2020高考数学专题复习专题9平面解析几何第64练抛物线练习理
- 格式:doc
- 大小:39.50 KB
- 文档页数:6
专题9.5 抛物线1.(2020·全国高考真题(理))已知A 为抛物线C :y 2=2px (p >0)上一点,点A 到C 的焦点的距离为12,到y 轴的距离为9,则p =( ) A .2 B .3 C .6 D .9【答案】C 【解析】设抛物线的焦点为F ,由抛物线的定义知||122A p AF x =+=,即1292p=+,解得6p.故选:C.2.(2020·北京高三二模)焦点在x 轴的正半轴上,且焦点到准线的距离为4的抛物线的标准方程是( ) A .x 2=4y B .y 2=4x C .x 2=8y D .y 2=8x【答案】D 【解析】根据题意,要求抛物线的焦点在x 轴的正半轴上, 设其标准方程为22(0)y px p =>, 又由焦点到准线的距离为4,即p =4, 故要求抛物线的标准方程为y 2=8x , 故选:D.3.(全国高考真题)设F 为抛物线2:4C y x =的焦点,曲线()0ky k x=>与C 交于点P ,PF x ⊥轴,则k =( )A .12B .1C .32D .2【答案】D 【解析】由抛物线的性质可得(1,2)221kP y k ⇒==⇒=,故选D. 4.(2020·全国高考真题(文))设O 为坐标原点,直线2x =与抛物线C :22(0)y px p =>交于D ,E 两点,若OD OE ⊥,则C 的焦点坐标为( ) A .1,04⎛⎫⎪⎝⎭B .1,02⎛⎫ ⎪⎝⎭C .(1,0)D .(2,0)练基础【答案】B 【解析】因为直线2x =与抛物线22(0)y px p =>交于,E D 两点,且OD OE ⊥, 根据抛物线的对称性可以确定4DOx EOx π∠=∠=,所以()2,2D ,代入抛物线方程44p =,求得1p =,所以其焦点坐标为1(,0)2, 故选:B.5.(2019·四川高三月考(文))若抛物线22y px =的准线为圆2240x y x ++=的一条切线,则抛物线的方程为( ) A.216y x =- B.28y x =-C.216y x =D.24y x =【答案】C 【解析】∵抛物线22y px =的准线方程为x=2p-,垂直于x 轴. 而圆2240x y x ++=垂直于x 轴的一条切线为4x =-, 则42p=,即8p =. 故抛物线的方程为216y x =. 故选:C .6.(2019·北京高考真题(文))设抛物线y 2=4x 的焦点为F ,准线为l .则以F 为圆心,且与l 相切的圆的方程为__________. 【答案】(x -1)2+y 2=4. 【解析】抛物线y 2=4x 中,2p =4,p =2, 焦点F (1,0),准线l 的方程为x =-1, 以F 为圆心,且与l 相切的圆的方程为 (x -1)2+y 2=22,即为(x -1)2+y 2=4.7.(2019·山东高三月考(文))直线l 与抛物线22x y =相交于A ,B 两点,当AB 4=时,则弦AB 中点M 到x 轴距离的最小值为______. 【答案】32【解析】由题意,抛物线22x y =的焦点坐标为(0,12),根据抛物线的定义如图,所求d=111A B AF BF 113M 2222A B AB M ++--==≥= 故答案为:32. 8.(2021·沙湾县第一中学(文))设过抛物线y 2=4x 的焦点F 的直线交抛物线于A ,B 两点,且直线AB 的倾斜角为4π,则线段AB 的长是____,焦点F 到A ,B 两点的距离之积为_________.【答案】8 8 【分析】由题意可得直线AB 的方程为1y x =-,然后将直线方程与抛物线方程联立方程组,消去y 后,利用根与系数的关系,结合抛物线的定义可求得答案 【详解】解:由题意得(1,0)F ,则直线AB 的方程为1y x =-,设1122(,),(,)A x y B x y ,由241y x y x ⎧=⎨=-⎩,得2610x x -+=, 所以12126,1x x x x +==, 所以12628AB x x p =++=+=,因为11221,122=+=+=+=+p pAF x x BF x x , 所以()()1212121116118AF BF x x x x x x ⋅=+⋅+=+++=++=, 故答案为:8,89.(2021·全国高三专题练习)已知抛物线顶点在原点,焦点在坐标轴上,又知此抛物线上的一点(),3A m -到焦点F 的距离为5,则m 的值为__________;抛物线方程为__________. 【答案】答案见解析 答案见解析 【分析】由于抛物线的开口方向未定,根据点(),3A m -在抛物线上这一条件,抛物线开口向下,向左、向右均有可能,以此分类讨论,利用焦半径公式列方程可得p 的值,根据点(),3A m -在抛物线上可得m 的值. 【详解】根据点(),3A m -在抛物线上,可知抛物线开口向下,向左、向右均有可能, 当抛物线开口向下时,设抛物线方程为22x py =-(0p >), 此时准线方程为2py =,由抛物线定义知(3)52p --=,解得4p =.所以抛物线方程为28x y ,这时将(),3A m -代入方程得m =±当抛物线开口向左或向右时,可设抛物线方程为22y ax (0a ≠),从p a =知准线方程为2ax =-,由题意知()25232am am⎧+=⎪⎨⎪-=⎩,解此方程组得11192a m =⎧⎪⎨=⎪⎩,22192a m =-⎧⎪⎨=-⎪⎩,33912a m =⎧⎪⎨=⎪⎩,44912a m =-⎧⎪⎨=-⎪⎩,综合(1)、(2)得92m =,22y x =; 92m =-,22y x =-;12m =,218y x =; 12m =-,218y x =-;m =±28xy .故答案为:92,92-,12,12-,±22y x =,22y x =-,218y x =,218y x =-,28x y .10.(2019·广东高三月考(理))已知F 为抛物线2:4T x y =的焦点,直线:2l y kx =+与T 相交于,A B 两点.()1若1k =,求FA FB +的值;()2点(3,2)C --,若CFA CFB ∠=∠,求直线l 的方程.【答案】(1)10(2)3240x y +-= 【解析】(1)由题意,可得()0,1F ,设221212,,,44x x A x B x ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭,联立方程组224y kx x y=+⎧⎨=⎩,整理得2480x kx --=,则124x x k +=,128x x =-,又由22121144x x FA FB +++=+()2121222104x x x x +-=+=.(2)由题意,知211,14x FA x ⎛⎫=- ⎪⎝⎭,222,14x FB x ⎛⎫=- ⎪⎝⎭,()3.3FC =--, 由CFA CFB ∠=∠,可得cos ,cos ,FA FC FB FC =又2114x FA =+,2214x FB =+,则FA FC FB FC FA FC FB FC =, 整理得()1212420x x x x ++-=,解得32k =-, 所以直线l 的方程为3240x y +-=.1.(2021·吉林长春市·高三(理))已知M 是抛物线24y x =上的一点,F 是抛物线的焦点,若以Fx 为始边,FM 为终边的角60xFM ∠=,则FM 等于( ) A .2 B C .D .4【答案】D 【分析】设点200,4y M y ⎛⎫ ⎪⎝⎭,取()1,0a =,可得1cos ,2FM a <>=,求出20y 的值,利用抛物线的定义可求练提升得FM 的值. 【详解】设点()00,M x y ,其中2004y x =,则()1,0F ,2001,4y FM y ⎛⎫=- ⎪⎝⎭,取()1,0a =,则211cos ,2y FM a FM a FM a-⋅<>===⋅⎛,可得4200340480y y -+=,因为20104y ->,可得204y >,解得2012y =,则20034y x ==,因此,014MF x=+=. 故选:D.2.(2017·全国高考真题(文))过抛物线2:4C y x =的焦点F 的直线交C 于点M (在x 轴上方),l 为C 的准线,点N 在l 上且MNl ⊥,则点M 到直线NF 的距离为()A. B. D.【答案】A 【解析】设直线l 与x 轴相交于点P ,与直线MN 相交于点Q ,(1,0)F ,设||||MN MF m ==,因为||2,30PF NQM =∠=,所以||4,||2QF QM m ==, 所以42m m +=,解得:4m =,设00(,)M x y ,由焦半径公式得:014x +=, 所以03x=,0y =,所以sin sin 42NP MNF NFP NF ∠=∠===,所以点M 到直线NF 的距离为||sin 4NM MNF ⋅∠=⋅=3.(2020·广西南宁三中其他(理))已知抛物线28C y x =:的焦点为F ,P 是抛物线C 的准线上的一点,且P 的纵坐标为正数,Q 是直线PF 与抛物线C 的一个交点,若PQ =,则直线PF 的方程为( )A .20x y --=B .20x y +-=C .20x y -+=D .20x y ++=【答案】B 【解析】过Q 点作QH PM ⊥于H ,因为PQ =,由抛物线的定义得PQ =,所以在Rt PQH ∆中,4PQH π∠=,所以4PFM π∠=,所以直线PF 的斜率为1k =-,所以直线PF 的方程为()()012y x -=--, 即20x y +-=, 故选B.4.(2020·浙江高三月考)如图,已知抛物线21:4C y x =和圆222:(1)1C x y -+=,直线l 经过1C 的焦点F ,自上而下依次交1C 和2C 于A ,B ,C ,D 四点,则AB CD ⋅的值为( )A .14B .12C .1D .2【答案】C 【解析】因为抛物线21:4C y x =的焦点为(1,0)F ,又直线l 经过1C 的焦点F ,设直线:(1)l y k x =-,由24(1)y x y k x ⎧=⎨=-⎩得2222(24)0k x k x k -++=, 设1122(,),(,)A x y B x y ,则121=x x由题意可得:1111=-=+-=AB AF BF x x , 同理2=CD x ,所以12cos01︒⋅=⋅⋅==AB CD AB CD x x . 故选C5.【多选题】(2022·全国高三专题练习)已知抛物线21:C y mx =与双曲线222:13y C x -=有相同的焦点,点()02,P y 在抛物线1C 上,则下列结论正确的有( )A .双曲线2C 的离心率为2B .双曲线2C 的渐近线为y x = C .8m =D .点P 到抛物线1C 的焦点的距离为4【答案】ACD 【分析】由双曲线方程写出离心率、渐近线及焦点,即可知A 、B 、C 的正误,根据所得抛物线方程求0y ,即知D 的正误. 【详解】双曲线2C 的离心率为2e ==,故A 正确;双曲线2C 的渐近线为y =,故B 错误; 由12,C C 有相同焦点,即24m=,即8m =,故C 正确; 抛物线28y x =焦点为()2,0,点()02,P y 在1C 上,则04y =±,故()2,4P 或()2,4P -,所以P 到1C 的焦点的距离为4,故D 正确. 故选:ACD .6.【多选题】(2021·海南鑫源高级中学)在下列四个命题中,真命题为( )A .当a 为任意实数时,直线(a -1)x -y +2a +1=0恒过定点P ,则过点P 且焦点在y 轴上的抛物线的标准方程是243x y =B .已知双曲线的右焦点为(5,0),一条渐近线方程为2x -y =0,则双曲线的标准方程为221205x y -= C .抛物线y =ax 2(a ≠0)的准线方程14y a=-D .已知双曲线2214x y m +=,其离心率()1,2e ∈,则m 的取值范围(-12,0)【答案】ACD 【分析】求出直线定点设出抛物方程即可判断A ;根据渐近线方程与焦点坐标求出,a b 即可判断B ;根据抛物线方程的准线方程公式即可判断C ;利用双曲线离心率公式即可判断D . 【详解】对A 选项,直线(a -1)x -y +2a +1=0恒过定点为()2,3P -,则过点P 且焦点在y 轴上的抛物线的标准方程设为22x py =,将点()2,3P -代入可得23p =,所以243x y =,故A 正确;对B 选项,知5,2bc a==,又22225a b c +==,解得225,20a b ==,所以双曲线的标准方程为221520x y -=,故B 错; 对C 选项,得21x y a =,所以准线方程14y a=-,正确;对D 选项,化双曲线方程为2214x y m-=-,所以()1,2e =,解得()12,0m ∈-,故正确.故选:ACD7.(2021·全国高二课时练习)已知点M 为抛物线2:2(0)C y px p =>上一点,若点M 到两定点(,)A p p ,,02p F ⎛⎫⎪⎝⎭的距离之和最小,则点M 的坐标为______.【答案】,2p p ⎛⎫⎪⎝⎭【分析】过点M 作抛物线准线的垂线,垂足为B ,根据抛物线的定义可得||||MF MB =, 易知当A ,B ,M 三点共线时||MB MA +取得最小值且为||AB ,进而可得结果. 【详解】过点M 作抛物线准线的垂线,垂足为B ,由抛物线的定义,知点M 到焦点,02p F ⎛⎫⎪⎝⎭的距离与点M 到准线的距离相等,即||||MF MB =,所以||||||||MF MA MB MA +=+, 易知当A ,B ,M 三点共线时,||MB MA +取得最小值, 所以min 3(||||)||2p MF MA AB +==,此时点M 的坐标为,2p p ⎛⎫⎪⎝⎭. 故答案为:2p p ⎛⎫⎪⎝⎭,8.(2021·全国高二课时练习)抛物线()220y px p =>的焦点为F ,已知点A ,B 为抛物线上的两个动点,且满足120AFB ∠=︒,过弦AB 的中点M 作抛物线准线的垂线MN ,垂足为N ,则MN AB的最大值为______.【分析】设=AF a ,=BF b ,根据中位线定理以及抛物线定义可得()12MN a b =+,在AFB △中,由余弦定理以及基本不等式可得)AB a b ≥+,即可求得MN AB 的最大值.【详解】设=AF a ,=BF b ,作AQ 垂直抛物线的准线于点Q ,BP 垂直抛物线的准线于点P .由抛物线的定义,知AF AQ =,BF BP =.由余弦定理得()2222222cos120AB a b ab a b ab a b ab =+=︒=++=+-.又22a b ab +⎛⎫≤ ⎪⎝⎭,∴()()()()22221344a b ab a b a b a b +-≥+-+=+,当且仅当a b =时,等号成立,∴)AB a b ≥+,∴()1a b MN AB +≤=MN AB9.(2020·山东济南外国语学校高三月考)抛物线C :22y x =的焦点坐标是________;经过点()4,1P 的直线l 与抛物线C 相交于A ,B 两点,且点P 恰为AB 的中点,F 为抛物线的焦点,则AF BF +=________.【答案】1,02⎛⎫⎪⎝⎭9【解析】抛物线C :22y x =的焦点1,02F ⎛⎫⎪⎝⎭. 过A 作AM ⊥准线交准线于M ,过B 作BN ⊥准线交准线于N ,过P 作PK ⊥准线交准线 于K ,则由抛物线的定义可得AM BN AF BF +=+. 