,如图所示.816357492图12-2说明除了上图所示的答案外,如果8、6、4、2在四个角上的位置排得不同,9、7、3、1的位置也相应有所不同,那么还可以得到其他形式的三阶幻方.我们把这些只是形式不同而实质相同的结果看作是一个解,只要写出其中一个作为答案就可以了.随堂练习1 用0到8这9个数构造一个三阶幻方.例2、将1,3,5,7,…17填入3×3的方格中,使它成为一个三阶幻方.分析与解将图12—2中的1,2,3,…,9分别用1,3,5,…,17代替,得到图12—3.它就是所求的三阶幻方,每行、每列、每条对角线上的和都是27.1511159137173图12-3随堂练习2 将2,4,6,…,18填入3×3的方格中,使它成为一个三阶幻方.例3、如果l、4、7、10、13、16、19、22、25这9个数组成三阶幻方,那么每一行、每一列、每条对角线的和是多少?中央的那个数是多少?分析与解总和是1+4+7+…+25=(1+25)×9÷2=117.由于三行的和相等,所以每一行的和是117÷3=39.。
每一列、每一条对角线的和也是39.两条对角线、第二列的总和是39×3,它也是第一行加第三行再加中央那个数的3倍.所以中央的那个数是(39×3—39 × 2)÷3=13.随堂练习3 如果2、6、10、1 l、15、19、20、24、28可以组成一个三阶幻方,那么每一行、每一列、每条对角线的和是多少?中央的那个数是多少?例4、图12—4是一个三阶幻方,已知3个数,请根据幻方的性质填出其他的数.62815图12-4分析与解首先注意在例3中实际上已经得出每一行(每一列、每条对角线)的和是中央那个数的3倍.因此,现在每一行的和是15×3=45.这样,就可以得出第三行第一个数是45—6—28=11.第三行第三个数是45—6—15=24.第三行第二个数是45—11—24=10.同样,可得其他的数.最后得出三阶幻方如图12—5.6201928152111024图12-5随堂练习4图1 2—6是一个三阶幻方,请填出其他的数.15423图12-6例5、已知图12—7中,每一行、每一列、每条对角线上3个数的乘积都相等.请填出其他的数.11263图12-7分析及解每一行、每一列、每条对角线的乘积都是3×6×12。
三阶幻方同学们:在33⨯(三行三列)的正方形方格中,既不重复又不遗漏地填上1—9这9个连续的自然数,使每行、每列、每条对角线上的三个自然数的和均相等,这样的图形叫做三阶幻方。
如果在44⨯(四行四列)的正方形方格中进行填数,就要不重复,不遗漏地在44⨯方格内填上16个连续自然数,且使每行、每列、每条对角线的四个自然数之和均相等,这样的图形叫四阶幻方。
一般地,在几×几(几行几列)的方格里,既不重复又不遗漏地填上几×几个连续自然数,(注意这几×几个连续自然数不一定非要从1开始),每个数占一个格,且每行、每列、每条对角线上的几个自然数和均相等,我们把这个相等的和叫做幻和,几叫做阶,这样排成的数的图形叫做几阶幻方。
(一)思路指导与解答例1. 用1~9这九个数编排一个三阶幻方。
ab c de f ghi图1 图2分析:我们先用a 、b 、c 、d 、e 、f 、g 、h 、i 分别填入九个空格内以代表应填的数。
看图(2):(1)通过审题,我们知道幻和是多少才好进行填数。
同时可以看到图(2)中,e 是一个中间数,也是关键数。
因为它分别要与第二行、第二列以及两条对角线上的另外两个数进行求和运算,结果都等于幻和;其次是三阶幻方中四个角上的数:a 、c 、g 、i 它们各自都要参加一行,一列及一条对角线的求和运算。
如果e 以及四个角上的数被确定之后,其它的数字便可以根据幻和是多少填写出来了。
(2)求幻和:幻和=++++++++÷()1234567893=÷=45315(3)选择突破口,显然是e ,看图2。
因为:a e i b e h c e g d e f ++=++=++=++=15所以:()()()()+++++++++++a e ib e hc e gde f1515151560=+++=也就是:()a b c d e f g h i e360+++++++++⨯=又因为:a b c d e f g h i++++++++=45所以45360+⨯=ee36045⨯=-e=5也就是说,图1中的中心方格中应填5,请注意,这个数正好是1~9这九个数中正中间的数。
