材料计算vasp 程序
- 格式:doc
- 大小:221.50 KB
- 文档页数:18
VASP表面计算步骤小结(侯博士)一、概述vasp用“slab”模型来模拟表面体系结构。
vasp计算表面的大概步骤是:材料体性质的计算;表面模型的构造;表面结构的优化;表面性质的计算。
二、分步介绍1、材料体性质计算:本步是为了确定表面计算时所需的一些重要参数:ENCUT、SIGMA(smearing 方法为ISMEAR=1 或0时;而通常表面体系结构优化时选择这种smearing方法)、晶格参数。
<一>在计算前,要明确:何种PP;ENCUT;KPOINTS ;SIGMA;PREC;EX-CO,这其实是准备proper input files。
a. 何种PP选择的PP能使计算得到的单个原子能量值在1meV~10meV之间。
[参见P 21]所求得的单原子能量(对称性破缺时)可用来提高结合能的精度。
b. ENCUT [ 参见P 14 ]选择的ENCUT应使得总能变化在0.001eV左右为宜。
注意:试探值最小为POTCAR中的ENMAX(多个时,取最大的),递增间隔50;另外,在进行变体积的结构优化时,最好保证ENCUT=1.3ENMAX,以得到合理精度。
c. PREC [参见P 16]控制计算精度的最重要参数,决定了(未指定时)ENCUT、FFT网格、ROPT取值。
一般计算取NORMAL;当要提高Stress tensor计算精度时,HIGH 或ACCURATE,并手动设置ENCUT。
d. EDIFF & EDIFFG [参见P16]EDIFF 判断电子结构部分自恰迭代时自恰与否,一般取默认值=1E-4;EDIFFG 控制离子部分驰豫e. ISTART & ICHARGE [参见P 16]ISTART = 1, ICHARG = 11:能带结构、电子态密度计算时;ISTART =0, ICHARG = 2:其余计算ISTART = 1,ICHARG = 1(其他所有不改变):断点后续算设置f. GGA & VOSKOWN [参见P 16]GGA=91: Perdew -Wang 91;GGA=PE: Perdew-Burke-ErnzerhofVOSKOWN=1( GGA=91时);VOSKOWN=默认(其余情况)g. ISIF [参见P 16]控制结构参数之优化。
VASP计算实例目录一、氢气分子H2键长的计算 (3)1.基本文件 (3)2.赝势类型的选择 (3)3.截断能ENCUT参数的选择 (4)4.KPOINTS参数选择 (5)5.对晶格常数进行优化 (6)二、Si晶体晶格常数计算 (8)1.赝势类型选择 (8)2.截断能(ENCUT)参数的选定 (9)3.KPOINTS参数的选定 (11)4.SIGMA参数的选定 (12)5.晶格常数计算结果 (13)三、Si元素单原子能量计算 (14)1.由内聚能倒推单原子能量 (14)2.基本文件 (15)3.单原子能量计算 (15)四、Si的VASP力学常数计算 (16)1.计算所需文件 (16)2.计算与数据处理 (17)3.计算所用到的公式: (18)五、SI晶体的电子结构 (19)1.采用VASP计算能带的步骤 (19)2.电荷分布计算结果 (20)能带计算和结果 (21)3.态密度计算和结果 (21)六、Si晶体介电函数和光学性质的计算 (22)1.计算步骤 (22)2.用到的文件 (23)3.计算结果 (26)七、VASP的声子谱计算 (29)1.计算步骤 (29)2.基本文件 (30)3.声子谱、声子态密度计算和结果 (33)4.热学性质计算和结果 (34)八、化合物co2键长计算 (35)1.计算步骤 (35)2.基本文件 (35)一、氢气分子H2键长的计算1.基本文件准备基本文件INCAR、POTCAR、POSCAR、KPOINT以及脚本文件encut、k、optimize2.赝势类型的选择输入文件如下其中参数要靠经验初选INCAR:System = F2ISTART = 0ICHARG = 2NELMDL = 5ISMEAR = 0SIGMA = 0.1PREC = AccurateKPOINTS:Automatic meshM1 1 10 0 0POSCAR:O115.0 0.00 0.000.00 14.0 0.000.00 0.00 13.01D0.00 0.00 0.00分别选用五个贋势文件进行计算。