再根据P 为线段AB 的中点,119(||||)||4222AM BN PK +==+=, ∴9AF BF +=,故答案为:焦点坐标是1,02⎛⎫ ⎪⎝⎭,9AF BF +=.10.(2019·四川高考模拟(文))抛物线C :()220x py p =>的焦点为F ,抛物线过点(),1P p .(Ⅰ)求抛物线C 的标准方程与其准线l 的方程;(Ⅱ)过F 点作直线与抛物线C 交于A ,B 两点,过A ,B 分别作抛物线的切线,证明两条切线的交点在抛物线C 的准线l 上.【答案】(Ⅰ)抛物线的标准方程为24x y =,准线l 的方程为1y =-;(Ⅱ)详见解析. 【解析】(Ⅰ)由221p p =⨯,得2p =,所以抛物线的标准方程为24x y =,准线l 的方程为1y =-.(Ⅱ)根据题意直线AB 的斜率一定存在,又焦点()0,1F ,设过F 点的直线方程为1y kx =+,联立241x yy kx ⎧=⎨=+⎩,得,2440x kx --=. 设()11,A x y ,()22,B x y ,则124x x k +=,124x x =-.∴()22221212122168x x x x x x k +=+-=+.由214y x =得,1'2y x =,过A ,B 的抛物线的切线方程分别为 ()()1112221212y y x x x y y x x x ⎧-=-⎪⎪⎨⎪-=-⎪⎩, 即21122211241124y x x x y x x x ⎧=-⎪⎪⎨⎪=-⎪⎩,两式相加,得()()2212121148y x x x x x =+-+,化简,得()221y kx k =-+,即()21y k x k =--, 所以,两条切线交于点()2,1k -,该点显然在抛物线C 的准线l :1y =-上.1.(2021·全国高考真题)抛物线22(0)y px p =>的焦点到直线1y x =+,则p =( ) A .1 B .2 C .D .4【答案】B 【分析】首先确定抛物线的焦点坐标,然后结合点到直线距离公式可得p 的值. 【详解】抛物线的焦点坐标为,02p ⎛⎫ ⎪⎝⎭,其到直线10x y -+=的距离:d == 解得:2p =(6p =-舍去). 故选:B.2.(2021·天津高考真题)已知双曲线22221(0,0)x y a b a b-=>>的右焦点与抛物线22(0)y px p =>的焦点重合,抛物线的准线交双曲线于A ,B 两点,交双曲线的渐近线于C 、D 两点,若|CD AB .则双曲线的离心率为( ) A B C .2D .3练真题【答案】A 【分析】设公共焦点为(),0c ,进而可得准线为x c =-,代入双曲线及渐近线方程,结合线段长度比值可得2212a c =,再由双曲线离心率公式即可得解. 【详解】设双曲线22221(0,0)x y a b a b-=>>与抛物线22(0)y px p =>的公共焦点为(),0c ,则抛物线22(0)y px p =>的准线为x c =-,令x c =-,则22221c ya b-=,解得2b y a =±,所以22b AB a =, 又因为双曲线的渐近线方程为b y x a =±,所以2bcCD a=,所以2bc a c ,所以222212a cbc =-=,所以双曲线的离心率ce a== 故选:A.3.(2020·北京高考真题)设抛物线的顶点为O ,焦点为F ,准线为l .P 是抛物线上异于O 的一点,过P 作PQ l ⊥于Q ,则线段FQ 的垂直平分线( ). A .经过点O B .经过点P C .平行于直线OP D .垂直于直线OP【答案】B 【解析】如图所示:.因为线段FQ 的垂直平分线上的点到,F Q 的距离相等,又点P 在抛物线上,根据定义可知,PQ PF =,所以线段FQ 的垂直平分线经过点P .故选:B.4.(2021·全国高考真题)已知O 为坐标原点,抛物线C :22y px =(0p >)的焦点为F ,P 为C 上一点,PF 与x 轴垂直,Q 为x 轴上一点,且PQ OP ⊥,若6FQ =,则C 的准线方程为______. 【答案】32x =-【分析】先用坐标表示P Q ,,再根据向量垂直坐标表示列方程,解得p ,即得结果. 【详解】抛物线C :22y px = (0p >)的焦点,02p F ⎛⎫⎪⎝⎭,∵P 为C 上一点,PF 与x 轴垂直, 所以P 的横坐标为2p,代入抛物线方程求得P 的纵坐标为p ±, 不妨设(,)2pP p ,因为Q 为x 轴上一点,且PQ OP ⊥,所以Q 在F 的右侧, 又||6FQ =, (6,0),(6,)2pQ PQ p ∴+∴=- 因为PQ OP ⊥,所以PQ OP ⋅=2602pp ⨯-=, 0,3p p >∴=,所以C 的准线方程为32x =-故答案为:32x =-.5.的直线过抛物线C :y 2=4x 的焦点,且与C 交于A ,B 两点,则AB =________.【答案】163【解析】∵抛物线的方程为24y x =,∴抛物线的焦点F 坐标为(1,0)F ,又∵直线AB 过焦点F AB 的方程为:1)y x =- 代入抛物线方程消去y 并化简得231030x x -+=, 解法一:解得121,33x x ==所以12116||||3|33AB x x =-=-= 解法二:10036640∆=-=> 设1122(,),(,)A x y B x y ,则12103x x +=, 过,A B 分别作准线1x =-的垂线,设垂足分别为,C D 如图所示.12||||||||||11AB AF BF AC BD x x =+=+=+++1216+2=3x x =+故答案为:1636.(2020·浙江省高考真题)如图,已知椭圆221:12x C y +=,抛物线22:2(0)C y px p =>,点A 是椭圆1C 与抛物线2C 的交点,过点A 的直线l 交椭圆1C 于点B ,交抛物线2C 于M (B ,M 不同于A ).(Ⅰ)若116=p ,求抛物线2C 的焦点坐标; (Ⅱ)若存在不过原点的直线l 使M 为线段AB 的中点,求p 的最大值.【答案】(Ⅰ)1(,0)32;【解析】 (Ⅰ)当116=p 时,2C 的方程为218y x =,故抛物线2C 的焦点坐标为1(,0)32;(Ⅱ)设()()()112200,,,,,,:A x y B x y M x y I x y m λ=+,由()22222222220x y y my m x y mλλλ⎧+=⇒+++-=⎨=+⎩, 1200022222,,222m m my y y x y m λλλλλλ--∴+===+=+++, 由M 在抛物线上,所以()222222244222m pm mp λλλλλ=⇒=+++, 又22222()220y pxy p y m y p y pm x y mλλλ⎧=⇒=+⇒--=⎨=+⎩, 012y y p λ∴+=,2101022x x y m y m p m λλλ∴+=+++=+,2122222mx p m λλ∴=+-+.由2222142,?22x y x px y px ⎧+=⎪⇒+=⎨⎪=⎩即2420x px +-=12x p ⇒==-222221822228162p p p m p p p λλλλλ+⇒-=+⋅=++≥+,18p ≥,21160p ≤,p ≤ 所以,p,此时A . 法2:设直线:(0,0)l x my t m t =+≠≠,()00,A x y .将直线l 的方程代入椭圆221:12x C y +=得:()2222220m y mty t +++-=,所以点M 的纵坐标为22M mty m =-+.将直线l 的方程代入抛物线22:2C y px =得:2220y pmy pt --=,所以02M y y pt =-,解得()2022p m y m+=,因此()220222p m xm+=,由220012x y +=解得22212242160m m p m m ⎛⎫⎛⎫=+++ ⎪ ⎪⎝⎭⎝⎭,所以当m t ==p .。
【2019最新】精选高考数学大一轮复习第九章平面解析几何9-6抛物线试题理北师大1.抛物线的概念平面内与一个定点F和一条定直线l(l不过F)的距离相等的点的集合叫作抛物线.点F叫作抛物线的焦点,直线l叫作抛物线的准线.2.抛物线的标准方程与几何性质【知识拓展】1.抛物线y2=2px (p>0)上一点P(x0,y0)到焦点F的距离|PF|=x0+,也称为抛物线的焦半径.2.y2=ax的焦点坐标为,准线方程为x=-.3.设AB是过抛物线y2=2px(p>0)焦点F的弦,若A(x1,y1),B(x2,y2),则(1)x1x2=,y1y2=-p2.(2)弦长|AB|=x1+x2+p=(α为弦AB的倾斜角).(3)以弦AB为直径的圆与准线相切.(4)通径:过焦点垂直于对称轴的弦,长等于2p,通径是过焦点最短的弦.【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”)(1)平面内与一个定点F和一条定直线l的距离相等的点的轨迹一定是抛物线.( ×)(2)方程y=ax2(a≠0)表示的曲线是焦点在x轴上的抛物线,且其焦点坐标是(,0),准线方程是x=-.( ×)(3)抛物线既是中心对称图形,又是轴对称图形.( ×)(4)AB为抛物线y2=2px(p>0)的过焦点F(,0)的弦,若A(x1,y1),B(x2,y2),则x1x2=,y1y2=-p2,弦长|AB|=x1+x2+p.( √)1.(2016·四川)抛物线y2=4x的焦点坐标是( )A.(0,2) B.(0,1)C.(2,0) D.(1,0)答案D解析∵对于抛物线y2=ax,其焦点坐标为,∴对于y2=4x,焦点坐标为(1,0).2.(2016·张掖一诊)过抛物线y2=4x的焦点的直线l交抛物线于P(x1,y1),Q(x2,y2)两点,如果x1+x2=6,则|PQ|等于( )A.9 B.8 C.7 D.6答案B解析抛物线y2=4x的焦点为F(1,0),准线方程为x=-1.根据题意,可得|PQ|=|PF|+|QF|=x1+1+x2+1=x1+x2+2=8.3.设抛物线y2=8x的准线与x轴交于点Q,若过点Q的直线l与抛物线有公共点,则直线l的斜率的取值范围是( )A. B.[-2,2]C.[-1,1] D.[-4,4]答案C解析Q(-2,0),设直线l的方程为y=k(x+2),代入抛物线方程,消去y整理得k2x2+(4k2-8)x+4k2=0,由Δ=(4k2-8)2-4k2·4k2=64(1-k2)≥0,解得-1≤k≤1.4.(教材改编)已知抛物线的顶点是原点,对称轴为坐标轴,并且经过点P(-2,-4),则该抛物线的标准方程为________________.答案y2=-8x或x2=-y解析设抛物线方程为y2=2px(p≠0)或x2=2py(p≠0).将P(-2,-4)代入,分别得方程为y2=-8x或x2=-y.5.(2017·合肥月考)已知抛物线y2=2px(p>0)的准线与圆x2+y2-6x-7=0相切,则p的值为________.答案2解析抛物线y2=2px(p>0)的准线为x=-,圆x2+y2-6x-7=0,即(x-3)2+y2=16,则圆心为(3,0),半径为4.又因为抛物线y2=2px(p>0)的准线与圆x2+y2-6x-7=0相切,所以3+=4,解得p=2.题型一抛物线的定义及应用例1 设P是抛物线y2=4x上的一个动点,若B(3,2),则|PB|+|PF|的最小值为________.答案4解析如图,过点B作BQ垂直准线于点Q,交抛物线于点P1,则|P1Q|=|P1F|.则有|PB|+|PF|≥|P1B|+|P1Q|=|BQ|=4.即|PB|+|PF|的最小值为4.引申探究1.若将本例中的B点坐标改为(3,4),试求|PB|+|PF|的最小值.解由题意可知点(3,4)在抛物线的外部.∵|PB|+|PF|的最小值即为B,F两点间的距离,∴|PB|+|PF|≥|BF|=42+22==2,即|PB|+|PF|的最小值为2.2.若将本例中的条件改为:已知抛物线方程为y2=4x,直线l的方程为x-y+5=0,在抛物线上有一动点P到y轴的距离为d1,到直线l的距离为d2,求d1+d2的最小值.解由题意知,抛物线的焦点为F(1,0).点P到y轴的距离d1=|PF|-1,所以d1+d2=d2+|PF|-1.易知d2+|PF|的最小值为点F到直线l的距离,故d2+|PF|的最小值为=3,所以d1+d2的最小值为3-1.思维升华与抛物线有关的最值问题,一般情况下都与抛物线的定义有关.由于抛物线的定义在运用上有较大的灵活性,因此此类问题也有一定的难度.“看到准线想焦点,看到焦点想准线”,这是解决抛物线焦点弦有关问题的重要途径.(2016·××市铁一中学模拟)已知点P是抛物线y2=-8x上一点,设P到此抛物线准线的距离是d1,到直线x+y-10=0的距离是d2,则d1+d2的最小值是( )A. B.2 C.6 D.3答案C解析∵抛物线方程是y2=-8x,∴抛物线的焦点为F(-2,0),准线方程是x=2(如图),∴d1+d2的最小值是焦点F到直线x+y-10=0的距离,即(d1+d2)min==6.题型二抛物线的标准方程和几何性质命题点1 求抛物线的标准方程例2 已知双曲线C1:-=1(a>0,b>0)的离心率为2.若抛物线C2:x2=2py(p>0)的焦点到双曲线C1的渐近线的距离为2,则抛物线C2的方程为( ) A .x2=y B .x2=y C .x2=8y D .x2=16y答案 D解析 ∵-=1的离心率为2, ∴=2,即==4,∴=3,=.x2=2py(p>0)的焦点坐标为,-=1的渐近线方程为y =±x,即y =±x.由题意得=2,∴p=8.故C2的方程为x2=16y.命题点2 抛物线的几何性质例3 已知抛物线y2=2px(p>0)的焦点为F ,A(x1,y1),B(x2,y2)是过F 的直线与抛物线的两个交点,求证: (1)y1y2=-p2,x1x2=; (2)+为定值;(3)以AB 为直径的圆与抛物线的准线相切. 证明 (1)由已知得抛物线焦点坐标为(,0). 由题意可设直线方程为x =my +,代入y2=2px , 得y2=2p ,即y2-2pmy -p2=0.(*)则y1,y2是方程(*)的两个实数根,所以y1y2=-p2. 因为y =2px1,y =2px2,所以yy =4p2x1x2, 所以x1x2===. (2)+=+1x2+p 2=.因为x1x2=,x1+x2=|AB|-p,代入上式,得+==(定值).(3)设AB的中点为M(x0,y0),分别过A,B作准线的垂线,垂足为C,D,过M作准线的垂线,垂足为N,则|MN|=(|AC|+|BD|)=(|AF|+|BF|)=|AB|.所以以AB为直径的圆与抛物线的准线相切.思维升华(1)求抛物线标准方程的常用方法是待定系数法,其关键是判断焦点位置、开口方向,在方程的类型已经确定的前提下,由于标准方程只有一个参数p,只需一个条件就可以确定抛物线的标准方程.(2)在解决与抛物线的性质有关的问题时,要注意利用几何图形的形象、直观的特点来解题,特别是涉及焦点、顶点、准线的问题更是如此.(1)(2016·全国乙卷)以抛物线C的顶点为圆心的圆交C于A,B两点,交C的准线于D,E两点.已知|AB|=4,|DE|=2,则C 的焦点到准线的距离为( )A.2 B.4 C.6 D.8(2)(2016·昆明三中、玉溪一中统考)抛物线y2=2px(p>0)的焦点为F,已知点A、B 为抛物线上的两个动点,且满足∠AFB=120°.