三阶幻方同学们:在(三行三列)的正方形方格中,既不重复又不遗漏地填上1—9这9个连续的自然数,使每行、每列、每条对角线上的三个自然数的和均相等,这样的图形叫做三阶幻方。
如果在(四行四列)的正方形方格中进行填数,就要不重复,不遗漏地在方格内填上16个连续自然数,且使每行、每列、每条对角线的四个自然数之和均相等,这样的图形叫四阶幻方。
一般地,在几×几(几行几列)的方格里,既不重复又不遗漏地填上几×几个连续自然数,(注意这几×几个连续自然数不一定非要从1开始),每个数占一个格,且每行、每列、每条对角线上的几个自然数和均相等,我们把这个相等的和叫做幻和,几叫做阶,这样排成的数的图形叫做几阶幻方。
(一)思路指导与解答例1. 用1~9这九个数编排一个三阶幻方。
分析:我们先用a、b、c、d、e、f、g、h、i分别填入九个空格内以代表应填的数。
看图(2):(1)通过审题,我们知道幻和是多少才好进行填数。
同时可以看到图(2)中,e是一个中间数,也是关键数。
因为它分别要与第二行、第二列以及两条对角线上的另外两个数进行求和运算,结果都等于幻和;其次是三阶幻方中四个角上的数:a、c、g、i它们各自都要参加一行,一列及一条对角线的求和运算。
如果e以及四个角上的数被确定之后,其它的数字便可以根据幻和是多少填写出来了。
(2)求幻和:幻和(3)选择突破口,显然是e,看图2。
因为:所以:也就是:又因为:所以也就是说,图1中的中心方格中应填5,请注意,这个数正好是1~9这九个数中正中间的数。
(4)四个角上的数,a、c、g、i的特点。
我们先从a开始:想:a是奇数还是偶数。
如果a为奇数,因为,所以也是奇数。
因为奇+奇=偶。
又因为,所以d与g同是奇数或同是偶数。
分两种情况:<1>当d、g都是奇数时,因为,,其中e,i都是奇数,所以f、h也只能是奇数。
这样在图1中应填的数有a、d、e、f、g、h、i这七个奇数,而1~9中九个数只有五个奇数,所以矛盾,说明d、g不可能为奇数。
三阶幻方同学们:在3 3 (三行三列)的正方形方格中,既不重复又不遗漏地填上 1 —9这9个连续的自然数,使每行、每列、每条对角线上的三个自然数的和均相等,这样的图形叫做三阶幻方。
如果在4 4 (四行四列)的正方形方格中进行填数,就要不重复,不遗漏地在4 4方格内填上16个连续自然数,且使每行、每列、每条对角线的四个自然数之和均相等,这样的图形叫四阶幻方。
一般地,在几x几(几行几列)的方格里,既不重复又不遗漏地填上几x几个连续自然数,(注意这几x几个连续自然数不一定非要从1开始),每个数占一个格,且每行、每列、每条对角线上的几个自然数和均相等,我们把这个相等的和叫做幻和,几叫做阶,这样排成的数的图形叫做几阶幻方。
(一)思路指导与解答a|b||cd e fgj h J例1.用1〜9这九个数编排一个三阶幻方。
图1 图2分析:我们先用a、b、c、d、e、f、g、h、i分别填入九个空格内以代表应填的数。
看图(2):(1)通过审题,我们知道幻和是多少才好进行填数。
同时可以看到图(2)中,e是一个中间数,也是关键数。
因为它分别要与第二行、第二列以及两条对角线上的另外两个数进行求和运算,结果都等于幻和;其次是三阶幻方中四个角上的数:a、c、g、i它们各自都要参加一行,一列及一条对角线的求和运算。
如果e以及四个角上的数被确定之后,其它的数字便可以根据幻和是多少填写出来了。
(2)求幻和:幻和二(1 2 3 4 5 6 7 8 9p- 3=45 亠3-15(3)选择突破口,显然是e,看图2。
因为:a ■ e i b e h c e g=d e f=15所以:(a e i)(b e h)(c e g)(d e f)-15 15 15 15 = 60也就是:(a b c d e f g h i) 3 e = 60又因为:a b c d e f g h i 45所以45 3 e = 603 e = 60-45e = 5也就是说,图1中的中心方格中应填5,请注意,这个数正好是1〜9这九个数中正中间的数。
