原子的核式结构
- 格式:docx
- 大小:64.80 KB
- 文档页数:2
原子的核式结构模型20世纪20年代,科学家们开始采取一种叫做原子核式结构模型的概念,以研究原子的形态与特性。
自此以后,原子的核式结构模型的发展与改进一直是原子理论的中心所在。
原子核式结构模型源于二十世纪初丹麦物理学家斯提威尔预言的原子模型,以及由罗伯茨橹和法国物理学家卢克提出的确定原子结构的结构模型。
该模型假设原子是一个由原子核中心外围由电子组成的球形均匀结构。
原子核模型表明,电子存在于原子核周围以布朗电子球结构排列,形成了一个空间结构,这种空间结构是原子构型的基本动力。
因此,原子的结构在不同的元素中可以有不同的形态。
原子核模型同时提出了电子层次结构的概念,表明电子在原子核周围也按照层次结构排列。
在每一层次中,电子能限的数量也不同。
例如,一些元素有七个电子层次,而另一些元素可能只有三层电子层次。
同样,在不同的电子层次中,电子具有不同的能量。
随着进一步发展,原子核式结构模型也发展出一系列新的理论,包括量子电子理论、费米能级理论、空间结构理论、电子能级理论、电子轨道理论等。
量子电子理论可以解释原子的可见光谱线,费米能级理论可以解释原子核内电子的序列,而空间结构理论可以描述原子核内电子的周期性结构,电子能级理论可以解释复杂的元素结构,而电子轨道理论则可以解释电子结构中不同能级之间的转变。
原子核式结构模型改变了人们对原子结构的认知,也改变了物质特性的认识,特别是特定元素的化学性质等的理解。
它的发展也为物理学、化学等其他学科的发展作出了重大贡献,也极大地拓展了物理世界的认知范围。
总的来说,原子核式结构模型为研究原子的结构和性质奠定了基础,在今天仍然是原子理论研究的基础。
随着科学技术的发展,原子核式结构模型也发生了很大的变化,以更好地满足研究的需要。
因此,原子核式结构模型仍然是科学研究原子结构和性质的重要参考模型。
原子核式结构1. 引言原子核式结构是指原子中心的原子核和围绕原子核运动的电子之间的空间排布和相互作用关系。
原子核式结构的研究对于理解原子的基本性质和化学行为具有重要意义。
本文将介绍原子核的组成、结构和特性,以及电子的排布和相互作用等相关内容。
2. 原子核的组成原子核是原子的核心部分,具有正电荷,通常由质子和中子组成。
质子具有正电荷,中子不带电荷。
根据原子的元素,原子核中质子的数量决定了原子的原子序数,即元素的周期表中的位置。
例如,氢原子核只有一个质子,因此其原子序数为1,而氦原子核有两个质子,原子序数为2。
3. 原子核的结构原子核内的质子和中子通过强相互作用力相互维持在一起。
质子之间的电磁相互作用力会导致相互排斥,但强相互作用力可以克服这种排斥力,使得原子核能够稳定存在。
原子核的稳定性取决于质子和中子的数量以及它们之间的相互作用关系。
原子核的大小通常用原子的半径来表示。
原子核的直径非常小,通常约为原子直径的10,000倍。
原子核内的质子和中子被称为核子,核子本身也是由更小的粒子构成的。
质子和中子属于重子,而重子又是由夸克组成的。
4. 原子核的特性原子核具有以下几个重要的特性:•质量数(A):原子核中质子和中子的总数。
•原子序数(Z):原子核中质子的数量,决定元素的化学性质和在周期表中的位置。
•中子数(N):原子核中中子的数量,决定原子核的稳定性。
•核电荷数(Q):原子核中的总电荷,等于质子数减去电子数。
5. 原子核式结构的调整原子核式结构可以通过核反应进行调整。
核反应是指原子核中的质子和中子发生物理变化的过程。
核反应可以导致放射性衰变、核聚变和核裂变等。
核反应可以改变原子核的质量数和原子序数,从而改变元素的性质。
核反应在核能的利用和核武器的制造中起着重要的作用。