过弦AB的中点M作抛物线准线的垂线MN,垂足为N,则的最大值为( )A. B.1 C. D.2答案(1)B (2)A解析(1)不妨设抛物线C:y2=2px(p>0),则圆的方程可设为x2+y2=r2(r>0),如图,又可设A(x0,2),D,点A(x0,2)在抛物线y2=2px上,∴8=2px0,①点A(x0,2)在圆x2+y2=r2上,∴x+8=r2,②点D在圆x2+y2=r2上,∴5+2=r2,③联立①②③,解得p=4,即C的焦点到准线的距离为p=4,故选B.(2)设|AF|=a,|BF|=b,分别过A、B作准线的垂线,垂足分别为Q、P,由抛物线的定义知,|AF|=|AQ|,|BF|=|BP|,在梯形ABPQ中,2|MN|=|AQ|+|BP|=a+b.|AB|2=a2+b2-2abc os 120°=a2+b2+ab=(a+b)2-ab.又ab≤()2,所以(a+b)2-ab≥(a+b)2-(a+b)2=(a+b)2,得到|AB|≥(a+b),所以≤=,即的最大值为.题型三直线与抛物线的综合问题命题点1 直线与抛物线的交点问题例4 已知抛物线C:y2=8x与点M(-2,2),过C的焦点且斜率为k的直线与C交于A、B两点.若·=0,则k=________.答案2解析抛物线C的焦点为F(2,0),则直线方程为y=k(x-2),与抛物线方程联立,消去y化简得k2x2-(4k2+8)x+4k2=0.设点A(x1,y1),B(x2,y2).则x1+x2=4+,x1x2=4,所以y1+y2=k(x1+x2)-4k=,y1y2=k2[x1x2-2(x1+x2)+4]=-16.因为·=(x1+2,y1-2)·(x2+2,y2-2)=(x1+2)(x2+2)+(y1-2)(y2-2)=x1x2+2(x1+x2)+y1y2-2(y1+y2)+8=0,将上面各个量代入,化简得k2-4k+4=0,所以k=2.命题点2 与抛物线弦的中点有关的问题例5 (2016·全国丙卷)已知抛物线C:y2=2x的焦点为F,平行于x轴的两条直线l1,l2分别交C于A,B两点,交C的准线于P,Q两点.(1)若F在线段AB上,R是PQ的中点,证明:AR∥FQ;(2)若△PQF的面积是△ABF的面积的两倍,求AB中点的轨迹方程.(1)证明由题意知,F,设l1:y=a,l2:y=b,则ab≠0,且A,B,P,Q,R.记过A,B两点的直线为l,则l的方程为2x-(a+b)y+ab=0.由于F在线段AB上,故1+ab=0.记AR的斜率为k1,FQ的斜率为k2,则k1====-=-b==k2.所以AR∥FQ.(2)解设过AB的直线为l,设l与x轴的交点为D(x1,0),则S△ABF=|b-a||FD|=|b-a|,S△PQF=.由题意可得|b-a|=,所以x1=1,x1=0(舍去).设满足条件的AB的中点为E(x,y).当AB与x轴不垂直时,由kAB=kDE可得=(x≠1).而=y,所以y2=x-1(x≠1).当AB与x轴垂直时,E与D重合,此时E点坐标为(1,0),所以,所求轨迹方程为y2=x-1(x≠1).思维升华(1)直线与抛物线的位置关系和直线与椭圆、双曲线的位置关系类似,一般要用到根与系数的关系.(2)有关直线与抛物线的弦长问题,要注意直线是否过抛物线的焦点.若过抛物线的焦点,可直接使用公式|AB|=x1+x2+p,若不过焦点,则必须用一般弦长公式.(3)涉及抛物线的弦长、中点、距离等相关问题时,一般利用根与系数的关系采用“设而不求”、“整体代入”等解法.提醒:涉及弦的中点、斜率时一般用“点差法”求解.(2016·北京东××区质检)已知抛物线C:y2=2px(p>0)的焦点为F,直线y=4与y轴的交点为P,与C的交点为Q,且|QF|=|PQ|.(1)求C的方程;(2)过F的直线l与C相交于A、B两点,若AB的垂直平分线l′与C相交于M、N两点,且A、M、B、N四点在同一圆上,求l的方程.解(1)设Q(x0,4),代入y2=2px,得x0=.所以|PQ|=,|QF|=+x0=+.由题设得+=×,解得p=-2(舍去)或p=2.所以C的方程为y2=4x.(2)依题意知l与坐标轴不垂直,故可设l的方程为x=my+1(m≠0).代入y2=4x,得y2-4my-4=0.设A(x1,y1),B(x2,y2),则y1+y2=4m,y1y2=-4.故AB的中点为D(2m2+1,2m),|AB|=|y1-y2|=4(m2+1).又l′的斜率为-m,所以l′的方程为x=-y+2m2+3.将上式代入y2=4x,并整理得y2+y-4(2m2+3)=0.设M(x3,y3),N(x4,y4),则y3+y4=-,y3y4=-4(2m2+3).故MN的中点为E(+2m2+3,-),|MN|= |y3-y4|=,由于MN垂直平分AB,故A,M,B,N四点在同一圆上等价于|AE|=|BE|=|MN|,从而|AB|2+|DE|2=|MN|2,即4(m2+1)2+(2m+)2+(+2)2=,化简得m2-1=0,解得m=1或m=-1.所求直线l的方程为x-y-1=0或x+y-1=0.7.直线与圆锥曲线问题的求解策略典例(12分)已知抛物线C:y=mx2(m>0),焦点为F,直线2x-y+2=0交抛物线C 于A,B两点,P是线段AB的中点,过P作x轴的垂线交抛物线C于点Q.(1)求抛物线C的焦点坐标;(2)若抛物线C上有一点R(xR,2)到焦点F的距离为3,求此时m的值;(3)是否存在实数m,使△ABQ是以Q为直角顶点的直角三角形?若存在,求出m的值;若不存在,请说明理由.思维点拨(3)中证明·=0.规范解答解(1)∵抛物线C:x2=y,∴它的焦点F(0,).[2分](2)∵|RF|=yR +,∴2+=3,得m =.[4分](3)存在,联立方程⎩⎪⎨⎪⎧ y =mx2,2x -y +2=0,消去y 得mx2-2x -2=0,依题意,有Δ=(-2)2-4×m×(-2)>0⇒m>-.[6分]设A(x1,mx),B(x2,mx),则(*)∵P 是线段AB 的中点,∴P(,),即P(,yP),∴Q(,).[8分]得=(x1-,mx -),=(x2-,mx -),若存在实数m ,使△ABQ 是以Q 为直角顶点的直角三角形,则·=0,即(x1-)·(x2-)+(mx -)(mx -)=0,[10分]结合(*)化简得--+4=0,即2m2-3m -2=0,∴m=2或m =-,而2∈(-,+∞),-∉(-,+∞).∴存在实数m =2,使△ABQ 是以Q 为直角顶点的直角三角形.[12分]解决直线与圆锥曲线的位置关系的一般步骤:第一步:联立方程,得关于x 或y 的一元二次方程;第二步:写出根与系数的关系,并求出Δ>0时参数范围(或指出直线过曲线内一点); 第三步:根据题目要求列出关于x1x2,x1+x2(或y1y2,y1+y2)的关系式,求得结果;第四步:反思回顾,查看有无忽略特殊情况.1.(2017·昆明质检)已知抛物线C 的顶点是原点O ,焦点F 在x 轴的正半轴上,经过F 的直线与抛物线C 交于A 、B 两点,如果·=-12,那么抛物线C 的方程为( )A.x2=8y B.x2=4yC.y2=8x D.y2=4x答案C解析由题意,设抛物线方程为y2=2px(p>0),直线方程为x=my+,联立消去x得y2-2pmy-p2=0,设A(x1,y1),B(x2,y2),则y1+y2=2pm,y1y2=-p2,得·=x1x2+y1y2=(my1+)(my2+)+y1y2=m2y1y2+(y1+y2)++y1y2=-p2=-12⇒p=4,即抛物线C的方程为y2=8x.2.已知抛物线y2=2px(p>0),过其焦点且斜率为1的直线交抛物线于A、B两点,若线段AB的中点的纵坐标为2,则该抛物线的准线方程为( )A.x=1 B.x=-1C.x=2 D.x=-2答案B解析∵y2=2px(p>0)的焦点坐标为(,0),∴过焦点且斜率为1的直线方程为y=x-,即x=y+,将其代入y2=2px,得y2=2py+p2,即y2-2py-p2=0.设A(x1,y1),B(x2,y2),则y1+y2=2p,∴=p=2,∴抛物线的方程为y2=4x,其准线方程为x=-1.3.(2016·上饶四校联考)设抛物线C:y2=3px(p>0)的焦点为F,点M在C上,|MF|=5,若以MF为直径的圆过点(0,2),则抛物线C的方程为( )A.y2=4x或y2=8xB.y2=2x或y2=8xC.y2=4x或y2=16xD.y2=2x或y2=16x答案C解析∵抛物线C:y2=3px(p>0)的焦点为F(,0),∴|OF|=,∵以MF为直径的圆过点(0,2),设A(0,2),连接AF,AM,可得AF⊥AM,在Rt△AOF 中,|AF|=,∴sin∠OAF==,根据抛物线的定义,得直线AO切以MF为直径的圆于点A,∴∠OAF=∠AMF,可得在Rt△AMF中,sin∠AMF==,∵|MF|=5,|AF|=,∴ =,整理得4+=,解得p=或p=,∴C的方程为y2=4x或y2=16x.4.已知抛物线y2=2px(p>0)的焦点弦AB的两端点坐标分别为A(x1,y1),B(x2,y2),则的值一定等于( )A.-4 B.4C.p2 D.-p2答案A解析①若焦点弦AB⊥x轴,则x1=x2=,∴x1x2=;∴y1=p,y2=-p,∴y1y2=-p2,∴=-4.②若焦点弦AB不垂直于x轴,可设AB的直线方程为y=k(x-),联立y2=2px,得k2x2-(k2p+2p)x+=0,则x1x2=.∴y1y2=-p2.故=-4.5.(2016·江西南昌第一次模拟)已知抛物线C:y2=8x的焦点为F,准线为l,P是l上一点,Q是线段PF与C的一个交点,若|FP|=3|QF|,则|QF|等于( )A. B. C.3 D.2答案A解析如图所示,过点Q作QM⊥l,设l与x轴交于点K,由抛物线定义知,|MQ|=|QF|,由△PMQ∽△PKF,得|MQ|:|KF|=|PQ|∶|PF|=2∶3,所以|QF|=|MQ|=|KF|=×4=,故选A.6.抛物线y2=4x的焦点为F,点P(x,y)为该抛物线上的动点,若点A(-1,0),则的最小值是( )A. B. C. D.223答案B解析抛物线y2=4x的准线方程为x=-1,如图,过P作PN垂直直线x=-1于N,由抛物线的定义可知|PF|=|PN|,连接PA,在Rt△PAN中,sin∠PAN=,当=最小时,sin∠PAN最小,即∠P AN最小,即∠PAF最大,此时,PA为抛物线的切线,设PA的方程为y=k(x+1),联立得k2x2+(2k2-4)x+k2=0,所以Δ=(2k2-4)2-4k4=0,解得k=±1,所以∠PAF=∠NPA=45°,|PF|==cos∠NPA=,故选B.|PA|7.设F为抛物线C:y2=3x的焦点,过F且倾斜角为30°的直线交C于A,B两点,则|AB|=________.答案12解析焦点F的坐标为,方法一直线AB的斜率为,所以直线AB的方程为y=,即y=x-,代入y2=3x,得x2-x+=0.设A(x1,y1),B(x2,y2),则x1+x2=,所以|AB|=x1+x2+p=+=12.方法二由抛物线焦点弦的性质可得|AB|===12.8.已知抛物线C:y2=2px(p>0)的准线为l,过M(1,0)且斜率为的直线与l相交于点A,与C的一个交点为B,若=,则p=________.答案2解析如图,由AB的斜率为,知∠α=60°,又=,∴M为AB的中点.过点B作BP垂直准线l于点P,则∠ABP=60°,∴∠BAP=30°,∴|BP|=|AB|=|BM|.∴M为焦点,即=1,∴p=2.9.已知椭圆E的中心在坐标原点,离心率为,E的右焦点与抛物线C:y2=8x的焦点重合,A,B是C的准线与E的两个交点,则|AB|=________.答案6解析抛物线y2=8x的焦点为(2,0),准线方程为x=-2.设椭圆方程为+=1(a>b>0),由题意,c=2,=,可得a=4,b2=16-4=12.故椭圆方程为+=1.把x=-2代入椭圆方程,解得y=±3.从而|AB|=6.10.设直线l与抛物线y2=4x相交于A,B两点,与圆(x-5)2+y2=r2(r>0)相切于点M,且M为线段AB的中点.若这样的直线l恰有4条,则r的取值范围是________________.答案(2,4)解析如图,设A(x1,y1),B(x2,y2),M(x0,y0),则⎩⎪⎨⎪⎧ y21=4x1,y22=4x2,两式相减,得(y1+y2)(y1-y2)=4(x1-x2).当l 的斜率k 不存在时,符合条件的直线l 必有两条.当k 存在时,x1≠x2,则有·=2,又y1+y2=2y0,所以y0k =2.由CM⊥AB,得k·=-1,即y0k =5-x0,因此2=5-x0,x0=3,即M 必在直线x =3上.将x =3代入y2=4x ,得y2=12,则有-2<y0<2.因为点M 在圆上,所以(x0-5)2+y =r2,故r2=y +4<12+4=16.又y +4>4(为保证有4条,在k 存在时,y0≠0),所以4<r2<16,即2<r<4.11.(2016·沈阳模拟)已知过抛物线y2=2px(p>0)的焦点,斜率为2的直线交抛物线于A(x1,y1),B(x2,y2)(x1<x2)两点,且|AB|=9.(1)求该抛物线的方程;(2)O 为坐标原点,C 为抛物线上一点,若=+λ,求λ的值.解 (1)直线AB 的方程是y =2(x -),与y2=2px 联立,从而有4x2-5px +p2=0. 所以x1+x2=,由抛物线定义得|AB|=x1+x2+p=+p=9,所以p=4,从而抛物线方程为y2=8x.(2)由于p=4,则4x2-5px+p2=0,即x2-5x+4=0,从而x1=1,x2=4,于是y1=-2,y2=4,从而B(4,4).设C(x3,y3),则=(x3,y3)=(1,-2)+λ(4,4)=(4λ+1,4λ-2).又y=8x3,即[2(2λ-1)]2=8(4λ+1),整理得(2λ-1)2=4λ+1,解得λ=0或λ=2.12.设P,Q是抛物线y2=2px(p>0)上相异两点,P,Q到y轴的距离的积为4,且·=0.(1)求该抛物线的标准方程;(2)过点Q的直线与抛物线的另一交点为R,与x轴的交点为T,且Q为线段RT的中点,试求弦PR长度的最小值.解(1)设P(x1,y1),Q(x2,y2),∵·=0,则x1x2+y1y2=0.又点P,Q在抛物线上,∴y=2px1,y=2px2,代入得·+y1y2=0,y1y2=-4p2,∴|x1x2|==4p2.又|x1x2|=4,∴4p2=4,p =1,∴抛物线的标准方程为y2=2x.(2)设直线PQ 过点E(a,0)且方程为x =my +a ,联立方程组⎩⎪⎨⎪⎧ x =my +a ,y2=2x ,消去x 得y2-2my -2a =0,∴①设直线PR 与x 轴交于点M(b,0),则可设直线PR 的方程为x =ny +b ,并设R(x3,y3),同理可知,②由①②可得=.由题意得,Q 为线段RT 的中点,∴y3=2y2,∴b=2a.又由(1)知,y1y2=-4,代入①,可得-2a =-4,∴a=2,∴b=4,y1y3=-8,∴|PR|=|y1-y3|=·y1+y32-4y1y3=2·≥4.当n =0,即直线PR 垂直于x 轴时,|PR|取最小值4.13.如图,由部分抛物线:y2=mx +1(m>0,x≥0)和半圆x2+y2=r2(x≤0)所组成的曲线称为“黄金抛物线C”,若“黄金抛物线C”经过点(3,2)和(-,).(1)求“黄金抛物线C”的方程;(2)设P(0,1)和Q(0,-1),过点P 作直线l 与“黄金抛物线C”相交于A ,P ,B 三点,问是否存在这样的直线l ,使得QP 平分∠AQB?若存在,求出直线l 的方程;若不存在,说明理由.解 (1)∵“黄金抛物线C”过点(3,2)和(-,),∴r2=(-)2+()2=1,4=3m +1,∴m=1.∴“黄金抛物线C”的方程为y2=x +1(x≥0)和x2+y2=1(x≤0).(2)假设存在这样的直线l ,使得QP 平分∠AQB,显然直线l 的斜率存在且不为0, 设直线l :y =kx +1,联立消去y ,得k2x2+(2k -1)x =0,∴xB=,yB =,即B(,),∴kBQ=,联立⎩⎪⎨⎪⎧ y =kx +1,x2+y2=1,消去y ,得(k2+1)x2+2kx =0,∴xA=-,yA =,即A(-,),∴kAQ=-,∵QP 平分∠AQB,∴kAQ+kBQ =0,∴-=0,解得k =-1±,由图形可得k =-1-应舍去,∴k=-1,∴存在直线l :y =(-1)x +1,使得QP 平分∠AQB.。