V ASP计算方法总结1 静态计算计算方法:IBRION = -1NSW = 02 结构优化计算方法:①只进行离子弛豫IBRION = 2ISIF = 2②块体晶格参数优化IBRION = 2ISIF = 3③二维材料晶格参数优化3 表面能计算方法:1) 块体晶体晶格参数优化;静态计算;得能量Eb 2) 优化的块体切slab ;静态计算;得Es1 3) 将slab 模型离子弛豫;静态计算;得Es24) γ = (Es1 – N *(Eb / n ))/ 2A + (Es2 – Es1)/ A 计算步骤:4 功函数计算方法:1) 块体晶格参数优化;切slab 模型;离子弛豫 2) 修改INCAR (LVHAR = .TRUE.);静态计算 3) W = Ve - EF表面能1strustatic2slab 3optislabstatic计算步骤:5 吸附能计算方法:1) 块体和二维材料(D)晶格参数优化 2) 块体切slab ;构建slab 吸附模型3) slab 吸附模型去slab ;二维材料离子弛豫;静态计算 4) slab 吸附模型去二维材料;slab 离子弛豫;静态计算 5) slab 吸附模型离子弛豫;静态计算 6) E abs = E metal-D – E metal – E D 计算步骤:表面能1strustatic2slab3optislabstaticworkfunction吸附能1strustatic 2slab static 3slabDstatic6 差分电荷密度计算方法: 1) 完成吸附能计算2) Slab 吸附模型静态计算时得ρab3) Slab 吸附模型CONTCAR 去slab ;二维材料静态计算得ρa 4) Slab 吸附模型CONTCAR 去二维材料;slab 静态计算得ρb 5) △ρ = ρab – ρa – ρb 计算步骤:7 DOS计算方法: 1) 模型优化完成2) 自洽计算得到CHGCAR (DOS 文件夹下) ISMEAR = -5 LCHARG = .TRUE.吸附能1strustatic 2slabstatic3slabD staticDchargeslabcharge小密度k点(总k点>4)3)非自洽计算得到vasprun.xml(PDOS文件夹下)ISMEAR = -5ISTART = 1ICHARG = 11LORBIT = 11NEDOS = 1000大密度k点计算步骤:DOS PDOS8 能带计算计算方法:1)模型优化完成2)自洽计算得到CHGCAR(同上)ISMEAR = -5LCHARG = .TRUE.小密度k点(总k点>4)3)非自洽计算得到vasprun.xml(BAND文件下)a)INCARISMEAR ≠-5ISTART = 1ICHARG = 11LORBIT = 11NEDOS = 1000大密度k点NBANDS可适当增大b)KPOINTS写syml文件(用pand.x时,E-fermi得重写);gk.x一下计算步骤:DOS PDOS BAND。
VASP中电子态密度计算的流程VASP(Vienna Ab initio Simulation Package)是一种基于密度泛团理论(DFT)的第一性原理计算软件包,适用于从头计算材料的电子结构和相关性质。
电子态密度(Electronic Density of States, DOS)是VASP中一个重要的计算任务,它描述了材料中电子的能量分布情况,可以用来分析材料的能带结构、电导性、磁性等性质。
下面是VASP中计算电子态密度的一般流程:1.构建体系:首先需要确定要研究的体系的晶体结构。
可以通过实验数据、结构数据库或者其他理论方法得到体系的晶体结构,然后使用VASP提供的一些工具生成输入文件。
2.检查和准备输入文件:在进行计算之前,需要检查输入文件的正确性。
输入文件主要包括POSCAR(晶体结构)、POTCAR(势能文件)和KPOINTS(k点网格),还可以包括INCAR(控制参数)和CHGCAR(电荷密度)。
可以使用VASP提供的一些工具来生成这些文件。
3.设置计算参数:在INCAR文件中设置计算参数。
这些参数包括计算方式(GS、NSW等)、电子相关参数(ENCUT、EDIFF、ISMEAR等)和计算资源(NPAR、NCORE等)等。
4.进行自洽计算:运行VASP程序开始自洽计算。
自洽计算是指通过迭代寻找材料中所有电子的基态波函数和电子密度。
5.DOS计算:自洽计算完成后,可以进行DOS计算。
首先需要通过选择一个能量范围,确定所需的DOS信息。
然后在INCAR文件中设置相关参数,如要求计算PDOS(投影态密度)、LORBIT参数(需要计算轨道投影DOS)等。
6.执行DOS计算:运行VASP程序开始DOS计算。
程序会在给定的能量范围内计算电子态密度,并输出相应的结果。
7. 分析结果:根据VASP计算结果,可以通过一些可视化软件(如VESTA、XCrysDen等)绘制电子态密度的能带图、分析能带结构,进而分析材料的电子特性和相关性质。
用VASP计算H原子的能量氢原子的能量为。
在这一节中,我们用VASP计算H原子的能量。
对于原子计算,我们可以采用如下的INCAR文件PREC=ACCURATE:NELMDL = 5 make five delays catill charge mixingISMEAR = 0; SIGMA=0.05 use smearing method采用如下的KPOINTS文件。
由于增加K点的数目只能改进描述原子间的相互作用,而在单原子计算中并不需要。
