实验一截面数据一元线性回归模型
- 格式:docx
- 大小:120.96 KB
- 文档页数:21
计量经济学》实验报告一元线性回归模型-、实验内容(一)eviews基本操作(二)1、利用EViews软件进行如下操作:(1)EViews软件的启动(2)数据的输入、编辑(3)图形分析与描述统计分析(4)数据文件的存贮、调用2、查找2000-2014年涉及主要数据建立中国消费函数模型中国国民收入与居民消费水平:表1年份X(GDP)Y(社会消费品总量)200099776.339105.72001110270.443055.42002121002.048135.92003136564.652516.32004160714.459501.02005185895.868352.62006217656.679145.22007268019.493571.62008316751.7114830.12009345629.2132678.42010408903.0156998.42011484123.5183918.62012534123.0210307.02013588018.8242842.82014635910.0271896.1数据来源:二、实验目的1.掌握eviews的基本操作。
2.掌握一元线性回归模型的基本理论,一元线性回归模型的建立、估计、检验及预测的方法,以及相应的EViews软件操作方法。
三、实验步骤(简要写明实验步骤)1、数据的输入、编辑2、图形分析与描述统计分析3、数据文件的存贮、调用4、一元线性回归的过程点击view中的Graph-scatter-中的第三个获得在上方输入Isycx回车得到下图DependsntVariable:Y Method:LeastSquares□ate:03;27/16Time:20:18 Sample:20002014 Includedobservations:15VariableCoefficientStd.Errort-StatisticProb.C-3J73.7023i820.535-2.1917610.0472X0416716 0.0107S838.73S44 a.ooao R-squared0.991410 Meandependentwar119790.2 AdjustedR.-squared 0.990750 S.D.dependentrar 7692177 S.E.ofregression 7J98.292 Akaike infocriterion20.77945 Sumsquaredresid 7;12E^-08 Scliwarz 匚「爬伽20.37386 Loglikelihood -1&3.3459Hannan-Quinncriter. 20.77845 F-statistic 1I3&0-435 Durbin-Watsonstat0.477498Prob(F-statistic)a.oooooo在上图中view 处点击view-中的actual ,Fitted ,Residual 中的第一 个得到回归残差打开Resid 中的view-descriptivestatistics 得到残差直方图/icw Proc Qtjject PrintN^me FreezeEstimateForecastStatsResids凹Group:UNIIILtD Worktile:UN III LtLJ::Unti1DependentVariablesMethod;LeastSquares□ate:03?27/16Time:20:27Sample(adjusted):20002014Includedobservations:15afteradjustmentsVariable Coefficient Std.Errort-Statistic ProtJ.C-3373.7023^20.535-2.191761 0.0472X0.4167160.01075S38.735440.0000R-squared0.991410 Meandependeniwar1-19790.3 AdjustedR-squa.red0990750S.D.dependentvar 76921.77 SE.ofregre.ssion 7J98.292 Akaike infacriterion20.77945 Sumsquaredresid 7.12&-0S Schwarzcriterion 20.S73S6 Laglikelihood -153.84&9Hannan-Quinncrite匚20.77545 F-statistic1I3&0.435Durbin-Watsonstat 0.477498 ProbCF-statistic) a.ooaooo在回归方程中有Forecast,残差立为yfse,点击ok后自动得到下图roreestYFM J訓YForea空巾取且:20002015 AdjustedSErmpfe:2000231i mskJddd obaerratire:15Roof kter squa red Error理l%2Mean/^oLteError畐惯啟iJean Afe.PereersErro r5.451SSQThenhe鼻BI附GKWCE口.他腐4Prop&niwi□ooooooVactaree Propor^tori0.001^24G M『倚■底Props^lori09®475在上方空白处输入lsycs…之后点击proc中的forcase根据公式Y。
实验报告金融系金融学专业级班实验人:实验地点:实验日期:实验题目:进行相应的分析,揭示某地区住宅建筑面积与建造单位成本间的关系实验目的:掌握最小二乘法的基本方法,熟练运用Eviews软件的一元线性回归的操作,并能够对结果进行相应的分析。
实验内容:实验采用了建筑地编号为1号至12号的数据,通过模型设计、估计参数、检验统计量、回归预测四个步骤对数据进行相关分析。