1抛物线的定义:平面内与一个定点F 和一条定直线l 的距离相等的点的轨迹叫做抛物线,定点F 叫做抛物线的焦点,定直线l 叫做抛物线的准线. 2抛物线的图形和性质:①顶点是焦点向准线所作垂线段中点。
②焦准距:FK p =③通径:过焦点垂直于轴的弦长为2p 。
④顶点平分焦点到准线的垂线段:2p OF OK ==。
⑤焦半径为半径的圆:以P 为圆心、FP 为半径的圆必与准线相切。
所有这样的圆过定点F 、准线是公切线。
⑥焦半径为直径的圆:以焦半径 FP 为直径的圆必与过顶点垂直于轴的直线相切。
所有这样的圆过定点F 、过顶点垂直于轴的直线是公切线。
⑦焦点弦为直径的圆:以焦点弦PQ 为直径的圆必与准线相切。
所有这样的圆的公切线是准线。
3抛物线标准方程的四种形式:,,px y px y 2222-==。
,py x py x 2222-== 4抛物线px y 22=的图像和性质:①焦点坐标是:⎪⎭⎫⎝⎛02,p ,②准线方程是:2p x -=。
③焦半径公式:若点),(00y x P 是抛物线px y 22=上一点,则该点到抛物线的焦点的距离(称为焦半径)是:02p PF x =+, ④焦点弦长公式:过焦点弦长121222p pPQ x x x x p =+++=++ ⑤抛物线px y 22=上的动点可设为P ),2(2y py 或2(2,2)P pt pt 或P px y y x 2),(2=其中一般情况归纳:抛物线的定义:例1:点M 与点F (-4,0)的距离比它到直线l :x -6=0的距离4.2,求点M 的轨迹方程. 分析:点M 到点F 的距离与到直线x =4的距离恰好相等,符合抛物线定义.例2:斜率为1的直线l 经过抛物线y 2=4x 的焦点,与抛物线相交于点A 、B ,求线段A 、B 的长.分析:这是灵活运用抛物线定义的题目.基本思路是:把求弦长AB 转化为求A 、B 两点到准线距离的和.解:如图8-3-1,y 2=4x 的焦点为F (1,0),则l 的方程为y =x -1.由⎩⎨⎧+==142x y x y 消去y 得x 2-6x +1=0. 设A (x 1,y 1),B (x 2,y 2) 则x 1+x 2=6. 又A 、B 两点到准线的距离为A ',B ',则()()()8262112121=+=++=+++='+'x x x x B B A A点评:抛物线的定义本身也是抛物线最本质的性质,在解题中起到至关重要的作用。
第7讲 抛物线[基础题组练]1.(2019·高考全国卷Ⅱ)若抛物线y 2=2px (p >0)的焦点是椭圆x 23p +y 2p=1的一个焦点,则p =( )A .2B .3C .4D .8解析:选D.由题意,知抛物线的焦点坐标为⎝ ⎛⎭⎪⎫p2,0,椭圆的焦点坐标为(±2p ,0),所以p2=2p ,解得p =8,故选D. 2.若点A ,B 在抛物线y 2=2px (p >0)上,O 是坐标原点,若正三角形OAB 的面积为43,则该抛物线方程是( )A .y 2=233xB .y 2=3x C .y 2=23xD .y 2=33x 解析:选A.根据对称性,AB ⊥x 轴,由于正三角形的面积是43,故34AB 2=43,故AB =4,正三角形的高为23,故可设点A 的坐标为(23,2),代入抛物线方程得4=43p ,解得p =33,故所求抛物线的方程为y 2=233x .故选A. 3.(2019·甘肃张掖诊断)过抛物线y 2=4x 的焦点的直线l 交抛物线于P (x 1,y 1),Q (x 2,y 2)两点,如果x 1+x 2=6,则|PQ |=( )A .9B .8C .7D .6解析:选B.抛物线y 2=4x 的焦点为F (1,0),准线方程为x =-1.根据题意可得,|PQ |=|PF |+|QF |=x 1+1+x 2+1=x 1+x 2+2=8.故选B.4.(2019·昆明调研)过抛物线C :y 2=2px (p >0)的焦点F 且倾斜角为锐角的直线l 与C 交于A ,B 两点,过线段AB 的中点N 且垂直于l 的直线与C 的准线交于点M ,若|MN |=|AB |,则l 的斜率为( )A.13B.33C.32D .1解析:选B.设抛物线的准线为m ,分别过点A ,N ,B 作AA ′⊥m ,NN ′⊥m ,BB ′⊥m ,垂足分别为A ′,N ′,B ′.因为直线l 过抛物线的焦点,所以|BB ′|=|BF |,|AA ′|=|AF |.又N 是线段AB 的中点,|MN |=|AB |,所以|NN ′|=12(|BB ′|+|AA ′|)=12(|BF |+|AF |)=12|AB |=12|MN |,所以∠MNN ′=60°,则直线MN 的倾斜角为120°.又MN ⊥l ,所以直线l 的倾斜角为30°,斜率是33.故选B. 5.(2019·合肥模拟)已知直线y =k (x +2)(k >0)与抛物线C :y 2=8x 相交于A ,B 两点,F 为C 的焦点.若|FA |=2|FB |,则k =( )A.13B.23C.23D.223解析:选D.设抛物线C :y 2=8x 的准线为l ,易知l :x =-2, 直线y =k (x +2)恒过定点P (-2,0),如图,过A ,B 分别作AM ⊥l 于点M ,BN ⊥l 于点N ,由|FA |=2|FB |,知|AM |=2|BN |, 所以点B 为线段AP 的中点,连接OB , 则|OB |=12|AF |,所以|OB |=|BF |,所以点B 的横坐标为1, 因为k >0,所以点B 的坐标为(1,22), 所以k =22-01-(-2)=223.故选D.6.抛物线C :y 2=2px (p >0)的焦点为F ,点O 是坐标原点,过点O ,F 的圆与抛物线C 的准线相切,且该圆的面积为36π,则抛物线的方程为________.解析:设满足题意的圆的圆心为M . 根据题意可知圆心M 在抛物线上, 又因为圆的面积为36π,所以圆的半径为6,则|MF |=x M +p 2=6,即x M =6-p2,又由题意可知x M =p 4,所以p 4=6-p2,解得p =8.所以抛物线方程为y 2=16x . 答案:y 2=16x7.设抛物线C :y 2=4x 的焦点为F ,过点(-2,0)且斜率为23的直线与C 交于M ,N 两点,则FM →·FN →=________.解析:设M (x 1,y 1),N (x 2,y 2).由已知可得直线的方程为y =23(x +2),即x =32y -2,由⎩⎪⎨⎪⎧y 2=4x ,x =32y -2得y 2-6y +8=0. 由根与系数的关系可得y 1+y 2=6,y 1y 2=8,所以x 1+x 2=32(y 1+y 2)-4=5,x 1x 2=(y 1y 2)216=4,因为F (1,0),所以FM →·FN →=(x 1-1)·(x 2-1)+y 1y 2=x 1x 2-(x 1+x 2)+1+y 1y 2=4-5+1+8=8.答案:88.(一题多解)(2018·高考全国卷Ⅲ)已知点M (-1,1)和抛物线C :y 2=4x ,过C 的焦点且斜率为k 的直线与C 交于A ,B 两点.若∠AMB =90°,则k =________.解析:法一:由题意知抛物线的焦点为(1,0),则过C 的焦点且斜率为k 的直线方程为y=k (x -1)(k ≠0),由⎩⎪⎨⎪⎧y =k (x -1),y 2=4x ,消去y 得k 2(x -1)2=4x ,即k 2x 2-(2k 2+4)x +k 2=0,设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=2k 2+4k 2,x 1x 2=1.由⎩⎪⎨⎪⎧y =k (x -1),y 2=4x ,消去x 得y 2=4⎝ ⎛⎭⎪⎫1k y +1,即y 2-4k y -4=0,则y 1+y 2=4k,y 1y 2=-4,由∠AMB =90°,得MA →·MB →=(x 1+1,y 1-1)·(x 2+1,y 2-1)=x 1x 2+x 1+x 2+1+y 1y 2-(y 1+y 2)+1=0,将x 1+x 2=2k 2+4k 2,x 1x 2=1与y 1+y 2=4k,y 1y 2=-4代入,得k =2.法二:设抛物线的焦点为F ,A (x 1,y 1),B (x 2,y 2),则⎩⎪⎨⎪⎧y 21=4x 1,y 22=4x 2,所以y 21-y 22=4(x 1-x 2),则k =y 1-y 2x 1-x 2=4y 1+y 2,取AB 的中点M ′(x 0,y 0),分别过点A ,B 作准线x =-1的垂线,垂足分别为A ′,B ′,又∠AMB =90°,点M 在准线x =-1上,所以|MM ′|=12|AB |=12(|AF |+|BF |)=12(|AA ′|+|BB ′|).又M ′为AB 的中点,所以MM ′平行于x 轴,且y 0=1,所以y 1+y 2=2,所以k =2.答案:29.已知抛物线y 2=2px (p >0)的焦点为F ,A 是抛物线上横坐标为4,且位于x 轴上方的点,A 到抛物线准线的距离等于5,过A 作AB 垂直于y 轴,垂足为B ,OB 的中点为M .(1)求抛物线的方程;(2)若过M 作MN ⊥FA ,垂足为N ,求点N 的坐标. 解:(1)抛物线y 2=2px 的准线为x =-p2,于是4+p2=5,所以p =2.所以抛物线方程为y 2=4x . (2)因为点A 的坐标是(4,4), 由题意得B (0,4),M (0,2). 又因为F (1,0),所以k FA =43,因为MN ⊥FA ,所以k MN =-34.又FA 的方程为y =43(x -1),①MN 的方程为y -2=-34x ,②联立①②,解得x =85,y =45,所以点N 的坐标为⎝ ⎛⎭⎪⎫85,45. 10.已知过抛物线y 2=2px (p >0)的焦点,斜率为22的直线交抛物线于A (x 1,y 1),B (x 2,y 2)(x 1<x 2)两点,且|AB |=9.(1)求该抛物线的方程;(2)O 为坐标原点,C 为抛物线上一点,若OC →=OA →+λOB →,求λ的值.解:(1)由题意得直线AB 的方程为y =22·⎝ ⎛⎭⎪⎫x -p 2,与y 2=2px 联立,消去y 有4x 2-5px +p 2=0, 所以x 1+x 2=5p4.由抛物线定义得|AB |=x 1+x 2+p =5p4+p =9,所以p =4,从而该抛物线的方程为y 2=8x . (2)由(1)得4x 2-5px +p 2=0, 即x 2-5x +4=0, 则x 1=1,x 2=4,于是y 1=-22,y 2=42,从而A (1,-22),B (4,42),设C (x 3,y 3), 则OC →=(x 3,y 3)=(1,-22)+λ(4,42) =(4λ+1,42λ-22).又y 23=8x 3,所以[22(2λ-1)]2=8(4λ+1), 整理得(2λ-1)2=4λ+1, 解得λ=0或λ=2.[综合题组练]1.(2019·重庆六校联考)已知双曲线C 1:x 2a 2-y 2b2=1(a >0,b >0)的离心率为2,若抛物线C 2:x 2=2py (p >0)的焦点到双曲线C 1的渐近线的距离为2,则抛物线C 2的方程是( )A .x 2=16yB .x 2=8y C .x 2=833yD .x 2=1633y解析:选A.因为双曲线C 1:x 2a 2-y 2b 2=1(a >0,b >0)的离心率为2,所以c a =2,即a 2+b 2a 2=4,所以b 2a 2=3.因为双曲线的渐近线方程为bx ±ay =0,抛物线C 2:x 2=2py (p >0)的焦点⎝ ⎛⎭⎪⎫0,p 2到双曲线的渐近线的距离为2,所以⎪⎪⎪⎪⎪⎪a ·p 2a 2+b2=2,解得p =8,所以抛物线C 2的方程是x 2=16y .2.(2019·湖南郴州模拟)如图,过抛物线y 2=2px (p >0)的焦点F 的直线交抛物线于点A ,B ,交其准线l 于点C ,若|BC |=2|BF |,且|AF |=3,则此抛物线的方程是( )A .y 2=9x B .y 2=6x C .y 2=3xD .y 2=3x解析:选C.设A ,B 在准线l 上的射影分别为A 1,B 1,如图,由于|BC |=2|BF |=2|BB 1|,则直线AB 的斜率为3,故|AC |=2|AA 1|=2|AF |=6, 从而|BF |=1,|AB |=4, 故p |AA 1|=|CF ||AC |=12,即p =32, 从而抛物线的方程为y 2=3x ,故选C.3.(2019·广东六校第一次联考)抛物线y =2x 2上有一动弦AB ,中点为M ,且弦AB 的长为3,则点M 的纵坐标的最小值为( )A.118 B.54 C.32D .1 解析:选A.由题意设A (x 1,y 1),B (x 2,y 2),M (x 0,y 0),直线AB 的方程为y =kx +b .由题意知y 0≥b >0,联立得⎩⎪⎨⎪⎧y =kx +b y =2x 2,整理得2x 2-kx -b =0,Δ=k 2+8b >0,x 1+x 2=k 2,x 1x 2=-b2,则|AB |=1+k2k 24+2b ,点M 的纵坐标y 0=y 1+y 22=x 21+x 22=k 24+b .因为弦AB 的长为3,所以1+k2k 24+2b =3,即(1+k 2)(k 24+2b )=9,故(1+4y 0-4b )(y 0+b )=9,即(1+4y 0-4b )(4y 0+4b )=36.由基本不等式得,(1+4y 0-4b )+(4y 0+4b )≥2(1+4y 0-4b )(4y 0+4b )=12,当且仅当⎩⎪⎨⎪⎧b =18y 0=118时取等号,即1+8y 0≥12,y 0≥118,点M 的纵坐标的最小值为118,故选A.4.已知直线y =a 交抛物线y =x 2于A ,B 两点.若该抛物线上存在点C ,使得∠ACB 为直角,则实数a 的取值范围为________.解析:如图,设C (x 0,x 20)(x 20≠a ),A (-a ,a ),B (a ,a ), 则CA →=(-a -x 0,a -x 20),CB →=(a -x 0,a -x 20).因为CA ⊥CB ,所以CA →·CB →=0,即-(a -x 20)+(a -x 20)2=0,(a -x 20)(-1+a -x 20)=0, 所以x 20=a -1≥0,所以a ≥1. 答案:[1,+∞)5.(应用型)(2019·湖南六校联考)已知抛物线的方程为x 2=2py (p >0),其焦点为F ,点O 为坐标原点,过焦点F 作斜率为k (k ≠0)的直线与抛物线交于A ,B 两点,过A ,B 两点分别作抛物线的两条切线,设两条切线交于点M .(1)求OA →·OB →;(2)设直线MF 与抛物线交于C ,D 两点,且四边形ACBD 的面积为323p 2,求直线AB 的斜率k .解:(1)设直线AB 的方程为y =kx +p 2,A (x 1,y 1),B (x 2,y 2),由⎩⎪⎨⎪⎧x 2=2py ,y =kx +p 2,得x 2-2pkx -p 2=0,则⎩⎪⎨⎪⎧x 1+x 2=2pk ,x 1·x 2=-p 2,所以y 1·y 2=p 24, 所以OA →·OB →=x 1·x 2+y 1·y 2=-34p 2.