所以我们只需要一个K点。
Monkhorst Pack 0 Monkhorst Pack1 1 10 0 0采用如下的POSCAR文件atom 115.00000 .00000 .00000.00000 15.00000 .00000.00000 .00000 15.000001cart0 0 0采用标准的H的POTCAR得到结果如下:k-point 1 : 0.0000 0.0000 0.0000band No. band energies occupation1 -6.3145 1.000002 -0.0527 0.000003 0.4829 0.000004 0.4829 0.00000我们可以看到,电子的能级不为。
Free energy of the ion-electron system (eV)---------------------------------------------------alpha Z PSCENC = 0.00060791Ewald energy TEWEN = -1.36188267-1/2 Hartree DENC = -6.27429270-V(xc)+E(xc) XCENC = 1.90099128PAW double counting = 0.00000000 0.00000000entropy T*S EENTRO = -0.02820948eigenvalues EBANDS = -6.31447362atomic energy EATOM = 12.04670449---------------------------------------------------free energy TOTEN = -0.03055478 eVenergy without entropy = -0.00234530 energy(sigma->0) = -0.01645004我们可以看到也不等于。
在上面的计算中有个问题,就是H原子有spin,而在上面的计算中我们并没有考虑到spin。
所以如果我们改用LSDA近似,在INCAR中用ISPIN=2的tag,则得到如下结果:k-point 1 : 0.0000 0.0000 0.0000band No. band energies occupation1 -7.2736 1.000002 -0.1229 0.000003 0.4562 0.000004 0.4562 0.000005 0.4562 0.00000spin component 2k-point 1 : 0.0000 0.0000 0.0000band No. band energies occupation1 -2.4140 0.000002 -0.0701 0.000003 0.5179 0.000004 0.5179 0.000005 0.5179 0.00000Free energy of the ion-electron system (eV)---------------------------------------------------alpha Z PSCENC = 0.00060791Ewald energy TEWEN = -1.36188267-1/2 Hartree DENC = -6.68322940-V(xc)+E(xc) XCENC = 2.38615430PAW double counting = 0.00000000 0.00000000entropy T*S EENTRO = 0.00000000eigenvalues EBANDS = -7.27361676atomic energy EATOM = 12.04670449---------------------------------------------------free energy TOTEN = -0.88526212 eVenergy without entropy = -0.88526212 energy(sigma->0) = -0.88526212氢原子的能量约等于。
可以看到在LDA中如果限制自旋,使能级大概提高了。
但是如何理解所得到的能级,由于用到了赝势,本人并不很清楚如何解释能级意义。
用VASP计算Pd金属的晶格常数Pd金属的实验上的晶格常数为。
在这里,我们用VASP计算它的晶格常数。
首先将Pd所对应的POTCAR文件拷贝到目录下。
然后准备好INCAR和KPOINTS文件。
POSCAR文件我们将通过一个tcsh的script来产生。