1.会用罗伯法填奇数阶幻方2.了解偶数阶幻方相关知识点3.深入学习三阶幻方一、幻方起源也叫纵横图,也就是把数字纵横排列成正方形,因此纵横图又叫幻方.幻方起源于我国,古人还为它编撰了一些神话.传说在大禹治水的年代,陕西的洛水经常大肆泛滥,无论怎样祭祀河神都无济于事,每年人们摆好祭品之后,河中都会爬出一只大乌龟,乌龟壳有九大块,横着数是3行,竖着数是3列,每块乌龟壳上都有几个点点,正好凑成1至9的数字,可是谁也弄不清这些小点点是什么意思.一次,大乌龟又从河里爬上来,一个看热闹的小孩惊叫起来:“瞧多有趣啊,这些点点不论横着加、竖着加还是斜着加,结果都等于十五!”于是人们赶紧把十五份祭品献给河神,说来也怪,河水果然从此不再泛滥了.这个神奇的图案叫做“幻方”,由于它有3行3列,所以叫做“三阶幻方”,这个相等的和叫做“幻和”.“洛书”就是幻和为15的三阶幻方.如下图:987654321我国北周时期的数学家甄鸾在《算数记遗》里有一段注解:“九宫者,二四为肩,六八为足,左三右七,戴九履一,五居中央.”这段文字说明了九个数字的排列情况,可见幻方在我国历史悠久.三阶幻方又叫做九宫图,九宫图的幻方民间歌谣是这样的:“四海三山八仙洞,九龙五子一枝连;二七六郎赏月半,周围十五月团圆.”幻方的种类还很多,这节课我们将学习认识了解它们.二、幻方定义幻方是指横行、竖列、对角线上数的和都相等的数的方阵,具有这一性质的33的数阵称作三阶幻方,44的数阵称作四阶幻方,55的称作五阶幻方……如图为三阶幻方、四阶幻方的标准式样,98765432113414151612978105113216知识点拨教学目标5-1-4-1.幻方(一)三、解决这幻方常用的方法⑴适用于所有奇数阶幻方的填法有罗伯法.口诀是:一居上行正中央,后数依次右上连.上出框时往下填,右出框时往左填.排重便在下格填,右上排重一个样.⑵适用于三阶幻方的三大法则有:①求幻和:所有数的和÷行数(或列数)②求中心数:我们把幻方中对角线交点的数叫“中心数”,中心数=幻和÷3.③角上的数=与它不同行、不同列、不同对角线的两数和÷2.四、数独数独简介:(日语:数独すうどく)是一种源自18世纪末的瑞士,后在美国发展、并在日本得以发扬光大的数学智力拼图游戏。
11年春季三年级奥数第三讲:幻方
姓名:
幻方是一个古老的数学趣题,传说在我国夏禹时期,北方的洛水中曾出现了一只神龟,背上刻有图形和文字,这引起了许多数学家和兴趣,此图为“洛图”或“洛书”。
三阶幻方的定义
(1)、在三行三列的正方形表格中,各行之和,各列之和,两条对角线之和均相等的数字表格叫做“三阶幻方”。
又称“九宫图”。
(2)、那个共同的和叫做幻和。
例1、将1~9九个数字,填入3×3表格中,使每一行,每一列,两条对角线的三个数加起来等于15.
动动手,动动脑
例2、要使图中的3×3方格表中每行、每列、每条对角线上三个数
练习:图中的3×3方格表中每行、每列、每条对角线上三个数的和
变一变
例3、在下图方格表中的格子填上数,每一行、每一列及两条对角线
练习:在下图方格表中的格子填上数,每一行、每一列及两条对角线
例4、图中每一行、则x=?
脑力大风暴:
测测你的智力
例5、图中有九个方格,要求每个方格中填入互不相同的数,使得每一行、每一列以及每条对角
11年春季三年级试卷(第三次)
1、请将下面的表格填写完整,要使下图方格表
中每行、每列、两条对角线上三个数的和都相
等。
2、在下面方格表中填上适当的数,使每行、每列、两条对角线上三个数的和均相等。
3、图中每一行、每一列以及对角线上的三数之和均相等,求X =( )
4、下图中有几个格子,要求每个方格中填入互不相同的数,使得每一横行、竖行、斜行三个数的和都相等。
三阶幻方一、幻方的由来幻方起源于中国,传说在大禹治水时,有只神龟在洛水中浮起,龟背上有奇特的图案,如左图。
人们称之为洛书。
如果将龟背上的数字翻译出来,就是九个有规律排列的数字。
观察发现,上图的每行、每列,斜线上的三个数之和都是15。
像这样,将九个不同的自然数填在三行三列的正方形内,使每行、每列以及每条对角线上的三个数之和都相等,这样的图形就叫三阶幻方。
三阶幻方是一种特殊的数阵图。
上面的三阶幻方中,每条线上的三数之和15是这个幻方幻和,5是幻方最中心的数字,简称中心数。
二、三阶幻方的规律1、幻和=总和÷3;2、中间数=幻和÷3=总和÷93、三阶幻方性质:角块等于对角两棱块之和的一半。
c +(2d -b)=a +(2d -c) c -b =a -c c =(a +b)÷2三、填幻方的方法 1、凑一凑用九张纸片,分别写上九个数字(或者用九张扑克牌)在桌(地)面上摆出来,通过移动卡片使数字的排列符合题目的要求,此法是“凑”出来的。
2、排转换第一步把九个数字摆成图一,第二步让周围的八个数字绕着中心的数字依次转动一个位置,成图二,第三步将对角的数字进行对换,成图三。