(2)由x 2=2py ,知y ′=x p,所以抛物线在A ,B 两点处的切线的斜率分别为x 1p ,x 2p ,所以直线AM 的方程为y -y 1=x 1p(x -x 1),直线BM 的方程为y -y 2=x 2p (x -x 2),则可得M ⎝⎛⎭⎪⎫pk ,-p 2.所以k MF =-1k,所以直线MF 与AB 相互垂直.由弦长公式知,|AB |=k 2+1|x 1-x 2|=k 2+1·4p 2k 2+4p 2=2p (k 2+1), 用-1k代替k 得,|CD |=2p ⎝ ⎛⎭⎪⎫1k 2+1,四边形ACBD 的面积S =12·|AB |·|CD |=2p 2⎝ ⎛⎭⎪⎫2+k 2+1k 2=323p 2,解得k 2=3或k 2=13,即k =±3或k =±33. 6.(创新型)(2019·武汉调研)已知抛物线C :x 2=2py (p >0)和定点M (0,1)设过点M 的动直线交抛物线C 于A ,B 两点,抛物线C 在A ,B 处的切线的交点为N .(1)若N 在以AB 为直径的圆上,求p 的值;(2)若△ABN 的面积的最小值为4,求抛物线C 的方程. 解:设直线AB :y =kx +1,A (x 1,y 1),B (x 2,y 2), 将直线AB 的方程代入抛物线C 的方程得x 2-2pkx -2p =0, 则x 1+x 2=2pk ,x 1x 2=-2p .①(1)由x 2=2py 得y ′=x p ,则A ,B 处的切线斜率的乘积为x 1x 2p 2=-2p, 因为点N 在以AB 为直径的圆上,所以AN ⊥BN , 所以-2p=-1,所以p =2.(2)易得直线AN :y -y 1=x 1p (x -x 1),直线BN :y -y 2=x 2p(x -x 2),联立,得⎩⎪⎨⎪⎧y -y 1=x1p(x -x 1),y -y 2=x2p (x -x 2),结合①式,解得⎩⎪⎨⎪⎧x =pk ,y =-1,即N (pk ,-1).|AB |=1+k 2|x 2-x 1|=1+k 2(x 1+x 2)2-4x 1x 2=1+k24p 2k 2+8p ,点N 到直线AB 的距离d =|kx N +1-y N |1+k 2=|pk 2+2|1+k2, 则△ABN 的面积S △ABN =12·|AB |·d =p (pk 2+2)3≥22p ,当k =0时,取等号,因为△ABN 的面积的最小值为4,所以22p =4,所以p =2,故抛物线C 的方程为x 2=4y .。
线练习理编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((江苏专用)2018版高考数学专题复习专题9 平面解析几何第64练抛物线练习理)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(江苏专用)2018版高考数学专题复习专题9 平面解析几何第64练抛物线练习理的全部内容。
物线练习理训练目标熟练掌握抛物线的定义及几何性质,能利用定义、几何性质解决有关问题.训练题型(1)求抛物线方程;(2)利用定义、几何性质求最值、参数范围、弦长等.解题策略(1)利用定义进行转化;(2)掌握关于弦长、焦半径的重要结论;(3)恰当运用函数与方程思想、数形结合思想.1.,焦点在x轴上,若曲线C经过点P(1,3),则其焦点到准线的距离为________.2.已知抛物线C:y2=8x的焦点为F,准线为l,P是l上一点,Q是直线PF与C的一个交点.若错误!=4错误!,则QF=____________.3.已知抛物线C:y2=4x,顶点为O,动直线l:y=k(x+1)与抛物线C交于A,B两点,则错误!·错误!的值为________.4.(2016·长春一模)过抛物线y2=2px(p>0)的焦点F且倾斜角为120°的直线l与抛物线在第一、四象限分别交于A、B两点,则错误!=________。
5.(2016·无锡模拟)如图,过抛物线y2=2px(p>0)的焦点F的直线l依次交抛物线及其准线于点A,B,C,若BC=2BF,且AF=3,则抛物线的方程是______________.6.(2016·黑龙江哈尔滨三中一模)直线l与抛物线C:y2=2x交于A,B两点,O为坐标原点.若直线OA,OB的斜率k1,k2满足k1k2=23,则l过定点________.7.(2016·常州模拟)如图,抛物线C:y2=2px(p>0)的焦点为F,A为抛物线C上的点,以F为圆心,错误!为半径的圆与直线AF在第一象限的交点为B,∠AFO=120°,A在y轴上的投影为N,则∠ONB=________.8.已知抛物线x2=4y上有一条长为6的动弦AB,则AB的中点到x轴的最短距离为________.9.(2016·福建质检)过抛物线y2=2px(p>0)的焦点作倾斜角为30°的直线l与抛物线交于P,Q两点,分别过P,Q两点作PP,QQ1垂直于抛线物的准线于P1,Q1,若PQ=2,则四边形PP1Q1Q1的面积是________.10.(2016·镇江模拟)已知过拋物线y2=4x的焦点F的直线交该抛物线于A,B两点,O是坐标原点,AF=2,则BF=______,△OAB的面积是________.11.如图是抛物线形拱桥,当水面在l时,拱顶离水面2米,水面宽4米.水位下降1米后,水面宽________米.12.(2016·石家庄质量检测二)设抛物线C:y2=4x的焦点为F,过F的直线l与抛物线交于A,B两点,M为抛物线C的准线与x轴的交点.若tan∠AMB=2错误!,则AB=________. 13.过抛物线y2=4x的焦点F作直线交抛物线于A,B两点,若AB=8,AF<BF,则BF=________。
解析几何(6)抛物线1、已知抛物线2:2C y x =,过原点作两条互相垂直的直线分别交C 于,A B 两点(,A B 均不与坐标原点重合),则抛物线的焦点F 到直线AB 距离的最大值为( ) A .2 B .3 C .32D .4 2、抛物线2?y x =上一点到直线240x y --=的距离最短的点的坐标是()A.()2,4B. 11,24⎛⎫ ⎪⎝⎭C. 39,24⎛⎫ ⎪⎝⎭D.()1,13、已知直线1:4360l x y -+=和直线2:1l x =-,抛物线24y x =上一动点P 到直线1l 和直线2l 的距离之和的最小值是( ) A.3716 B. 3 C.115D. 24、设抛物线24y x =上一点P 到此抛物线准线的距离为1d ,到直线:34120l x y ++=的距离为2d ,则12d d +的最小值为( ) A. 3?B.165 C. 185D. 45、抛物线2y x =-上的一点到直线4380x y +-=的距离的最小值是( )A.75B.85C.43D.3?6、直线l 与抛物线2:2C y x =交于,A B 两点, O 为坐标原点,若直线,OA OB 的斜率12k k ,满足1223k k =,则直线l 过定点( ) A.(-3,0) B.(0,-3) C.(3,0) D.(0,3)7、已知抛物线2:4C y x =的焦点为F ,过点 F 作斜率为1的直线l 交抛物线 C 于,?P Q 两点,则11PF QF+ 的值为( ) A.12 B. 78C. 1D. 28、直线l 与抛物线22016y x =交于,A B 两点, O 为坐标原点,若2015OA OB ⋅=-u u u r u u u r,则直线l 可能过定点( )A.(504,0)B.(1008,0)C.(2015,0)D.(2016,0)9、直线l 与抛物线2:2C y x =交于,A B 两点,O 为坐标原点,若直线,OA OB 的斜率12,k k 满足1223k k =,则直线l 过定点( ) A. (3,0)B. (0,3)C. (3,0)-D.(0,3)-10、过抛物线2(0)y mx m =>焦点的直线l 与抛物线交于,A B 两点,以AB 为直径的圆的方程为22(4)(2)25x y -+-=,则m =( ) A.2B.4C.2或4D.1011、抛物线()220y px p =>的焦点为F ,已知点A ,B 为抛物线上的两个动点,且满足120AFB ∠=o.过弦AB 的中点M 作抛物线准线的垂线MN ,垂足为N ,则MN AB的最大值为( )AB .1 D 12、抛物线2:2(0)C y px p =>的焦点为,F A 是C 上一点,若A 到F 的距离是A 到y 轴距离的两倍,且三角形OAF 的面积为1(O 为坐标原点),则P 的值为( ) A.1B.2C.3D.413、已知抛物线2:C y x =,过C 的焦点的直线与C 交于A ,B 两点。
(江苏专用)2018版高考数学专题复习专9平面解析几何第64练高考大题突破练圆锥曲线练习文■ ■1. (2015 -重庆)如图,椭圆W+2=l(a>b>0)的左,右焦点分别为凡尽过尺的直线交a b椭圆于只0两点,且必丄朋.⑴若彤=2+花,恋=2-迈,求椭圆的标准方程:⑵若PR = PQ、求椭圆的离心率e.2. (2016 •四川)已知椭圆E j+$=l(a>b>0)的一个焦点与短轴的两个端点是正三角形的三个顶点,点彳萌,在椭圆5±.(1) 求椭圆尸的方程:(2) 设不过原点0且斜率为*的直线2与椭圆厅交于不同的两点儿B,线段月万的中点为",直线购与椭圆疋交于C、D.证明:•曲•yfD.3. (2016 •四川)已知椭圆氏芝+圣=l(a>Q0)的两个焦点与短轴的一个端点是直角三角a b形的三个顶点,直线去尸一x+3与椭圆E有且只有一个公共点7:(1) 求椭圆疋的方程及点2■的坐标:(2) 设0是坐标原点,直线F平行于0T,与椭圆f■交于不同的两点儿5,且与直线/交于点只证明:存在常数久,使得Pf= APA-PB,并求人的值.・・y V4. (2015 -江苏)如图,在平而直角坐标系灿冲,已知椭圆-+£=1(&>b>0)的藹心率为a o申,且右焦点尸到直线厶*=一兰的距离为3.Z C(1) 求椭圆的标准方程:(2) 过尸的直线与椭圆交于儿万两点,线段丽的垂直平分线分别交直线』和曲于点只G若PC=2AB,求宜线M的方程.答案精析——圆锥曲线1. 解⑴由椭圆的定义,有2&=朋+出=(2+住)+ (2—迈)=4,故a=2・设椭圆的半焦距为c,由已知朋丄出,得2C=RE=7P E+M=-\/ 2+^2 2+ 2-^/2 2=2^3,即c=©从而二7=1.故所求椭圆的标准方程为f+/=l.(2)连结応0,由椭圆的定义,有PF"PF:=2a、QFd QF:=2a・从而由朋=PQ= PFAQFt、有QF、=X-2P玖・又由朋丄P2 PF、= PQ、知QF尸乜PF、、因此,4a-2PR=£pR,得朋=2(2-住)乩从而啟=2a-朋=2&—2(2—花)&=2(£-1)&・由〃丄啟,知/近+顷=尺忙—(2c)因此亠逻坯a 2a= ~2—^2 ~~^2—1 ~=寸9_6 边=& -羽・2. ⑴解由已知,a=2b,R C・■又椭圆W+2=l(a>b>0)过点a b棚,另,13 4故[了+牙=1,解得b~=l・所以椭圆疋的方程是|+/=1.(2)证明设直线2的方程为缶H0),月⑴,如,駅疋,比).R+y==i>, . ^由方程组$ 得才+2e*+2/zf — 2=0,①[尸$+也,方程①的判别式为4 =4亦一4(2/—2), 由4>0,即2—怎>0,解得一£<也<£・由①得及+上=一2皿上北=2/—2・又yfA・.妇討=t [(及一龙)'+(H 一北)J =猪[(山+龙)=—4-Y J.Y:]5 . 5=—jliif — 4(2zn —2)] =^-(2 —zzf)・所以MA・MB=MC・MD・■ ■3. ⑴解由已知,a=£b,则椭圆疋的方程为寿+£=1・由方程组<厉+g_l'.y=--v+3,得3A;-12.Y+18-262=0.①方程①的判别式为4 =24(歹一3),由4=0,得U=3,此时方程①的解为x=2,歼R・■V y所以椭圆疋的方程为才+寸=1,点7的坐标为(2, 1).(2)证明由已知可设直线T的方程为卩=$+加(亦0),直线01/方程为y=—芬所以"点坐标为(一皿=7(2~zzf)・4y=**+皿所以尸点坐标为(2—寻,1+割.8 .PP设点儿万的坐标分别为礼s必),Bld yt)・3”+4znx+4方—12=0.②方程②的判别式为4 =16(9—2/),由4>0,解得-甕<应<哮.所以刊=4h-y同理PB=^2~-4nf—1234 故存在常数人=了使得Pf= APA・PB.所以PA • PB-Vi + -V:由方程组・■6 + 3~b可得4m由②得及+上=一"4/zf —123=_310 .4. 解⑴由题意,得£=芈且c+?=3,解得 a=yj29 c=l,则 b=l 9 所以椭圆的标准方程为专+y=i.(2)当ABLx 轴时,AB=©又CP=3、不合题意.当?15与x 轴不垂直时,设直线曲的方程为y=kCv —l ),yj, 5(x :,北), 将直线月万的方程代入椭圆方程,得(1 + 2尸)£ 一 4&・+ 2 (尸一 1) = 0,Q 的坐标为(希’去)’且AB=p x z —xi :4- yz —yt =p 1 + F X z —X\~" 护 1+F二 1 + 2尸•若k=0,则线段曲的垂直平分线为y 轴,与直线』平行,不合题意. 从而&H0,故宜线比的方程为 卄悬一治-澄7),因为 PC=2AB.2 3尸+1 小+尸_ 4也 1+片 所以I" 1+2左 〜1 + 2片解得&=±1・此时直线曲的方程为y=x-l 或y=—x+l ・则尸点的坐标为(一2 从而PC=- 3#+1 寸1+尸k 1 + 2 戸 *5F+2 k 1+ 2#。