实验步骤:一、模型设定1.建立工作文件。
双击eviews,点击File/New/Workfile,在出现的对话框中选择数据频率,因为该例题中为截面数据,所以选择unstructured/undated,在observations中设定变量个数,这里输入12。
图12.输入数据。
在eviews 命令框中输入data X Y,回车出现group窗口数据编辑框,在对应的X,Y下输入数据,这里我们可以直接将excel中被蓝笔选中的部分用cirl+c复制,在窗口数据编辑框中1所对应的框中用cirl+v粘贴数据。
图23.作X与Y的相关图形。
为了初步分析建筑面积(X)与建造单位成本(Y)的关系,可以作以X为横坐标、以Y为纵坐标的散点图。
方法是同时选中工作文件中的对象X和Y,双击得X和Y的数据表,点View/Graph/scatter,在File lines中选择Regressions line/ok(其中Regressions line为趋势线)。
得到如图3所示的散点图。
图3 散点图从散点图可以看出建造单位成本随着建筑面积的增加而降低,近似于线性关系,为分析建造单位成本随建筑面积变动的数量规律性,可以考虑建立如下的简单线性回归模型:二、估计参数假定所建模型及其中的随机扰动项满足各项古典假定,可以用OLS法估计其参数。
Eviews软件估计参数的方法如下:在eviews命令框中键入LS Y C X,按回车,即出现回归结果。
Eviews的回归结果如图4所示。
图4 回归结果可用规范的形式将参数估计和检验结果写为:(19.2645)(4.8098)t=(95.7969)(-13.3443)0.9468 F=178.0715 n=12若要显示回归结果的图形,在equation框中,点击resids,即出现剩余项、实际值、拟合值的图形,如图5所示。
⼀元线性回归实验报告实验⼀⼀元线性回归⼀实验⽬的:掌握⼀元线性回归的估计与应⽤,熟悉EViews的基本操作。
⼆实验要求:应⽤教材P61第12题做⼀元线性回归分析并做预测。
三实验原理:普通最⼩⼆乘法。
四预备知识:最⼩⼆乘法的原理、t检验、拟合优度检验、点预测和区间预测。
五实验内容:第2章练习12下表是中国2007年各地区税收Y和国内⽣产总值GDP的统计资料。
单位:亿元(1)作出散点图,建⽴税收随国内⽣产总值GDP变化的⼀元线性回归⽅程,并解释斜率的经济意义;(2)对所建⽴的回归⽅程进⾏检验;(3)若2008年某地区国内⽣产总值为8500亿元,求该地区税收收⼊的预测值及预测区间。
六实验步骤1.建⽴⼯作⽂件并录⼊数据:(1)双击桌⾯快速启动图标,启动Microsoft Office Excel, 如图1,将题⽬的数据输⼊到excel表格中并保存。
(2)双击桌⾯快速启动图标,启动EViews6程序。
(3)点击File/New/ Workfile…,弹出Workfile Create对话框。
在WorkfileCreate对话框左侧Workfile structure type栏中选择Unstructured/Undated 选项,在右侧Data Range中填⼊样本个数31.在右下⽅输⼊Workfile的名称P53.如图2所⽰。
图 1 图 2(4)下⾯录⼊数据,点击File/Import/Read Text-Lotus-Excel...选中第(1)步保存的excel表格,弹出Excel Spreadsheet Import对话框,在Upper-left data cell栏输⼊数据的起始单元格B2,在Excel 5+sheet name栏中输⼊数据所在的⼯作表sheet1,在Names for series or Number if named in file栏中输⼊变量名Y GDP,如图3所⽰,点击OK,得到如图4所⽰界⾯。
2013-2014第1学期计量经济学实验报告实验(一):一元线性回归模型实验学号姓名:专业:国际经济与贸易选课班级:实验日期:2013年12月2日实验地点:K306实验名称:一元线性回归模型实验【教学目标】《计量经济学》是实践性很强的学科,各种模型的估计通过借助计算机能很方便地实现,上机实习操作是《计量经济学》教学过程重要环节。
目的是使学生们能够很好地将书本中的理论应用到实践中,提高学生动手能力,掌握专业计量经济学软件EViews的基本操作与应用。
利用Eviews做一元线性回归模型参数的OLS估计、统计检验、点预测和区间预测。
【实验目的】使学生掌握1.Eviews基本操作:(1)数据的输入、编辑与序列生成;(2)散点图分析与描述统计分析;(3)数据文件的存贮、调用与转换。
2. 利用Eviews做一元线性回归模型参数的OLS估计、统计检验、点预测和区间预测【实验内容】1.Eviews基本操作:(1)数据的输入、编辑与序列生成;(2)散点图分析与描述统计分析;(3)数据文件的存贮、调用与转换;2. 利用Eviews做一元线性回归模型参数的OLS估计、统计检验、点预测和区间预测。
实验内容以下面1、2题为例进行操作。
1、为了研究深圳地方预算中财政收入与国内生产总值关系,运用以下数据:(1)建立深圳的预算内财政收入对GDP的回归;(2)估计模型的参数,解释斜率系数的意义;(3)对回归结果进行检验;(4)若2002年的国内生产总值为3600亿元,试确定2002年财政收入的预测值和预α=)。
测区间(0.052、在《华尔街日报1999年年鉴》(The Wall Street Journal Almanac 1999)上,公布有美国各航空公司业绩的统计数据。
航班正点准时到达的正点率和此公司每10万名乘客中投诉1(1)做出上表数据的散点图(2)依据散点图,说明二变量之间存在什么关系?(3)描述投诉率是如何根据航班正点率变化,并求回归方程。