6. 电子的排布和相互作用在原子核周围运动的电子决定了原子的化学性质。
电子的排布和相互作用关系受到量子力学的描述,并由一系列的量子数和轨道来表示。
原子的核式结构模型一、背景在深入研究原子的内部结构后,科学家们得出了一种关于原子构造的理论,即核式结构模型。
这个模型揭示了原子中心的秘密,为我们打开了理解物质世界的新视角。
二、核式结构模型的提出19世纪末,卢瑟福通过α粒子散射实验,发现原子中心有一个密集的原子核,其体积仅占据原子体积的几千分之一。
同时,他发现原子核周围环绕着电子,这些电子沿着轨道运动,就像行星围绕太阳运动一样。
这一发现,彻底改变了我们对原子的理解。
三、核式结构模型的内容核式结构模型的主要内容是:原子由一个位于中心的原子核和核外电子组成,电子在特定轨道上运动,并受到原子核的吸引。
原子核由质子和中子组成,其质量约占原子质量的99.9%,而电子的质量几乎可以忽略不计。
因此,原子的大部分体积是由原子核占据的。
四、核式结构模型的意义核式结构模型的提出,为我们理解原子的性质和行为提供了基础。
它解释了为什么原子在化学反应中会形成稳定的化合物,为什么元素之间会有不同的化学亲和力等等。
这一模型成为了现代化学的基础,为我们的科技发展提供了重要的理论基础。
五、结论总的来说,原子的核式结构模型是科学史上的一个重大突破,它为我们打开了理解物质世界的新视角。
然而,随着科技的发展,我们还需要更深入的研究和探索,以揭示原子内部的更多秘密。
让我们期待更多的科学发现,以更好地理解这个美丽的物质世界。
原子的核式结构模型一、背景在深入研究原子的内部结构后,科学家们得出了一种关于原子构造的理论,即核式结构模型。
这个模型揭示了原子中心的秘密,为我们打开了理解物质世界的新视角。
二、核式结构模型的提出19世纪末,卢瑟福通过α粒子散射实验,发现原子中心有一个密集的原子核,其体积仅占据原子体积的几千分之一。
同时,他发现原子核周围环绕着电子,这些电子沿着轨道运动,就像行星围绕太阳运动一样。
这一发现,彻底改变了我们对原子的理解。
三、核式结构模型的内容核式结构模型的主要内容是:原子由一个位于中心的原子核和核外电子组成,电子在特定轨道上运动,并受到原子核的吸引。
原子核式结构:
原子核式结构是1911年由卢瑟福提出的一种原子结构模型。
核式原子结构认为:原子的质量几乎全部集中在直径很小的核心区域,叫原子核,电子在原子核外绕核作轨道运动。
原子核带正电,电子带负电。
在卢瑟福提出其核式原子结构之前,汤姆逊提出了一个被称为“枣糕式”的电子模型。
该模型认为,原子是正电部分是一个原子那么大的、具有弹性的冻胶状的球,正电荷均匀地分布着,在这球内或球上,有负电子嵌着。
这些电子能在它们的平衡位置上作简谐运动。
观察到的原子所发出的光谱的各种频率认为就相当于这些振动的频率。
卢瑟福的核式原子结构模型准确地反应了原子内部结构的基本形态,然而核式结构还是遇到了困难。
核式结构认为原子内部电子是做轨道运动,无法解释观测到的原子所发出的各种光谱的频率。
此外,原子内部的电子不断向外辐射能量必然会导致电子轨道的缩小最终与原
子核所带的正电子中和,事实并非如此。
高考物理原子的核式结构知识点原子由原子核和绕核运动的电子组成,小编为大家整理了物理原子的核式结构知识点,希望大家认真阅读做好复习!1、原子的核式结构(1) 粒子散射实验结果:绝大多数粒子沿原方向前进,少数粒子发生较大偏转。