这个方法归结为“一排,二转,三对换”。
3、杨辉法:4、阶梯法:(适用奇数幻方)①、构造阶梯②、按顺序斜排③、相互交换5、罗伯特法:(适用奇数幻方)1居上行正中央,依次斜填切莫忘,上出框界往下写,右出框是左边放,重复便在下格填,右上重复一个样。
6、中心开花法:①排列:1,2,3,4,5,6,7,8,9;②确定中心数,九个数之和÷9=5;③定四角数,位于这个数列偶数项的数,即2,4,6,8;④填余下的4个数(见右图)。
7、对角线法:1、按顺序写数。
2、对角互换(区分大对角和小对角)与幻方相反的问题是反幻方。
将九个数填入三行三列的九个方格中,使得任一行、任一列以及两条对角线上的三个数之和互不相同,这样填好后的图称为三阶反幻方。
三年级奥林匹克数学专题讲解——三阶幻方理论A 篇
幻方实际上是一种填数游戏,它不仅有三阶,还有四阶、五阶……直到任意阶。
一般
地,在n 行n 列的方格里,既不重复也不遗漏地填上n n ⨯个连续的自然数,每个数占一格,并使排在每一行、每一列以及每条对角线上n 个自然数的和相等,我们把这几个相等的和叫做幻和,n 叫做阶,这样排成的图形叫做n 阶幻方。
三阶幻方:在三行三列的正方形方格中,既不重复也不遗漏地填上33⨯个连续的自然数,每个数占一格,并使排在每一行、每一列以及每条对角线上3个自然数的和均相等。
通常这样的图形叫做三阶幻方。
三阶幻方的一些基本规律:
幻和=九个数之和÷3,中间数=幻和÷3。
九个连续的自然数中,第五个数是中间数,第二、四、六、八个数是四个角上的数。
例题1 在下面的方格中填上适当的数,使每行、每列和每条对角线上的三个数的和都等
于24。
分析: 解决问题的突破口:找出每行、每列和每条对角线上的任意两个数,就可以根据
幻和求出第三个数。
例题2 下图中,每个字母代表一个数。
已知每行、每列、每条对角线上的三个数和都相
等,若4,16,17,5a l d h ====。
求b 与f 为多少?
分析: 根据幻和相等:a e l c e g b e h d e f ++=++=++=++,这4个算式中都有中间数
e ,所以有:a l c g b h d
f +=+=+=+。
再代入4,16,
17,5a l d h ====即可。
一、知识介绍
二、例题讲解
例题3 编出一个三阶幻方,使其幻和为27。
分析: 先根据幻和求中间数,然后填其他数。
请你试一试:调换数的位置,还可以得到
几种答案?
例题4 将1~9这九个自然数填在下面图中的九个方格里,使每行、每列、两条对角线上
的三个数的和都相等。
分析: 先求幻和,再根据幻和求中间数,然后填其他数。
例题5 下图中,a g :7个字母,各代表7个数字,要使三阶幻方成立,“a ”所代表的数
字是多少?
分析: 根据幻方的概念:每一行、每一列以及每条对角线上3个自然数的和均相等。
可
以得到:1218a d f a e g f g d e +++++=+++++,可求得:15a =。
三年级奥林匹克数学专题讲解——三阶幻方练习B 篇
EX 1 用1~9这9个数字补全图中的幻方,并求出幻和。
EX 2 用3~11这9个数补全下图中的幻方,并求幻和。
EX 3 下图的三阶幻方中,填入了1~9的自然数,构成了大家熟知的三阶幻方。
现在另有
一个三阶幻方,请选择不同的自然数填入9个方格中,使得其中最大数为20,最小数大于5,且每一行、每一列、每一条对角线方格内的三个数的和都相等。
EX 4 在下图中填上适当的数,使每行、每列、每条对角线上的三个数的和都相等。
EX 5 在下图的空格里填入不大于15且不相同的自然数,使每一行、每一列和每一条对角
线上的三个数的和都等于30。
EX 6 在图中填上合适的数,使每行、每列、每一条对角线的三个数的和都相等。
EX 7 在下图的方格中填上适合的数,使每行、每列、每一条对角线的三个数的和都等于21。
EX 8把4~12九个数填入方格中,使每行、每列、每一条对角线的三个数的和都相等。
EX 9使下图每行、每列、每一条对角线的三个数的和都相等,且等于45。
EX 10请编写下列三阶幻方。
①用6,8,10,12,14,16,18,20,22这九个数构成一个三阶幻方。
②把2,6,10,14,18,22,26,30,34这九个数构成一个三阶幻方。
③把3,5,7,9,11,13,15,17,19这九个数构成一个三阶幻方。