一元线性回归模型实验报告——以中国1985~2009年财政收入Y 和国内生产总值(和国内生产总值(GDP GDP GDP)为例)为例以GDP 为横轴,Y 为纵轴的散点图为纵轴的散点图以GDP 为解释变量,Y 为被解释变量,建立一元线性回归方程:为被解释变量,建立一元线性回归方程:Y i =β0+β1·GDP iDependent Variable: Y Method: Least Squares Date: 11/06/11 Time: 22:35 Sample: 1985 2009 Included observations: 25Variable Coefficient Std. Error t-Statistic Prob. C -3225.757 787.7145 -4.095084 0.0004 GDP0.1973980.00565734.894270.0000R-squared0.981461 Mean dependent var 16899.30 Adjusted R-squared 0.980655 S.D. dependent var 19287.38 S.E. of regression 2682.632 Akaike info criterion 18.70360 Sum squared resid1.66E+08Schwarz criterion 18.80111Log likelihood -231.7950 F-statistic 1217.610 Durbin-Watson stat0.118499Prob(F-statistic) 0.000000图3:回归分析结果:回归分析结果可得出β^0=-3225.757 β^1=0.197398财政收入随国内生产总值变化的一元线性回归方程为:财政收入随国内生产总值变化的一元线性回归方程为:Y ^=-3225.757+0.197398·GDPR 2=0.981461斜率的经济意义是:在1985~2009年间,GDP 每增加一单位,财政收入平均增加0.197398单位。
实验一一元线性回归模型实验【实验目的】通过导入1950年到1987年美国机动车气油消费量(cons)与人口数(pup)的相关数据,以消费量为被解释量,人口数为解释变量,建立一元线性回归模型,并对其结果进行相关分析【实验原理】运用eviews,将excel中消费量与人口数的数据粘贴到eviews中,并求出相关变量,画出拟合回归直线。
【实验软件】Eview6【实验要求】熟练运用并且掌握一元线性回归,运用Eviews6建立模型分析从而总结得到解释变量与被解释变量之间存在的关系。
【实验过程】1、启动Eviews6软件,建立新的workfile.在主菜单中选择【File】--【New】--【Workfile】,弹出Workfile Create对话框,在Workfile structure type中选择Dated-regular frequency,然后在Frequency 中选择annual,Start date中输入1950,End date中输入1987,然后在WF中输入Work1,点击OK按钮。
如图:2、数据导入.在主菜单的空白处输入series cons按下enter 再输入series pup ,按下enter,如图:3、将要分析的数据复制黏贴。
如图:4、建立回归方程。
定义消费量cons为被解释变量,以pup为解释变量进行回归。
在主菜单中输入命令项:Ls consum c pup,按enter键,得到回归方程的估计结论如图所示:5、画拟合回归直线将消费量与人口数的关系用一条拟合回归直线表示【实验分析】在本实验中,根据回归结果中的相关数据R-squared =0.925613,说明总离合差平方和的92.5613%被样本回归直线解释,仅有未被解释7.4387%,因此可知样本回归直线对样本点的拟合优度是较高的。
Prob即相伴概率,也就是拒绝原假设Ho的概率。
相伴概率越大,则要接受原假设Ho ,此时 B1=0,则表示参数不显著;相反,相伴概率越小,则要拒绝原假设Ho ,接受H1,此时B1不等于0,则表示参数显著。
1一元线性回归模型的参数估计1、普通最小二乘估计(OLS )对于所研究的经济问题,通常真实的回归直线是观测不到的。
收集样本的目的就是要对这条真实的回归直线做出估计。
假如给出了样本观测值(X i ,Y i ), i=1, 2, …, n (是样本容量)。
?+β? X i +u ?i (也可以记为e i )则样本回归模型(估计的模型)Y i=β01?和β?分别是β0 和β1的估计值或估计量,u ?i (或e i )是的u i 估计值,称为残差β01(residual )项,也称为拟合误差。
?=β?+β? X i ,称为样本回归方程或样本回归线。
用来估计样本回归模型的直线写为Y 01i ?称Y i 的拟合值(fitted value)其中Y i如何估计?(1)用“残差和最小”确定直线位置是一个途径。
但很快发现计算“残差和”存在相互抵消的问题。
(2)用“残差绝对值和最小”确定直线位置也是一个途径。
但绝对值的计算比较麻烦。
(3)最小二乘法的原则是以“残差平方和(residual sum of square, RSS)最小”确定直线位置。
用最小二乘法除了计算比较方便外,得到的估计量还具有优良特性。
(这种方法对异常值非常敏感)设残差平方和ESS 用Q 表示,?) 2=?i=∑(Y i -Y Q=∑u i2i=1i=1T T∑(Y -β?ii=1?X ) 2,-β1i?和β?的估计值。
以β?和β?为变量,把Q 看作是β?则通过Q 最小确定这条直线,即确定β01010?的函数,?和β?的偏导数并令其为零,和β这是一个求极值的问题。
求Q 对β得正规方程组,101?Q=2?β∑(Y -β?ii=1nn?X ) (-1)=0 (1) -β1i ?X ) (- X i )=0 (2) -β1i=2?β1∑(Y -β?ii=1?=-β? ?β01? ?(X i -)(Y i -) β1=2(X -) i ?x i y i ?i=Y i -Y ,x i=X i -X 。