2024届高考数学复习:精选好题专项(抛物线)练习[基础巩固]一、选择题1.抛物线y=14x2的焦点到其准线的距离为()A.1 B.2C.12D.182.已知抛物线y2=2px(p>0)的准线经过点(-1,1),则该抛物线的焦点坐标为() A.(-1,0) B.(1,0)C.(0,-1) D.(0,1)3.动点M到点F(2,1)的距离和到直线l:3x+4y-10=0的距离相等,则动点M的轨迹为()A.抛物线B.直线C.线段D.射线4.若抛物线y2=2px的焦点与双曲线x23-y2=1的右焦点重合,则p的值为()A.-4 B.4C.-2 D.25.[2022ꞏ全国乙卷(文),6] 设F为抛物线C:y2=4x的焦点,点A在C上,点B(3,0),若|AF|=|BF|,则|AB|=()A.2 B.22C.3 D.326.若抛物线y2=2px(p>0)的焦点是椭圆x23p+y2p=1的一个焦点,则p=()A.2 B.3C.4 D.87.如图,过抛物线y2=2px(p>0)的焦点F的直线依次交抛物线及准线于点A,B,C,若|BC|=2|BF|,且|AF|=4,则抛物线的方程为()A.y2=8x B.y2=4xC.y2=2x D.y2=x8.设坐标原点为O ,抛物线y 2=2x 与过焦点的直线交于A ,B 两点,则OA → ꞏOB →等于( )A .34B .-34C .3D .-39.已知抛物线y 2=2px (p >0)的焦点为F ,准线为l ,过点F 的直线交抛物线于A ,B 两点,过点A 作准线l 的垂线,垂足为E ,当A 点坐标为(3,y 0)时,△AEF 为正三角形,则此时△OAB 的面积为( )A .433 B .3C .233D .33二、填空题10.[2021ꞏ新高考Ⅰ卷]已知O 为坐标原点,抛物线C :y 2=2px (p >0)的焦点为F ,P 为C 上一点,PF 与x 轴垂直,Q 为x 轴上一点,且PQ ⊥OP ,若|FQ |=6,则C 的准线方程为________.11.[2023ꞏ全国乙卷(理)]已知点A ()1,5 在抛物线C :y 2=2px 上,则A 到C 的准线的距离为________.12.已知直线y =kx +2与抛物线y 2=8x 有且只有一个公共点,则k 的值为________.[强化练习]13.(多选)[2023ꞏ新课标Ⅱ卷]设O 为坐标原点,直线y =-3 (x -1)过抛物线C :y 2=2px (p >0)的焦点,且与C 交于M ,N 两点,l 为C 的准线,则( )A .p =2B .|MN |=83C .以MN 为直径的圆与l 相切D .△OMN 为等腰三角形 14.抛物线有如下光学性质:过焦点的光线经抛物线反射后得到的光线平行于抛物线的对称轴;反之,平行于抛物线对称轴的入射光线经抛物线反射后必过抛物线的焦点.已知抛物线y 2=4x 的焦点为F ,一条平行于x 轴的光线从点M (3,1)射出,经过抛物线上的点A 反射后,再经抛物线上的另一点B 射出,则△ABM 的周长为( )A .7112 +26 B .9+26C .9+10D .8312 +2615.已知抛物线C :y 2=2px (p >0)的焦点为F ,准线为l ,抛物线C 有一点P ,过点P 作PM ⊥l ,垂足为M ,若等边△PMF 的面积为43 ,则p =________.16.过抛物线y 2=2px (p >0)的焦点F 作倾斜角为60°的直线,与抛物线分别交于A ,B两点(点A 在x 轴上方),则|AF ||BF | =________.参考答案1.B y =14 x 2可化为x 2=4y ,则焦点到准线的距离为12 ×4=2.2.B ∵y 2=2px 的准线为x =-p 2 ,又准线过点(-1,1),∴-p2 =-1,∴p =2,故其焦点坐标为(1,0).3.B ∵F (2,1)在直线l :3x +4y -10=0上,∴动点M 的轨迹为过点F 且与直线l 垂直的直线.4.B ∵x 23 -y 2=1的右焦点为(2,0),∴p2 =2,p =4.5.B 由已知条件,易知抛物线y 2=4x 的焦点为F (1,0),准线方程为x =-1.又B (3,0),则|AF |=|BF |=2.不妨设点A 在第一象限,则A (x 0,2x 0 ).根据抛物线的定义可知x 0-(-1)=2,所以x 0=1,所以A (1,2),所以|AB |=(1-3)2+(2-0)2 =22 .故选B.6.D 由题意,知抛物线的焦点坐标为⎝⎛⎭⎫p 2,0 ,椭圆的焦点坐标为(±2p ,0),所以p 2 =2p ,解得p =8,故选D.7.B如图,分别过点A ,B 作准线的垂线,交准线于点E ,D ,设准线与x 轴交于点G ,设|BF |=a ,则由已知得|BC |=2a ,由定义得|BD |=a ,故∠BCD =30°,在Rt △ACE 中,∵|AF |=4,|AC |=4+3a ,∴2|AE |=|AC |,∴4+3a =8,从而得a =43 ,∵AE ∥FG ,∴FG AE =CF AC ,即p 4 =48 ,得p =2.∴抛物线方程为y 2=4x .故选B.8.B 当AB 与x 轴垂直时,A ⎝⎛⎭⎫12,1 ,B ⎝⎛⎭⎫12,-1 ,OA → ꞏOB → =12 ×12 +1×(-1)=-34 ;当AB 与x 轴不垂直时,设l :y =k ⎝⎛⎭⎫x -12 , 由⎩⎪⎨⎪⎧y =k ⎝⎛⎭⎫x -12,y 2=2x ,得k 2x 2-(k 2+2)x +k 24 =0 设A (x 1,y 1),B (x 2,y 2)由韦达定理得x 1+x 2=k 2+2k 2 ,x 1x 2=14 ,∴OA → ꞏOB →=x 1x 2+y 1y 2=x 1x 2+k 2⎝⎛⎭⎫x 1-12 ⎝⎛⎭⎫x 2-12 =(1+k 2)x 1x 2-12 k 2(x 1+x 2)+k 24 =-34 . 9.A 不妨设点A 在第一象限,如图所示,过点F 作AE 的垂线,垂足为H ,由题知当A 的坐标为(3,y 0)时△AEF 为正三角形,此时H 为AE 的中点,|AE |=3+p 2 ,|EH |=p ,∴2p =3+p2 ,解得p =2,∴y 2=4x ,A (3,23 ),F (1,0),∴k AF =3 ,直线AF 的方程为y =3 (x -1),代入抛物线方程得3(x -1)2=4x .设A (x 1,y 1),B (x 2,y 2),解得x 1=3,x 2=13 ,此时y 1=23 ,y 2=-233 ,∴S △AOB =S △OFB +S △OF A =12 ×1×⎝⎛⎭⎫233+23 =433 ,故选A. 10.x =-32答案解析:抛物线C :y 2=2px (p >0)的焦点F ⎝⎛⎭⎫p 2,0 ,∵P 为C 上一点,PF 与x 轴垂直,所以P 的横坐标为p2 ,代入抛物线方程求得P 的纵坐标为±p ,不妨设P (p2 ,p ),因为Q 为x 轴上一点,且PQ ⊥OP ,所以Q 在F 的右侧, 又∵|FQ |=6,∴Q (6+p 2 ,0),∴PQ →=(6,-p )因为PQ ⊥OP ,所以PQ → ꞏOP →=p 2 ×6-p 2=0, ∵p >0,∴p =3,所以C 的准线方程为x =-32 . 11.94答案解析:将点A 的坐标代入抛物线方程,得5=2p ,于是y 2=5x ,则抛物线的准线方程为x =-54 ,所以A 到准线的距离为1-⎝⎛⎭⎫-54 =94. 12.0或1答案解析:由⎩⎪⎨⎪⎧y =kx +2,y 2=8x , 得k 2x 2+(4k -8)x +4=0, 若k =0,满足题意;若k ≠0,则Δ=(4k -8)2-4×4k 2=0,得k =1.综上得k =0或k =1.13.AC 由题意,易知直线y =-3 (x -1)过点(1,0).对于A ,因为直线经过抛物线C 的焦点,所以易知焦点坐标为(1,0),所以p2 =1,即p =2,所以A 选项正确.对于B ,不妨设M (x 1,y 1),N (x 2,y 2),x 1<x 2,联立方程得⎩⎨⎧y =-3(x -1)y 2=4x,消去y并整理得3x 2-10x +3=0,解得x 1=13 ,x 2=3.所以M (13 ,233 ),N (3,-23 ),所以由两点间距离公式可得|MN |=(3-13)2-(-23-233)2 =163 ,故B 选项错误.对于C ,由以上分析易知,l 的方程为x =-1,以MN 为直径的圆的圆心坐标为(53 ,-233),半径r =12 |MN |=83 =53 +1,所以以MN 为直径的圆与l 相切,故C 选项正确. 对于D ,由两点间距离公式可得|MN |=163 ,|OM |=133 ,|ON |=21 ,故D 选项错误.综上,选AC.14.B 令y =1,得x =14 ,即A ⎝⎛⎭⎫14,1 . 由抛物线的光学性质可知AB 经过焦点F ,设直线AB 的方程为y =k (x -1),代入y 2=4x .消去y ,得k 2x 2-2(k 2+2)x +k 2=0.则x A x B =1,所以x B =1x A=4.|AB |=x A +x B +p =254 .将x =4代入y 2=4x 得y =±4,故B (4,-4). 故|MB |=(4-3)2+(-4-1)2 =26 .故△ABM 的周长为|MA |+|MB |+|AB |=⎝⎛⎭⎫3-14 +26 +254 =9+26 .故选B. 15.2答案解析:设准线l 和x 轴交于N 点,PM 平行于x 轴,∠PMF =∠MFN =60°,由抛物线的定义得到|NF |=p ,故|MF |=2p ,故34 (2p )2=43 ,∴p =2.16.3答案解析:如图所示,由题意得准线l :x =-p2 .作AC ⊥l 于点C ,BD ⊥l 于点D ,BH ⊥AC 于点H ,则|AF |=|AC |,|BF |=|BD |,|AH |=|AC |-|BD |=|AF |-|BF |,因为在Rt △AHB 中,∠HAB =60°,所以cos 60°=|AH ||AB | =|AF |-|BF ||AF |+|BF |,即12 (|AF |+|BF |)=|AF |-|BF |,得|AF ||BF | =3.。
2020届高考数学压轴必刷题专题09平面解析几何(文理合卷)1.【2019年全国新课标2理科11】设F为双曲线C:1(a>0,b>0)的右焦点,O为坐标原点,以OF为直径的圆与圆x2+y2=a2交于P,Q两点.若|PQ|=|OF|,则C的离心率为()A.B.C.2 D.【解答】解:如图,由题意,把x代入x2+y2=a2,得PQ,再由|PQ|=|OF|,得,即2a2=c2,∴,解得e.故选:A.2.【2018年新课标1理科11】已知双曲线C:y2=1,O为坐标原点,F为C的右焦点,过F的直线与C的两条渐近线的交点分别为M,N.若△OMN为直角三角形,则|MN|=()A.B.3 C.2D.4【解答】解:双曲线C:y2=1的渐近线方程为:y,渐近线的夹角为:60°,不妨设过F (2,0)的直线为:y,则:解得M(,),解得:N(),则|MN|3.故选:B.3.【2018年新课标2理科12】已知F1,F2是椭圆C:1(a>b>0)的左、右焦点,A是C的左顶点,点P在过A且斜率为的直线上,△PF1F2为等腰三角形,∠F1F2P=120°,则C的离心率为()A.B.C.D.【解答】解:由题意可知:A(﹣a,0),F1(﹣c,0),F2(c,0),直线AP的方程为:y(x+a),由∠F1F2P=120°,|PF2|=|F1F2|=2c,则P(2c,c),代入直线AP:c(2c+a),整理得:a=4c,∴题意的离心率e.故选:D.4.【2018年新课标3理科11】设F1,F2是双曲线C:1(a>0.b>0)的左,右焦点,O是坐标原点.过F2作C的一条渐近线的垂线,垂足为P,若|PF1||OP|,则C的离心率为()A.B.2 C.D.【解答】解:双曲线C:1(a>0.b>0)的一条渐近线方程为y x,∴点F2到渐近线的距离d b,即|PF2|=b,∴|OP|a,cos∠PF2O,∵|PF1||OP|,∴|PF1|a,在三角形F1PF2中,由余弦定理可得|PF1|2=|PF2|2+|F1F2|2﹣2|PF2|•|F1F2|COS∠PF2O,∴6a2=b2+4c2﹣2×b×2c4c2﹣3b2=4c2﹣3(c2﹣a2),即3a2=c2,即a=c,∴e,故选:C.5.【2018年天津理科07】已知双曲线1(a>0,b>0)的离心率为2,过右焦点且垂直于x轴的直线与双曲线交于A,B两点.设A,B到双曲线的同一条渐近线的距离分别为d1和d2,且d1+d2=6,则双曲线的方程为()A. 1 B. 1C. 1 D. 1【解答】解:由题意可得图象如图,CD是双曲线的一条渐近线y,即bx﹣ay=0,F(c,0),AC⊥CD,BD⊥CD,FE⊥CD,ACDB是梯形,F是AB的中点,EF3,EF b,所以b=3,双曲线1(a>0,b>0)的离心率为2,可得,可得:,解得a.则双曲线的方程为:1.故选:C.6.【2017年新课标1理科10】已知F为抛物线C:y2=4x的焦点,过F作两条互相垂直的直线l1,l2,直线l1与C交于A、B两点,直线l2与C交于D、E两点,则|AB|+|DE|的最小值为()A.16 B.14 C.12 D.10【解答】解:如图,l1⊥l2,直线l1与C交于A、B两点,直线l2与C交于D、E两点,要使|AB|+|DE|最小,则A与D,B,E关于x轴对称,即直线DE的斜率为1,又直线l2过点(1,0),则直线l2的方程为y=x﹣1,联立方程组,则y2﹣4y﹣4=0,∴y1+y2=4,y1y2=﹣4,∴|DE|•|y1﹣y2|8,∴|AB|+|DE|的最小值为2|DE|=16,方法二:设直线l1的倾斜角为θ,则l2的倾斜角为θ,根据焦点弦长公式可得|AB||DE|∴|AB|+|DE|,∵0<sin22θ≤1,∴当θ=45°时,|AB|+|DE|的最小,最小为16,故选:A.7.【2017年新课标3理科10】已知椭圆C:1(a>b>0)的左、右顶点分别为A1,A2,且以线段A1A2为直径的圆与直线bx﹣ay+2ab=0相切,则C的离心率为()A.B.C.D.【解答】解:以线段A1A2为直径的圆与直线bx﹣ay+2ab=0相切,∴原点到直线的距离a,化为:a2=3b2.∴椭圆C的离心率e.故选:A.8.【2017年上海16】在平面直角坐标系xOy中,已知椭圆C1:1和C2:x21.P为C1上的动点,Q为C2上的动点,w是的最大值.记Ω={(P,Q)|P在C1上,Q在C2上,且w},则Ω中元素个数为()A.2个B.4个C.8个D.无穷个【解答】解:椭圆C1:1和C2:x21.P为C1上的动点,Q为C2上的动点,可设P(6cosα,2sinα),Q(cosβ,3sinβ),0≤α,β<2π,则6cosαcosβ+6sinαsinβ=6cos(α﹣β),当α﹣β=2kπ,k∈Z时,w取得最大值6,则Ω={(P,Q)|P在C1上,Q在C2上,且w}中的元素有无穷多对.另解:令P(m,n),Q(u,v),则m2+9n2=36,9u2+v2=9,由柯西不等式(m2+9n2)(9u2+v2)=324≥(3mu+3nv)2,当且仅当mv=9nu,取得最大值6,显然,满足条件的P、Q有无穷多对,D项正确.故选:D.9.【2016年新课标2理科11】已知F1,F2是双曲线E:1的左,右焦点,点M在E上,MF1与x轴垂直,sin∠MF2F1,则E的离心率为()A.B.C.D.2【解答】解:由题意,M为双曲线左支上的点,则丨MF1丨,丨MF2丨,∴sin∠MF2F1,∴,可得:2b4=a2c2,即b2=ac,又c2=a2+b2,可得e2﹣e0,e>1,解得e.故选:A.10.【2016年浙江理科07】已知椭圆与双曲线C2:y2=1(n>0)的焦点重合,e1,e2分别为C1,C2的离心率,则()A.m>n且e1e2>1 B.m>n且e1e2<1C.m<n且e1e2>1 D.m<n且e1e2<1【解答】解:由题意可得m2﹣1=n2+1,即m2=n2+2,又m>1,n>0,则m>n,由e12•e22••=11,则e1•e2>1.故选:A.11.【2016年新课标3理科11】已知O为坐标原点,F是椭圆C:1(a>b>0)的左焦点,A,B 分别为C的左,右顶点.P为C上一点,且PF⊥x轴,过点A的直线l与线段PF交于点M,与y轴交于点E.若直线BM经过OE的中点,则C的离心率为()A.B.C.D.【解答】解:由题意可设F(﹣c,0),A(﹣a,0),B(a,0),设直线AE的方程为y=k(x+a),令x=﹣c,可得M(﹣c,k(a﹣c)),令x=0,可得E(0,ka),设OE的中点为H,可得H(0,),由B,H,M三点共线,可得k BH=k BM,即为,化简可得,即为a=3c,可得e.另解:由△AMF∽△AEO,可得,由△BOH∽△BFM,可得,即有即a=3c,可得e.故选:A.12.【2015年新课标2理科11】已知A,B为双曲线E的左,右顶点,点M在E上,△ABM为等腰三角形,顶角为120°,则E的离心率为()A.B.2 C.D.【解答】解:设M在双曲线1的左支上,且MA=AB=2a,∠MAB=120°,则M的坐标为(﹣2a,a),代入双曲线方程可得,1,可得a=b,c a,即有e.故选:D.13.【2015年浙江理科05】如图,设抛物线y2=4x的焦点为F,不经过焦点的直线上有三个不同的点A,B,C,其中点A,B在抛物线上,点C在y轴上,则△BCF与△ACF的面积之比是()A.B.C.D.