(2)原子的核式结构模型:在原子的中心有一个很小的核,叫做原子核,原子的全部正电荷和几乎全部的质量都集中在原子核里,带负电的电子在核外空间绕核旋转.(3)原子核的大小:原子的半径大约是10-10米,原子核的半径大约为10-14米~10-15米.2、玻尔理论有三个要点:(1)原子只能处于一系列的不连续的能量状态中,在这些状态中原子是稳定的.电子虽然绕核旋转,但并不向外辐射能量,这些状态叫定态.(2)原子从一种定态跃迁到另一定态时,它辐射(或吸收)一定频率的光子,光子的能量由这两个定态的能量差决定.即hν=E2-E1(3)原子的不同能量状态对应于电子沿不同圆形轨道运动.原子的定态是不连续的,因而电子的可能轨道是分立的. 在玻尔模型中,原子的可能状态是不连续的,各状态对应的能量也是不连续的,这些不连续的能量值的能量值叫做能级。
3、原子核的组成核力原子核是由质子和中子组成的.质子和中子统称为核子.将核子稳固地束缚在一起的力叫核力,这是一种很强的力,而且是短程力,只能在2.0X10-15的距离内起作用,所以只有相邻的核子间才有核力作用.4、原子核的衰变(1)天然放射现象:有些元素自发地放射出看不见的射线,这种现象叫天然放射现象.(2)放射性元素放射的射线有三种:、射线、射线,这三种射线可以用磁场和电场加以区别,如图15.2-1 所示(3)放射性元素的衰变:放射性元素放射出粒子或粒子后,衰变成新的原子核,原子核的这种变化称为衰变.衰变规律:衰变中的电荷数和质量数都是守恒的.(4)半衰期:放射性元素的原子核有半数发生衰变所需要的时间称为半衰期.不同的放射性元素的半衰期是不同的,但对于确定的放射性元素,其半衰期是确定的.它由原子核的内部因素所决定,跟元素的化学状态、温度、压强等因素无关.(5)同位素:具有相同质子数,中子数不同的原子在元素周期表中处于同一位置,互称同位素。
原子的核式结构原子的能级原子的核式结构由原子核和电子云组成。
原子核位于原子的中心,由质子和中子组成。
质子带有正电荷,中子不带电荷。
原子核的质量约等于整个原子质量的99.9%,但体积非常小,约占整个原子体积的1/10,000。
电子云围绕着原子核的核式结构。
电子带有负电荷,质量很小。
电子云的半径可以看作是电子能级的大小,每个能级可以容纳一定数量的电子。
电子能级按照一定规律排列,较近原子核的能级能量较低,较远原子核的能级能量较高。
电子能级之间的能量差叫做能级间隔,对应于光的频率和波长。
当电子从低能级跃迁到高能级时,吸收能量;反之,从高能级跃迁到低能级时,放出能量。
原子的核式结构对物质的性质和结构起着重要的影响。
原子核决定了原子的质量和化学性质,例如质子数决定了元素的种类,质子数与中子数之和决定了原子的质量数。
电子云则决定了元素的化学反应性质,例如原子的化学键形成和断裂等。
原子核和电子云之间的相互作用力决定了原子的稳定性和化学行为。
原子的能级对化学反应和物质的性质也有着重要的影响。
根据泡利不相容原理和泡利排斥原理,每个能级上的电子自旋和量子数必须不同。
这种能级的填充规则决定了元素的电子构型和化学结构。
原子的化学反应和化学键的形成和断裂都涉及到电子的跃迁和能级的变化。
总结起来,原子的核式结构是由原子核和电子云组成的。
原子核决定了原子的质量和化学性质,电子云决定了原子的化学反应性质。
原子的能级决定了电子的运动状态和能量变化,对原子的化学反应和物质的性质有着重要的影响。
原子的核式结构
例1(多选)如图3所示为卢瑟福和他的同事们做α粒子散射实验装置的示意图,荧光屏和显微镜一起分别放在图中的A、B、C、D四个位置时观察到的现象,下述说法中正确的是()
图3
A.放在A位置时,相同时间内观察到屏上的闪光次数最多
B.放在B位置时,相同时间内观察到屏上的闪光次数只比A位置时稍少些
C.放在C、D位置时,屏上观察不到闪光
D.放在D位置时,屏上仍能观察到一些闪光,但次数极少
答案ABD
解析根据α粒子散射现象,绝大多数α粒子沿原方向前进,少数α粒子发生较大偏转,A、B、D正确.