KPOINTS文件可以如下:Monkhorst Pack 0 Monkhorst Pack11 11 110 0 0INCAR文件可以如下:SYSTEM = Pd bulk calculationStartparameter for this run:PREC = AccurateISTART = 0 job : 0-new 1-cont 2-samecutICHARG = 2 charge: 1-file 2-atom 10-constISPIN = 1 spin polarized calculation?Electronic Relaxation 1EDIFF = 0.1E-03 stopping-criterion for ELMLREAL = .FALSE. real-space projectionIonic relaxationEDIFFG = 0.1E-02 stopping-criterion for IOMNSW = 0 number of steps for IOMIBRION = 2 ionic relax: 0-MD 1-quasi-New 2-CGISIF = 2 stress and relaxationPOTIM = 0.10 time-step for ionic-motioTeL:TEIN = 0.0 initial temperatureTEBEG = 0.0; TEEND = 0.0 temperature during runDOS related values:ISMEAR = 0 ; SIGMA = 0.05 gaussian smearElectronic relaxation 2 (details)Write flagsLWAVE = F write WAVECARLCHARG = F write CHGCAR产生POSCAR和计算晶格常数的工作可以用以下的PBS script来完成。
#!/bin/tcsh #PBS -S /bin/sh #PBS -l nodes=4:athlon:ppn=2 #PBS -lcput=384:00:00 #PBS -m ae #PBS -o output #PBS -e error.log# set parameter set EXEC = 'vasp' set SRC = '/usr/common/executable' # change working directory cd $PBS_O_WORKDIR# copy fresh executable from depository cp -f $SRC/$EXEC .# execute mpi program foreach a (3.3 3.4 3.5 3.6 3.7) echo "a= $a"cat >POSCAR <<! cubic diamond$a0.5 0.5 0.00.0 0.5 0.50.5 0.0 0.52direct0.0 0.0 0.00.25 0.25 0.25!mpiexec -nostdin ./$EXECcavicarset E=`tail -2 OSZICAR` echo $a $E >>SUMMARYend # remove executable rm -f $EXEC如果不用不需要用PBS script,则更加简单,如下即可。
将其命名为lattice。
#!/bin/tcsh foreach a (3.5 3.6 3.7 3.8 3.9 4.0 4.1 4.2) echo "a= $a"cat >POSCAR <<! fcc lattice$a0.5 0.5 0.00.0 0.5 0.50.5 0.0 0.51cartesian0.0 0.0 0.0!./vaspset E=`tail -1 OSZICAR` echo $a $E >>SUMMARYend用chmod +x lattice,将其改为可执行文件。
然后在命令行里键入./lattice 即可。
以下是用USPP-LDA运行完后的SUMMARY文件。
每个计算用时13秒。
(在USPP 中Pd的截断能量是198.955)3.5 1 F= -.52384500E+01 E0= -.52371846E+01 d E =-.253072E-02 3.6 1F= -.58695670E+01 E0= -.58683951E+01 d E =-.234381E-02 3.7 1 F=-.62322232E+01 E0= -.62311104E+01 d E =-.222547E-02 3.8 1 F=-.63932936E+01 E0= -.63921078E+01 d E =-.237151E-02 3.9 1 F=-.64072233E+01 E0= -.64058584E+01 d E =-.272979E-02 4.0 1 F=-.63162916E+01 E0= -.63147061E+01 d E =-.317085E-02 4.1 1 F=-.61523489E+01 E0= -.61504748E+01 d E =-.374817E-02 4.2 1 F=-.59418370E+01 E0= -.59396594E+01 d E =-.435530E-02用抛物线拟和得到的晶格常数为 ,固体中每个原子的能量是。