光纤保护倒换功能
- 格式:docx
- 大小:508.91 KB
- 文档页数:8
判断题(共20 题)1、同步数字体系(SDH)光纤传输系统的自动保护倒换功能是指工作环路故障或大误码时,自动倒换到备用线路。
(A)A、正确B、错误答题结果:正确答案:A2、波分复用(WDM)光纤传输系统的线路侧接收、发送参考点中心频率偏移检查项目,要求±25GHz。
(B)A、正确B、错误答题结果:正确答案:B3、施工单位和监理单位在工程完工后进行质量检验时,所有项目合格率应为100%,否则应进行整修或返工处理直至符合要求后再进行交工质量检测。
(A)A、正确B、错误答题结果:正确答案:A4、工程质量评定等级应分为优良、合格与不合格。
(B)A、正确B、错误答题结果:正确答案:B5、车辆检测器的车速精度要求≤5%。
(B)A、正确B、错误答题结果:正确答案:B6、可变标志的显示屏平均亮度检查项目要求符合设计要求。
无要求时,LED车道控制标志、交通信号灯最大亮度≥2500cd/m2。
(B)A、正确B、错误答题结果:正确答案:B7、大屏幕显示系统的亮度不均匀度检查项目,要求达到白色平衡时的亮度不均匀度符合设计要求,无要求时≤10%。
(A)A、正确B、错误答题结果:正确答案:A8、通信电源系统的交流电路和直流电路对地、交流电路对直流电路的绝缘电阻检查项目,要求≥2 MΩ。
(A)A、正确B、错误答题结果:正确答案:A9、车道专用费额信息显示屏亮度要求符合设计要求,无要求时≥5000cd/m2。
(B)A、正确B、错误答题结果:正确答案:B10、ETC门架系统的通信区域要求应满足车辆通行正确交易的需求。
(A)A、正确B、错误答题结果:正确答案:A11、收费分中心设备及软件要求能切换、控制各收费站、车道的CCTV图像。
(A)A、正确B、错误答题结果:正确答案:A12、超限检测系统中使用的轴型识别器应通过相关部门的型式评价,并通过计量部门的检定,取得相应证书并在有效期内。
(B)A、正确B、错误答题结果:正确答案:B13、中压设备电力电缆线路的绝缘电阻要求用交流绝缘电阻测试仪测量。
光纤保护倒换功能Company Document number : WTUT-WT88Y-W8BBGB-BWYTT-19998 EPON采用点到多点的树形拓扑结构,忖干光纤的生存性将保证整个EPON网络的可靠性。
提供一种可行方案,在提高EPON系统中可靠性、稳立性的同时,兼顾系统成本,实现一种低成本并简便可行的EPON网络件干光纤保护方法。
EPON系统中光纤保护实现方法引言以太无源光网络(EPON)技术是一种基于以太网、点到多点的光纤接入技术,它集以太网技术的简单性和PON网络的髙效等特点于一身,是未来实现光纤到户的光纤接入网的最佳方式。
目前,EPON系统中所采用保护倒换方式都需要配置冗余的PON模块等,成本较髙,并且实现机制较为复杂。
而EP07技术是接入网技术之一,主要用于FTTH/FTTB的宽带接入业务,用户接入成本较为敏感,并且对保护的要求相对较低,因此EPON系统现有的保护方式的实际应用价值较低。
1、EPON系统中实现骨干光纤保护倒换的意义EPON采用点到多点的树形拓扑结构,供干光纤的故障会导致其所属的所有ONL-均无法与EPON网络通信,因此,件干光纤的生存性将保证整个EPON网络的可靠性。
竹干光纤保护倒换方式将是提高EPON系统在网络中应用中可靠性的主要保护倒换方式。
2、光纤保护倒换功能要求为了提高网络可靠性和生存性,可在EPON系统中采用光纤保护倒换机制。
光纤保护倒换可分为以下两种方式进行:a)自动倒换:由故障发现触发,如信号丢失或信号劣化等;b)强制倒换:由管理事件触发。
3、光纤保护倒换类型光纤保护主要的有以下三种类型:1)类型a :骨干光纤冗余保护(如图a):OLT :采用单个PON端口,PON口处内置仆2光开关,由OLT检测线路状态(检测方式待讨论)光分路器:使用2:N光分路器;ONU :无特殊要求。
2)类型b : OLT PON口、骨干光纤冗余保护(如图b):OLT:备用的OLT PON端口处于冷备用状态,由OLT检测线路状态(检测方式待讨论)、OLT PON端口状态,倒换应由OLT完成。