1.(多选)下列说法正确的是()
A.汤姆孙首先发现了电子,并测定了电子电荷量,且提出了“枣糕模型”
B.卢瑟福做α粒子散射实验时发现绝大多数α粒子穿过金箔后基本上仍沿原来的方向前进,只有少数α粒子发生大角度偏转
C.α粒子散射实验说明了原子的正电荷和绝大部分质量集中在一个很小的核上
D.卢瑟福提出了原子核式结构模型,并解释了α粒子发生大角度偏转的原因
答案BCD
解析汤姆孙发现了电子符合物理史实,但电子电荷量是密立根测定的,A错误,B、C、D 都符合物理史实.
2.(多选)在物理学的发展过程中,许多物理学家的科学发现推动了人类历史的进步.下列表述符合物理学史实的是()
A.普朗克为了解释黑体辐射现象,第一次提出了能量量子化理论
B.爱因斯坦为了解释光电效应的规律,提出了光子说
C.卢瑟福通过对α粒子散射实验的研究,提出了原子的核式结构模型
D.贝可勒尔通过对天然放射性的研究,发现原子核是由质子和中子组成的
答案ABC
解析普朗克为了解释黑体辐射现象,第一次提出了能量量子化理论,A正确.爱因斯坦为
了解释光电效应的规律,提出了光子说,B正确.卢瑟福通过对α粒子散射实验的研究,提出了原子的核式结构模型,C正确.贝可勒尔通过对天然放射性的研究,发现原子核具有复杂结构,D错误.
3.(多选)(2016·天津理综·6)物理学家通过对实验的深入观察和研究,获得正确的科学认知,推动物理学的发展,下列说法符合事实的是()
A.赫兹通过一系列实验,证实了麦克斯韦关于光的电磁理论
B.查德威克用α粒子轰击14 7N获得反冲核17 8O,发现了中子
C.贝可勒尔发现的天然放射性现象,说明原子核有复杂结构
D.卢瑟福通过对阴极射线的研究,提出了原子核式结构模型
答案AC
解析麦克斯韦预言了电磁波的存在,赫兹通过实验证实了麦克斯韦的电磁理论,选项A 正确;卢瑟福用α粒子轰击14 7N,获得反冲核17 8O,发现了质子,选项B错误;贝可勒尔发现的天然放射性现象,说明原子核具有复杂结构,选项C正确;卢瑟福通过对α粒子散射实验的研究,提出了原子的核式结构模型,选项D错误.
4.(2015·重庆理综·1)图4中曲线a、b、c、d为气泡室中某放射物发生衰变放出的部分粒子的径迹,气泡室中磁感应强度方向垂直于纸面向里.以下判断可能正确的是()
图4
A.a、b为β粒子的径迹
B.a、b为γ粒子的径迹
C.c、d为α粒子的径迹
D.c、d为β粒子的径迹
答案D
解析γ粒子是不带电的光子,在磁场中不偏转,选项B错误;α粒子为氦核带正电,由左手定则知向上偏转,选项A、C错误;β粒子是带负电的电子,应向下偏转,选项D正确.。