【解答】解:如图所示,抛物线的准线DE的方程为x=﹣1,过A,B分别作AE⊥DE于E,交y轴于N,BD⊥DE于D,交y轴于M,由抛物线的定义知BF=BD,AF=AE,则|BM|=|BD|﹣1=|BF|﹣1,|AN|=|AE|﹣1=|AF|﹣1,则,故选:A.14.【2014年新课标1理科10】已知抛物线C:y2=8x的焦点为F,准线为l,P是l上一点,Q是直线PF 与C的一个交点,若4,则|QF|=()A.B.3 C.D.2【解答】解:设Q到l的距离为d,则|QF|=d,∵4,∴|PQ|=3d,∴不妨设直线PF的斜率为2,∵F(2,0),∴直线PF的方程为y=﹣2(x﹣2),与y2=8x联立可得x=1,∴|QF|=d=1+2=3,故选:B.15.【2014年新课标2理科10】设F为抛物线C:y2=3x的焦点,过F且倾斜角为30°的直线交C于A,B两点,O为坐标原点,则△OAB的面积为()A.B.C.D.【解答】解:由y2=2px,得2p=3,p,则F(,0).∴过A,B的直线方程为y(x),即x y.联立,得4y2﹣12y﹣9=0.设A(x1,y1),B(x2,y2),则y1+y2=3,y1y2.∴S△OAB=S△OAF+S△OFB|y1﹣y2|.故选:D.16.【2014年上海理科17】已知P1(a1,b1)与P2(a2,b2)是直线y=kx+1(k为常数)上两个不同的点,则关于x和y的方程组的解的情况是()A.无论k,P1,P2如何,总是无解B.无论k,P1,P2如何,总有唯一解C.存在k,P1,P2,使之恰有两解D.存在k,P1,P2,使之有无穷多解【解答】解:P1(a1,b1)与P2(a2,b2)是直线y=kx+1(k为常数)上两个不同的点,直线y=kx+1的斜率存在,∴k,即a1≠a2,并且b1=ka1+1,b2=ka2+1,∴a2b1﹣a1b2=ka1a2﹣ka1a2+a2﹣a1=a2﹣a1,①×b2﹣②×b1得:(a1b2﹣a2b1)x=b2﹣b1,即(a1﹣a2)x=b2﹣b1.∴方程组有唯一解.故选:B.17.【2013年浙江理科09】如图F1、F2是椭圆C1:y2=1与双曲线C2的公共焦点,A、B分别是C1、C2在第A.B.C.D.【解答】解:设|AF1|=x,|AF2|=y,∵点A为椭圆C1:y2=1上的点,∴2a=4,b=1,c;∴|AF1|+|AF2|=2a=4,即x+y=4;①又四边形AF1BF2为矩形,∴,即x2+y2=(2c)212,②由①②得:,解得x=2,y=2,设双曲线C2的实轴长为2m,焦距为2n,则2m=|AF2|﹣|AF1|=y﹣x=2,2n=2c=2,∴双曲线C2的离心率e.故选:D.18.【2012年浙江理科08】如图,F1,F2分别是双曲线C:(a,b>0)的在左、右焦点,B是虚轴的端点,直线F1B与C的两条渐近线分别交于P,Q两点,线段PQ的垂直平分线与x轴交于点M.若|MF2|=|F1F2|,则C的离心率是()A.B.C.D.【解答】解:线段PQ的垂直平分线MN,|OB|=b,|OF1|=c.∴k PQ,k MN.直线PQ为:y(x+c),两条渐近线为:y x.由,得Q();由得P.∴直线MN为,令y=0得:x M.又∵|MF2|=|F1F2|=2c,∴3c=x M,∴3a2=2c2解之得:,即e.故选:B.19.【2012年天津理科08】设m,n∈R,若直线(m+1)x+(n+1)y﹣2=0与圆(x﹣1)2+(y﹣1)2=1相切,则m+n的取值范围是()A.[1,1] B.(﹣∞,1]∪[1,+∞)C.[2﹣2,2+2] D.(﹣∞,2﹣2]∪[2+2,+∞)【解答】解:由圆的方程(x﹣1)2+(y﹣1)2=1,得到圆心坐标为(1,1),半径r=1,∵直线(m+1)x+(n+1)y﹣2=0与圆相切,∴圆心到直线的距离d1,整理得:m+n+1=mn,设m+n=x,则有x+1,即x2﹣4x﹣4≥0,∵x2﹣4x﹣4=0的解为:x1=2+2,x2=2﹣2,∴不等式变形得:(x﹣2﹣2)(x﹣2+2)≥0,解得:x≥2+2或x≤2﹣2,则m+n的取值范围为(﹣∞,2﹣2]∪[2+2,+∞).故选:D.20.【2010年新课标1理科12】已知双曲线E的中心为原点,P(3,0)是E的焦点,过P的直线l与E相交于A,B两点,且AB的中点为N(﹣12,﹣15),则E的方程式为()A.B.C.D.【解答】解:由已知条件易得直线l的斜率为k=k PN=1,设双曲线方程为,A(x1,y1),B(x2,y2),则有,两式相减并结合x1+x2=﹣24,y1+y2=﹣30得,从而k 1即4b2=5a2,又a2+b2=9,解得a2=4,b2=5,故选:B.21.【2010年浙江理科08】设F1、F2分别为双曲线的左、右焦点.若在双曲线右支上存在点P,满足|PF2|=|F1F2|,且F2到直线PF1的距离等于双曲线的实轴长,则该双曲线的渐近线方程为()A.3x±4y=0 B.3x±5y=0 C.4x±3y=0 D.5x±4y=0【解答】解:依题意|PF2|=|F1F2|,可知三角形PF2F1是一个等腰三角形,F2在直线PF1的投影是其中点,由勾股定理知可知|PF1|=24b根据双曲定义可知4b﹣2c=2a,整理得c=2b﹣a,代入c2=a2+b2整理得3b2﹣4ab=0,求得∴双曲线渐近线方程为y=±x,即4x±3y=0故选:C.22.【2019年新课标1理科16】已知双曲线C:1(a>0,b>0)的左、右焦点分别为F1,F2,过F1的直线与C的两条渐近线分别交于A,B两点.若,•0,则C的离心率为.【解答】解:如图,∵,且•0,∴OA⊥F1B,则F1B:y,联立,解得B(,),则,,∴4c2,整理得:b2=3a2,∴c2﹣a2=3a2,即4a2=c2,∴,e.故答案为:2.23.【2019年浙江15】已知椭圆1的左焦点为F,点P在椭圆上且在x轴的上方.若线段PF的中点在以原点O为圆心,|OF|为半径的圆上,则直线PF的斜率是.【解答】解:椭圆1的a=3,b,c=2,e,设椭圆的右焦点为F',连接PF',线段PF的中点A在以原点O为圆心,2为半径的圆,连接AO,可得|PF'|=2|AO|=4,设P的坐标为(m,n),可得3m=4,可得m,n,由F(﹣2,0),可得直线PF的斜率为.故答案为:.24.【2018年新课标3理科16】已知点M(﹣1,1)和抛物线C:y2=4x,过C的焦点且斜率为k的直线与C交于A,B两点.若∠AMB=90°,则k=.【解答】解:∵抛物线C:y2=4x的焦点F(1,0),∴过A,B两点的直线方程为y=k(x﹣1),联立可得,k2x2﹣2(2+k2)x+k2=0,设A(x1,y1),B(x2,y2),则x1+x2,x1x2=1,∴y1+y2=k(x1+x2﹣2),y1y2=k2(x1﹣1)(x2﹣1)=k2[x1x2﹣(x1+x2)+1]=﹣4,∵M(﹣1,1),∴(x1+1,y1﹣1),(x2+1,y2﹣1),∵∠AMB=90°,∴•0∴(x1+1)(x2+1)+(y1﹣1)(y2﹣1)=0,整理可得,x1x2+(x1+x2)+y1y2﹣(y1+y2)+2=0,∴1+242=0,即k2﹣4k+4=0,∴k=2.故答案为:225.【2018年浙江17】已知点P(0,1),椭圆y2=m(m>1)上两点A,B满足2,则当m=时,点B横坐标的绝对值最大.【解答】解:设A(x1,y1),B(x2,y2),由P(0,1),2,可得﹣x1=2x2,1﹣y1=2(y2﹣1),即有x1=﹣2x2,y1+2y2=3,又x12+4y12=4m,即为x22+y12=m,①x22+4y22=4m,②①﹣②得(y1﹣2y2)(y1+2y2)=﹣3m,可得y1﹣2y2=﹣m,解得y1,y2,则m=x22+()2,即有x22=m﹣()2,即有m=5时,x22有最大值4,即点B横坐标的绝对值最大.故答案为:5.26.【2018年上海12】已知实数x1、x2、y1、y2满足:x12+y12=1,x22+y22=1,x1x2+y1y2,则的最大值为.【解答】解:设A(x1,y1),B(x2,y2),(x1,y1),(x2,y2),由x12+y12=1,x22+y22=1,x1x2+y1y2,可得A,B两点在圆x2+y2=1上,且•1×1×cos∠AOB,即有∠AOB=60°,即三角形OAB为等边三角形,AB=1,的几何意义为点A,B两点到直线x+y﹣1=0的距离d1与d2之和,显然A,B在第三象限,AB所在直线与直线x+y=1平行,可设AB:x+y+t=0,(t>0),由圆心O到直线AB的距离d,可得21,解得t,即有两平行线的距离为,即的最大值为,故答案为:.27.【2018年北京理科14】已知椭圆M:1(a>b>0),双曲线N:1.若双曲线N的两条渐近线与椭圆M的四个交点及椭圆M的两个焦点恰为一个正六边形的顶点,则椭圆M的离心率为;双曲线N的离心率为.【解答】解:椭圆M:1(a>b>0),双曲线N:1.若双曲线N的两条渐近线与椭圆M的四个交点及椭圆M的两个焦点恰为一个正六边形的顶点,可得椭圆的焦点坐标(c,0),正六边形的一个顶点(,),可得:,可得,可得e4﹣8e2+4=0,e∈(0,1),解得e.同时,双曲线的渐近线的斜率为,即,可得:,即,可得双曲线的离心率为e2.故答案为:;2.28.【2017年江苏13】在平面直角坐标系xOy中,A(﹣12,0),B(0,6),点P在圆O:x2+y2=50上.若20,则点P的横坐标的取值范围是.【解答】解:根据题意,设P(x0,y0),则有x02+y02=50,(﹣12﹣x0,﹣y0)•(﹣x0,6﹣y0)=(12+x0)x0﹣y0(6﹣y0)=12x0+6y+x02+y02≤20,化为:12x0﹣6y0+30≤0,即2x0﹣y0+5≤0,表示直线2x﹣y+5=0以及直线上方的区域,联立,解可得x0=﹣5或x0=1,结合图形分析可得:点P的横坐标x0的取值范围是[﹣5,1],故答案为:[﹣5,1].29.【2017年新课标2理科16】已知F是抛物线C:y2=8x的焦点,M是C上一点,FM的延长线交y轴于点N.若M为FN的中点,则|FN|=.【解答】解:抛物线C:y2=8x的焦点F(2,0),M是C上一点,FM的延长线交y轴于点N.若M为FN的中点,可知M的横坐标为:1,则M的纵坐标为:,|FN|=2|FM|=26.故答案为:6.30.【2017年北京理科14】三名工人加工同一种零件,他们在一天中的工作情况如图所示,其中A i的横、纵坐标分别为第i名工人上午的工作时间和加工的零件数,点B i的横、纵坐标分别为第i名工人下午的工作时间和加工的零件数,i=1,2,3.(1)记Q i为第i名工人在这一天中加工的零件总数,则Q1,Q2,Q3中最大的是.(2)记p i为第i名工人在这一天中平均每小时加工的零件数,则p1,p2,p3中最大的是.【解答】解:(1)若Q i为第i名工人在这一天中加工的零件总数,Q1=A1的纵坐标+B1的纵坐标;Q2=A2的纵坐标+B2的纵坐标,Q3=A3的纵坐标+B3的纵坐标,由已知中图象可得:Q1,Q2,Q3中最大的是Q1,(2)若p i为第i名工人在这一天中平均每小时加工的零件数,则p i为A i B i中点与原点连线的斜率,故p1,p2,p3中最大的是p2故答案为:Q1,p231.【2016年江苏10】如图,在平面直角坐标系xOy中,F是椭圆1(a>b>0)的右焦点,直线y与椭圆交于B,C两点,且∠BFC=90°,则该椭圆的离心率是.【解答】解法一:设右焦点F(c,0),将y代入椭圆方程可得x=±a±a,可得B(a,),C(a,),由∠BFC=90°,可得k BF•k CF=﹣1,即有•1,化简为b2=3a2﹣4c2,由b2=a2﹣c2,即有3c2=2a2,由e,可得e2,可得e,解法二:设右焦点F(c,0),将y代入椭圆方程可得x=±a±a,可得B(a,),C(a,),(a﹣c,),(a﹣c,),•0,则c2a2十b2=0,因为b2=a2﹣c2,代入得3c2=2a2,由e,可得e2,可得e.解法可得FH=HC a,在直角三角形OHF中,OF2+OH2=FH2,即有c2a2十b2=0,因为b2=a2﹣c2,代入得3c2=2a2,由e,可得e2,可得e.故答案为:.32.【2016年新课标3理科16】已知直线l:mx+y+3m0与圆x2+y2=12交于A,B两点,过A,B分别作l的垂线与x轴交于C,D两点,若|AB|=2,则|CD|=.【解答】解:由题意,|AB|=2,∴圆心到直线的距离d=3,∴3,∴m∴直线l的倾斜角为30°,∵过A,B分别作l的垂线与x轴交于C,D两点,∴|CD|4.故答案为:4.33.【2015年江苏12】在平面直角坐标系xOy中,P为双曲线x2﹣y2=1右支上的一个动点,若点P到直线x﹣y+1=0的距离大于c恒成立,则实数c的最大值为.【解答】解:由题意,双曲线x2﹣y2=1的渐近线方程为x±y=0,因为点P到直线x﹣y+1=0的距离大于c恒成立,所以c的最大值为直线x﹣y+1=0与直线x﹣y=0的距离,即.故答案为:.34.【2014年新课标2理科16】设点M(x0,1),若在圆O:x2+y2=1上存在点N,使得∠OMN=45°,则x0的取值范围是.【解答】解:由题意画出图形如图:点M(x0,1),要使圆O:x2+y2=1上存在点N,使得∠OMN=45°,则∠OMN的最大值大于或等于45°时一定存在点N,使得∠OMN=45°,而当MN与圆相切时∠OMN取得最大值,此时MN=1,图中只有M′到M″之间的区域满足MN≤1,∴x0的取值范围是[﹣1,1].35.【2014年浙江理科16】设直线x﹣3y+m=0(m≠0)与双曲线1(a>0,b>0)的两条渐近线分别交于点A,B.若点P(m,0)满足|P A|=|PB|,则该双曲线的离心率是.【解答】解:双曲线(a>0,b>0)的两条渐近线方程为y=±x,则与直线x﹣3y+m=0联立,可得A(,),B(,),∴AB中点坐标为(,),∵点P(m,0)满足|P A|=|PB|,∴3,∴a=2b,∴b,∴e.故答案为:.36.【2014年上海理科14】已知曲线C:x,直线l:x=6,若对于点A(m,0),存在C上的点P和l上的Q使得,则m的取值范围为.【解答】解:曲线C:x,是以原点为圆心,2 为半径的圆,并且x P∈[﹣2,0],对于点A(m,0),存在C上的点P和l上的Q使得,说明A是PQ的中点,Q的横坐标x=6,∴m∈[2,3].故答案为:[2,3].37.【2013年江苏12】在平面直角坐标系xOy中,椭圆C的标准方程为(a>b>0),右焦点为F,右准线为l,短轴的一个端点为B,设原点到直线BF的距离为d1,F到l的距离为d2,若d2,则椭圆C的离心率为.【解答】解:如图,准线l:x,d2,由面积法得:d1,若d2,则,整理得a2﹣ab0,两边同除以a2,得()0,解得.∴e.故答案为:.38.【2013年浙江理科15】设F为抛物线C:y2=4x的焦点,过点P(﹣1,0)的直线l交抛物线C于两点A,B,点Q为线段AB的中点,若|FQ|=2,则直线l的斜率等于.【解答】解:由题意设直线l的方程为my=x+1,联立得到y2﹣4my+4=0,△=16m2﹣16=16(m2﹣1)>0.设A(x1,y1),B(x2,y2),Q(x0,y0).∴y1+y2=4m,∴2m,∴x0=my0﹣1=2m2﹣1.∴Q(2m2﹣1,2m),由抛物线C:y2=4x得焦点F(1,0).∵|QF|=2,∴,化为m2=1,解得m=±1,不满足△>0.故满足条件的直线l不存在.故答案为不存在.39.【2012年江苏12】在平面直角坐标系xOy中,圆C的方程为x2+y2﹣8x+15=0,若直线y=kx﹣2上至少存在一点,使得以该点为圆心,1为半径的圆与圆C有公共点,则k的最大值是.