PON技术介绍一、什么是pon无源光网络(PON)技术是一种点到多点的光纤接入技术,它由局侧的OLT(光线路终端)、用户侧的ONU(光网络单元)以及ODN(光分配网络)组成。
一般其下行采用TDM 广播方式、上行采用TDMA(时分多址接入)方式,而且可以灵活地组成树型、星型、总线型等拓扑结构(典型结构为树形结构)。
所谓“无源”,是指ODN 中不含有任何有源电子器件及电子电源,全部由光分路器(Splitter)等无源器件组成,因此其管理维护的成本较低。
EPON 的标准化工作主要由IEEE 的802.3ah即EFM(EthernetFortheFirst Mile,第一英里以太网)工作组来完成,其制定EPON 标准的基本原则是尽量在802.3 体系结构内进行EPON 的标准化工作,工作重点放在EPON 的MAC 协议上,最小程度地扩充以太网MAC 协议。
该标准目前还是草案,EFM 计划在2004 年正式发布EPON 的相关标准。
我国目前正在积极进行EPON 的标准化工作,通信行业标准《接入网技术要求-基于Ethernet 的无源光网络(EPON)》正在制订中。
GPON 是ITU 提出的G比特级的无源光网络。
ITU 在2003 年正式通过并颁布了GPON 标准系列中的三个标准:G.984.1、G.984.2 和G.984.3。
由于GPON 标准是ITU 在APON 标准之后推出的,因此G.984 标准系列不可避免的沿用了G.983 标准的很多思路。
GPON 与EPON 都是千兆比特级的PON 系统,与EPON 力求简单的原则相比,GPON 更注重多业务和QoS保证,因此更受运营商的青睐。
但由于GPON 标准复杂且开发较晚,技术尚不成熟,因此目前GPON 产品还未到商品化阶段。
目前IEEE提出的EPON 实现方案是:在与APON 类似的结构和G.983 的基础上,设法保留APON 的物理层PON,而以Ethernet 技术代替ATM技术作为数据链路层协议,构成一个可以提供更大带宽、更低成本和更强业务能力的新的结合体EPON。
ZYOC光纤自动保护倒换系统O P T I C A L A U T O S W I T C H N E T W O R K S Y S T E MS Y S T E M产品说明书北京中昱光通科技有限公司Beijing Zhong Yu Optical Communication Technologies Co., Ltd.一、产品概述OASN光纤自动保护倒换系统为通信网的重要通信光纤路由的安全保护提供一套经济、实用的解决方案,可以组建一个无阻断、高可靠性、安全灵活、抗灾害能力强的光通信网。
光纤自动保护倒换系统由自动切换站和网管中心组成,可以实现光纤自动保护倒换、主备纤光功率实时监测和光路应急调度三大主要功能。
OASN系统有效地解决了干线光缆线路维护难的问题:切换瞬间不中断通信业务;轻松满足线路维护绩效考核指标;灵活调度路由方便线路割接检修。
OASN切换模块是集光开关控制、光功率监测、稳定光源监测于一体的高集成度模块。
OASN系统的光切换设备分两种机型(4U机型和1U机型)八种型号,详见下表:表一:OASN系统的光切换设备介绍表机型型号说明主要适用范围机型1 4U总线结构型号1:OASN-ZY4A-2AN2收发双选,1:1保护方式长途光缆干线型号2:OASN-ZY4B-2AN2收发双选,1:1保护方式长途光缆干线型号3:OASN-ZY4C-1BM2双发选收,1+1保护方式光缆本地网型号4:OASN-ZY4D-1BM1单纤双向保护方式单纤双向波分系统型号5:OASN-ZY4E-R1BM切换中继模块跨多个中继站自动保护机型2 1U单机型号6:OASN-ZY1A-2AN2收发双选,1:1保护方式长途光缆干线型号7:OASN-ZY1B-2AN2收发双选,1:1保护方式长途光缆干线结构型号8:OASN-ZY1C-1BM2双发选收,1+1保护方式光缆本地网机型1介绍自动切换OASN -ZY4U 型设备为前插拔总线结构,标准宽19英寸高4U 机箱,满配重量为7.8公斤。
光纤保护倒换功能标准化管理处编码[BBX968T-XBB8968-NNJ668-MM9N]
EP0N系统中光纤保护实现方法
