= 一个不为0的整式
分式的值
不变
AXM (B X M )
A B
=
A÷M ( B÷M )
(其中M为
不为0
的整式)
( -A )
2.分式的符号法则:
A B -A -B A ( B )
= =
A
(-B )
=
-A ( -B )
B
=
=
( -A ) B
=
-A ( B )
C
A
2x 3y 3. 若分式 的分子、分母都变 x 3y 为原来的3倍,则此分式的值( )
分式复习课
分式的概念、性质
分式的乘除、加减 分式方程及其应用
1.分式的定义:
A 形如 ,其中 A ,B 都是整式, B 且 B 中含有字母.
B≠0 B=0 A=0且 B ≠0
2.分式有意义的条件: 分式无意义的条件: 3.分式值为 0 的条件: A B > 0 的条件:
4.分式 分式
A>0 ,B>0 或 A<0, B<0 A>0 ,B<0 或 A<0 ,B>0
b的取值范围,其解有以下三种情况:
(1)当a≠0时,方程有且只有一个解.
(2)当a=0,b≠0时,方程无解. (3)当a=0,b=0时,方程有无数多个解. 即对一切实数x,方程都成立.
分式方程无解可以从两个角度进行考虑: 一是:分式方程转化为的整式方程, 整式方程本身无解;
二是:分式方程转化为的整式方程,
5个零件,求两人每小时各加工的零件个数.
解:设甲每小时加工x个零件, 则乙每小时加工(x+5)个零件, 由题意得:
180 x 240 = x5