EPON采用点到多点的树形拓扑结构,骨干光纤的生存性将保证整个EPON网络的可靠性。
提供一种可行方案,在提高EPON系统中可靠性、稳定性的同时,兼顾系统成本,实现一种低成本并简便可行的EPON网络骨干光纤保护方法。
引言
以太无源光网络(EPON)技术是一种基于以太网、点到多点的光纤接入技术,它集以太网技术的简单性和PON网络的高效等特点于一身,是未来实现光纤到户的光纤接入网的最佳方式。
目前,EPON系统中所采用保护倒换方式都需要配置冗余的PON模块等,成本较高,并且实现机制较为复杂。
而EPON技术是接入网技术之一,主要用于FTTH/FTTB的宽带接入业务,用户接入成本较为敏感,并且对保护的要求相对较低,因此EPON系统现有的保护方式的实际应用价值较低。
1、E PON系统中实现骨干光纤保护倒换的意义
EPON采用点到多点的树形拓扑结构,骨干光纤的故障会导致其所属的所有ONU均无法与EPON网络通信,因此,骨干光纤的生存性将保证整个EPON网络的可靠性。
骨干光纤保护倒换方式将是提高EPON系统在网络中应用中可靠性的主要保护倒换方式。
2、光纤保护倒换功能要求
为了提高网络可靠性和生存性,可在EPON系统中采用光纤保护倒换机制。
光纤保护倒换可分为以下两种方式进行:
a) 自动倒换:由故障发现触发,如信号丢失或信号劣化等;
b) 强制倒换:由管理事件触发。
3、光纤保护倒换类型
光纤保护主要的有以下三种类型:
1)类型a:骨干光纤冗余保护(如图a):
OLT:采用单个PON端口,PON口处内置1×2光开关,由OLT检测线路状态(检测方式待讨论)
光分路器:使用2:N光分路器;
ONU:无特殊要求。
2)类型b:OLT PON口、骨干光纤冗余保护(如图b):
OLT:备用的OLT PON端口处于冷备用状态,由OLT检测线路状态(检测方式待讨论)、OLT PON端口状态,倒换应由OLT完成。
光分路器:使用2:N光分路器;
ONU:无特殊要求。
3)类型c:全保护(OLT PON口、骨干光纤、光分路器、配线光纤冗余保护)(如图c)。
OLT:主、备用的OLT PON端口均处于工作状态;
光分路器:使用2个1:N光分路器;
ONU:在PON端口前内置光开关装置,由ONU检测线路状态(检测方式待讨论),并决定决定主用线路,倒换应由ONU完成。
4、光纤保护倒换准则
骨干光纤保护方式中,OLT侧的主、备两个PON模块的端口分别通过骨干光纤的主、备两条光纤连接到2:N分路器的两个端口,从分路器到ONU侧采用常规连接。
在OLT主用PON模块处于工作状态时,备用PON模块处于冷备份状态。
如果工作光纤出现故障或主用PON模块失效,启用备用的备用PON模块和光纤。
倒换到备用PON模块时,冷备份的备用PON模块中的信号发射模块被激发到正常工作状态需要一段较长的时间。
这种方式OLT侧需配置主、备两个PON模块,骨干光纤需铺设主、备两条光纤,从而实现对骨干段光纤的保护,提高系统得可靠性。
光纤全保护倒换方式中,每个ONU通过主、备两个PON模块与两个独立的光分路器实现双归属连接,每个分路器连接OLT的两个PON口。
OLT备用模块采用热备份方式,切换在每个ONU上进行,需要切换协议。
这种方式OLT和ONU均需配置主、备两个PON模块,骨干光纤需铺设主、备两条光纤,需设置两台分路器,以及对每个ONU铺设主、备两条接入光纤,从而实现对EPON系统中每个网元的保护,提高系统得可靠性。
骨干光纤保护方式相对于光纤全保护倒换方式代价较小,仅对EPON系统的骨干段光纤实现保护;而光纤全保护倒换方式彻底消除了EPON系统中的单点故障隐患,但是代价也是整体翻倍的。
3、EPON系统中简单骨干光纤保护倒换的实现
EPON系统简单骨干光纤保护倒换实现思路
为了实现简单的骨干光纤保护倒换,EPON系统应由光线路终端(OLT)、工作光纤、保护光纤、2:N光分路器、光网络单元(ONU)组成,其中OLT内包括保护倒换控制模块(在工作光纤故障的情况下,发出切换信号来控制系统的保护倒换)、PON模块(接收光
接入网提供的光信号并发送该光信号到用户侧,同时PON模块可根据与其耦接的光纤的工作情况发出告警信息,如光信号丢失和信号劣化告警)。
如图3所示。
图3 支持骨干光纤保护的EPON系统结构
PON模块输出PON口的两个输出口分别与工作光纤和保护光纤相连,工作光纤和保护光纤又分别连接2:N分路器的两个输入口,从2:N分路器到ONU侧采用常规连接,ONU采用常规ONU。
系统正常工作时,保护倒换控制模块在线监测OLT PON模块的工作状态和相关告警信息,当保护倒换控制模块接收到来自OLT的线路故障、信号劣化等告警信息时,根据预设的机制进行判断是否进行倒换,并触发切换模块实现切换,从而实现EPON系统骨干光纤的主备倒换。
完成倒换后,由于主、备用光纤的长度不可能完全相同,为避免上行业务冲突,控制模块会同时触发PON模块重新发起发现、测距、注册等过程,从而完成EPON系统业务的保护倒换。
EPON系统实现简单光纤保护倒换实现流程
光纤保护倒换在以下两种情况时进行:①自动倒换:由故障发现触发,如信号丢失等;②强制倒换:由管理事件触发。
如图所示,自动保护倒换自步骤S1开始。
图EPON系统实现简单光纤保护倒换实现流程
在步骤S1,系统的保护倒换控制模块启动。
在步骤S2,保护倒换控制模块实时监测PON模块的工作状态,例如可通过轮询的方式,PON模块实时上报相关状态信息给保护倒换控制模块。
在步骤S3中,根据保护倒换控制模块与PON模块之间的通信是否正常,确定是否PON模块本身出现故障。
如果在步骤S3中确定PON模块本身出现故障,则流程进到步骤S4。
在步骤S4,保护倒换控制模块向网管严重告警,进到步骤S5。
如果在步骤S3中确定PON模块本身正常,则流程进到步骤S5。
在步骤S5,根据是否收到来自PON模块的相关告警,如光信号丢失、信号劣化的告警,确定骨干工作光纤是否有故障,例如断路故障。
如果步骤S5的确定为是,步骤S6;如果在步骤S5中确定保护倒换控制模块未收到来自PON模块的相关告警,即无诸如线路故障、信号劣化的相关告警,则确定PON模块以及工作光纤工作正常,流程返回到步骤
S2,继续执行对PON模块的实时监测。
在步骤S6,保护倒换控制模块将切换事件上报网管,然后流程进到步骤S7。
在步骤S7, PON模块接收光是否正常。
如果PON模块接收光正常,则流程进到步骤S8。
在步骤S8,保护倒换控制模块触发OLT开始骨干光纤倒换后的自动发现过程。
如果在步骤S7切换后,PON模块仍然无接收光,则断定所有ONU下线或保护光纤故障,不再进行倒换,系统返回步骤S2。
以下保护倒换控制模块触发OLT开始骨干光纤倒换后的自动发现过程与常规的过程相同,因此,仅对其进行简要的描述。
在步骤S8,OLT向ONU广播发送Discovery GATE帧。
在步骤S9,ONU在接收到Discovery GATE帧后,随机等待一段时间后发送REGISTER_REQ帧给OLT,在REGISTER_REQ帧中,包含了ONU的MAC地址和其他参数。
在步骤S10,OLT接收到一个有效的REGISTER_REQ消息后,根据其MAC地址,分配发生光纤保护倒换前对应的LLID,并进行再绑定。
在步骤S11,OLT发送标准GATE帧以允许ONU发送REGISTER_ACK消息。
在步骤S12,ONU发送REGISTER_ACK消息到OLT。
在步骤S13,OLT1接收到REGISTER_ACK消息,验证REGISTER_ACK消息,发现过程完成,并计算RTT值(光信号往返时间)。
在步骤S14,ONU完成注册,可以访问EPON网络,业务恢复正常,保护倒换成功。
以下实现流程同自动保护倒换实现流程的步骤。
在现有的光纤保护倒换方法的基础上,结合EPON系统的应用特点,改善原有保护倒换成本高、实现机制复杂的缺点,从而实现简单而有效的骨干光纤保护倒换。
EPON系统实现光纤全保护倒换实现流程
系统正常工作时,保护倒换控制模块在线监测ONU PON模块的工作状态和相关告警信息,当保护倒换控制模块接收到来自ONU的线路故障、信号劣化等告警信息时,根据预设的机制进行判断是否进行倒换,并触发切换模块实现切换,从而实现EPON系统光纤的主备倒换。
在这种情况下,在olt上,备用模块处于热备份状态,配置信息和主用模块的相同,管理通道打开,能够进行备用onu的注册,以及配置规则的下发,只是业务通道关闭。
当发生切换后,只需将业务通道打开即可。