【解答】解:∵圆C的方程为x2+y2﹣8x+15=0,整理得:(x﹣4)2+y2=1,即圆C是以(4,0)为圆心,1为半径的圆;又直线y=kx﹣2上至少存在一点,使得以该点为圆心,1为半径的圆与圆C有公共点,∴只需圆C′:(x﹣4)2+y2=4与直线y=kx﹣2有公共点即可.设圆心C(4,0)到直线y=kx﹣2的距离为d,则d2,即3k2﹣4k≤0,∴0≤k.∴k的最大值是.故答案为:.40.【2012年浙江理科16】定义:曲线C上的点到直线l的距离的最小值称为曲线C到直线l的距离,已知曲线C1:y=x2+a到直线l:y=x的距离等于曲线C2:x2+(y+4)2=2到直线l:y=x的距离,则实数a =.【解答】解:圆x2+(y+4)2=2的圆心为(0,﹣4),半径为,圆心到直线y=x的距离为2,∴曲线C2:x2+(y+4)2=2到直线l:y=x的距离为2.则曲线C1:y=x2+a到直线l:y=x的距离等于,令y′=2x=1解得x,故切点为(,a),切线方程为y﹣(a)=x即x﹣y a=0,由题意可知x﹣y a=0与直线y=x的距离为,即解得a或.当a时直线y=x与曲线C1:y=x2+a相交,故不符合题意,舍去.故答案为:.41.【2011年浙江理科17】设F1,F2分别为椭圆y2=1的焦点,点A,B在椭圆上,若5;则点A的坐标是.【解答】解:方法1:直线F1A的反向延长线与椭圆交于点B'又∵由椭圆的对称性,得设A(x1,y1),B'(x2,y2)由于椭圆的a,b=1,c∴e,F1(,0).∵|F1A||x1|,|F1B'||x2|,从而有:|x1|=5|x2|,由于x1,x2,∴x1>0,x2>0,即55.①又∵三点A,F1,B′共线,∴(,y1﹣0)=5(x2,0﹣y2)∴.②由①+②得:x1=0.代入椭圆的方程得:y1=±1,∴点A的坐标为(0,1)或(0,﹣1)方法2:因为F1,F2分别为椭圆的焦点,则,设A,B的坐标分别为A(x A,y A),B(x B,y B),若;则,所以,因为A,B在椭圆上,所以,代入解得或,故A(0,±1).方法k=tanθ,由,即可得到A(0,±1).故答案为:(0,±1).42.【2011年北京理科14】曲线C是平面内与两个定点F1(﹣1,0)和F2(1,0)的距离的积等于常数a2(a>1)的点的轨迹.给出下列三个结论:①曲线C过坐标原点;②曲线C关于坐标原点对称;③若点P在曲线C上,则△F1PF2的面积不大于a2.其中,所有正确结论的序号是.【解答】解:对于①,由题意设动点坐标为(x,y),则利用题意及两点间的距离公式的得:⇔[(x+1)2+y2]•[(x﹣1)2+y2]=a4(1)将原点代入验证,此方程不过原点,所以①错;对于②,把方程中的x被﹣x代换,y被﹣y代换,方程不变,故此曲线关于原点对称.②正确;对于③,由题意知点P在曲线C上,则△F1PF2的面积a2sin∠F1PF2,a2,所以③正确.故答案为:②③.43.【2010年上海理科13】如图所示,直线x=2与双曲线Γ:1的渐近线交于E1,E2两点,记,,任取双曲线上的点P,若(a,b∈R),则a、b满足的一个等式是.【解答】解:依题意可知:E1(2,1),E2(2,﹣1)∴(2a+2b,a﹣b),∵点P在双曲线上∴(a﹣b)2=1,化简得4ab=1故答案为4ab=144.【2010年北京理科14】如图放置的边长为1的正方形P ABC沿x轴滚动.设顶点P(x,y)的轨迹方程是y=f(x),则f(x)的最小正周期为;y=f(x)在其两个相邻零点间的图象与x轴所围区域的面积为.【解答】解:从某一个顶点(比如A)落在x轴上的时候开始计算,到下一次A点落在x轴上,这个过程中四个顶点依次落在了x轴上,而每两个顶点间距离为正方形的边长1,因此该函数的周期为4.下面考察P点的运动轨迹,不妨考察正方形向右滚动,P点从x轴上开始运动的时候,首先是围绕A点运动个圆,该圆半径为1,然后以B点为中心,滚动到C点落地,其间是以BP为半径,旋转90°,然后以C为圆心,再旋转90°,这时候以CP为半径,因此最终构成图象如下:故其与x轴所围成的图形面积为.故答案为:4,π+11.【2019年新课标2文科12】设F为双曲线C:1(a>0,b>0)的右焦点,O为坐标原点,以OF为直径的圆与圆x2+y2=a2交于P,Q两点.若|PQ|=|OF|,则C的离心率为()A.B.C.2 D.【解答】解:如图,由题意,把x代入x2+y2=a2,得PQ,再由|PQ|=|OF|,得,即2a2=c2,∴,解得e.故选:A.2.【2019年新课标1文科12】已知椭圆C的焦点为F1(﹣1,0),F2(1,0),过F2的直线与C交于A,B两点.若|AF2|=2|F2B|,|AB|=|BF1|,则C的方程为()A.y2=1 B. 1C. 1 D. 1【解答】解:∵|AF2|=2|BF2|,∴|AB|=3|BF2|,又|AB|=|BF1|,∴|BF1|=3|BF2|,又|BF1|+|BF2|=2a,∴|BF2|,∴|AF2|=a,|BF1|a,在Rt△AF2O中,cos∠AF2O,在△BF1F2中,由余弦定理可得cos∠BF2F1,根据cos∠AF2O+cos∠BF2F1=0,可得0,解得a2=3,∴a.b2=a2﹣c2=3﹣1=2.所以椭圆C的方程为:1.故选:B.3.【2018年新课标2文科11】已知F1,F2是椭圆C的两个焦点,P是C上的一点,若PF1⊥PF2,且∠PF2F1=60°,则C的离心率为()A.1B.2C.D. 1【解答】解:F1,F2是椭圆C的两个焦点,P是C上的一点,若PF1⊥PF2,且∠PF2F1=60°,可得椭圆的焦点坐标F2(c,0),所以P(c,c).可得:,可得,可得e4﹣8e2+4=0,e∈(0,1),解得e.故选:D.4.【2018年天津文科07】已知双曲线1(a>0,b>0)的离心率为2,过右焦点且垂直于x轴的直线与双曲线交于A,B两点.设A,B到双曲线的同一条渐近线的距离分别为d1和d2,且d1+d2=6,则双曲线的方程为()A. 1 B. 1C. 1 D. 1【解答】解:由题意可得图象如图,CD是双曲线的一条渐近线y,即bx﹣ay=0,F(c,0),AC⊥CD,BD⊥CD,FE⊥CD,ACDB是梯形,F是AB的中点,EF3,EF b,所以b=3,双曲线1(a>0,b>0)的离心率为2,可得,可得:,解得a.则双曲线的方程为:1.故选:A.5.【2017年新课标2文科12】过抛物线C:y2=4x的焦点F,且斜率为的直线交C于点M(M在x轴上方),l为C的准线,点N在l上,且MN⊥l,则M到直线NF的距离为()A.B.2C.2D.3【解答】解:抛物线C:y2=4x的焦点F(1,0),且斜率为的直线:y(x﹣1),过抛物线C:y2=4x的焦点F,且斜率为的直线交C于点M(M在x轴上方),l可知:,解得M(3,2).可得N(﹣1,2),NF的方程为:y(x﹣1),即,则M到直线NF的距离为:2.故选:C.6.【2017年新课标1文科12】设A,B是椭圆C:1长轴的两个端点,若C上存在点M满足∠AMB=120°,则m的取值范围是()A.(0,1]∪[9,+∞)B.(0,]∪[9,+∞)C.(0,1]∪[4,+∞)D.(0,]∪[4,+∞)【解答】解:假设椭圆的焦点在x轴上,则0<m<3时,设椭圆的方程为:(a>b>0),设A(﹣a,0),B(a,0),M(x,y),y>0,则a2﹣x2,∠MAB=α,∠MBA=β,∠AMB=γ,tanα,tanβ,则tanγ=tan[π﹣(α+β)]=﹣tan(α+β),∴tanγ,当y最大时,即y=b时,∠AMB取最大值,∴M位于短轴的端点时,∠AMB取最大值,要使椭圆C上存在点M满足∠AMB=120°,∠AMB≥120°,∠AMO≥60°,tan∠AMO tan60°,解得:0<m≤1;当椭圆的焦点在y轴上时,m>3,当M位于短轴的端点时,∠AMB取最大值,要使椭圆C上存在点M满足∠AMB=120°,∠AMB≥120°,∠AMO≥60°,tan∠AMO tan60°,解得:m≥9,∴m的取值范围是(0,1]∪[9,+∞)故选A.故选:A.7.【2017年新课标3文科11】已知椭圆C:1(a>b>0)的左、右顶点分别为A1,A2,且以线段A1A2为直径的圆与直线bx﹣ay+2ab=0相切,则C的离心率为()A.B.C.D.【解答】解:以线段A1A2为直径的圆与直线bx﹣ay+2ab=0相切,∴原点到直线的距离a,化为:a2=3b2.∴椭圆C的离心率e.故选:A.8.【2016年新课标3文科12】已知O为坐标原点,F是椭圆C:1(a>b>0)的左焦点,A,B 分别为C的左,右顶点.P为C上一点,且PF⊥x轴,过点A的直线l与线段PF交于点M,与y轴交于点E.若直线BM经过OE的中点,则C的离心率为()A.B.C.D.【解答】解:由题意可设F(﹣c,0),A(﹣a,0),B(a,0),设直线AE的方程为y=k(x+a),令x=﹣c,可得M(﹣c,k(a﹣c)),令x=0,可得E(0,ka),设OE的中点为H,可得H(0,),由B,H,M三点共线,可得k BH=k BM,即为,化简可得,即为a=3c,可得e.另解:由△AMF∽△AEO,可得,由△BOH∽△BFM,可得,即有即a=3c,可得e.故选:A.9.【2014年新课标2文科12】设点M(x0,1),若在圆O:x2+y2=1上存在点N,使得∠OMN=45°,则x0的取值范围是()A.[﹣1,1] B.[,] C.[,] D.[,]【解答】解:由题意画出图形如图:点M(x0,1),要使圆O:x2+y2=1上存在点N,使得∠OMN=45°,则∠OMN的最大值大于或等于45°时一定存在点N,使得∠OMN=45°,而当MN与圆相切时∠OMN取得最大值,此时MN=1,图中只有M′到M″之间的区域满足MN=1,∴x0的取值范围是[﹣1,1].故选:A.10.【2014年北京文科07】已知圆C:(x﹣3)2+(y﹣4)2=1和两点A(﹣m,0),B(m,0)(m>0),若圆C上存在点P,使得∠APB=90°,则m的最大值为()A.7 B.6 C.5 D.4【解答】解:圆C:(x﹣3)2+(y﹣4)2=1的圆心C(3,4),半径为1,∵圆心C到O(0,0)的距离为5,∴圆C上的点到点O的距离的最大值为6.再由∠APB=90°可得,以AB为直径的圆和圆C有交点,可得PO AB=m,故有m≤6,11.【2014年天津文科06】已知双曲线1(a>0,b>0)的一条渐近线平行于直线l:y=2x+10,双曲线的一个焦点在直线l上,则双曲线的方程为()A. 1 B. 1C. 1 D. 1【解答】解:∵双曲线的一个焦点在直线l上,令y=0,可得x=﹣5,即焦点坐标为(﹣5,0),∴c=5,∵双曲线1(a>0,b>0)的一条渐近线平行于直线l:y=2x+10,∴2,∵c2=a2+b2,∴a2=5,b2=20,∴双曲线的方程为1.故选:A.12.【2011年新课标1文科09】已知直线l过抛物线C的焦点,且与C的对称轴垂直.l与C交于A,B两点,|AB|=12,P为C的准线上一点,则△ABP的面积为()A.18 B.24 C.36 D.48【解答】解:设抛物线的解析式为y2=2px(p>0),则焦点为F(,0),对称轴为x轴,准线为x∵直线l经过抛物线的焦点,A、B是l与C的交点,∴|AB|=2p=12∴p=6又∵点P在准线上∴DP=(||)=p=6∴S△ABP(DP•AB)6×12=36故选:C.13.【2011年北京文科08】已知点A(0,2),B(2,0).若点C在函数y=x2的图象上,则使得△ABC的面积为2的点C的个数为()A.4 B.3 C.2 D.1【解答】解:设C(a,a2),由已知得直线AB的方程为,即:x+y﹣2=0点C到直线AB的距离为:d,有三角形ABC的面积为2可得:|a+a2﹣2|=2得:a2+a=0或a2+a﹣4=0,显然方程共有四个根,可知函数y=x2的图象上存在四个点(如上面图中四个点C1,C2,C3,C4)使得△ABC的面积为2(即图中的三角形△ABC1,△ABC2,△ABC3,△ABC4).故选:A.14.【2015年新课标1文科16】已知F是双曲线C:x21的右焦点,P是C的左支上一点,A(0,6).当△APF周长最小时,该三角形的面积为.【解答】解:由题意,设F′是左焦点,则△APF周长=|AF|+|AP|+|PF|=|AF|+|AP|+|PF′|+2≥|AF|+|AF′|+2(A,P,F′三点共线时,取等号),直线AF′的方程为与x21联立可得y2+6y﹣96=0,∴P的纵坐标为2,∴△APF周长最小时,该三角形的面积为12.故答案为:12.。
【2019最新】精选高考数学专题复习专题9平面解析几何第64练抛物线
练习理
1
原点,焦点在x轴上,若曲线C经过点P(1,3),则其焦点到准线的距离为________.2.已知抛物线C:y2=8x的焦点为F,准线为l,P是l上一点,Q是直线PF与C 的一个交点.若=4,则QF=____________.
3.已知抛物线C:y2=4x,顶点为O,动直线l:y=k(x+1)与抛物线C交于A,B 两点,则·的值为________.
4.(2016·长春一模)过抛物线y2=2px(p>0)的焦点F且倾斜角为120°的直线l 与抛物线在第一、四象限分别交于A、B两点,则=________.
5.(2016·无锡模拟)如图,过抛物线y2=2px(p>0)的焦点F的直线l依次交抛物线及其准线于点A,B,C,若BC=2BF,且AF=3,则抛物线的方程是______________.6.(2016·黑龙江哈尔滨三中一模)直线l与抛物线C:y2=2x交于A,B两点,O为坐标原点.若直线OA,OB的斜率k1,k2满足k1k2=,则l过定点________.7.(2016·常州模拟)如图,抛物线C:y2=2px(p>0)的焦点为F,A为抛物线C上的点,以F为圆心,为半径的圆与直线AF在第一象限的交点为B,∠AFO=120°,A 在y轴上的投影为N,则∠ONB=________.
8.已知抛物线x2=4y上有一条长为6的动弦AB,则AB的中点到x轴的最短距离为________.
9.(2016·福建质检)过抛物线y2=2px(p>0)的焦点作倾斜角为30°的直线l与抛物线交于P,Q两点,分别过P,Q两点作PP1,QQ1垂直于抛线物的准线于P1,Q1,
若PQ=2,则四边形PP1Q1Q的面积是________.
10.(2016·镇江模拟)已知过拋物线y2=4x的焦点F的直线交该抛物线于A,B两点,O是坐标原点,AF=2,则BF=______,△OAB的面积是________.
11.如图是抛物线形拱桥,当水面在l时,拱顶离水面2米,水面宽4米.水位下降1米后,水面宽________米.
12.(2016·石家庄质量检测二)设抛物线C:y2=4x的焦点为F,过F的直线l与抛物线交于A,B两点,M为抛物线C的准线与x轴的交点.若tan∠AMB=2,则AB=________.
13.过抛物线y2=4x的焦点F作直线交抛物线于A,B两点,若AB=8,AF<BF,则BF=________.
14.(2016·扬州中学月考)已知抛物线的顶点在坐标原点,焦点在x轴上,△ABC的三个顶点都在抛物线上,并且△ABC的重心是抛物线的焦点,BC边所在的直线方程为4x+y-20=0,则抛物线的方程为__________.
答案精析
1. 2.3 3.5
4.1
3
解析设抛物线的准线为l:x=-,设FB=m,FA=n,过A,B两点向准线l作垂线AC,BD,
由抛物线定义知AC=FA=n,BD=FB=m,
过B作BE⊥AC,E为垂足,
AE=CE-AC=BD-AC=m-n,
AB=FA+FB=n+m.
在Rt△ABE中,∠BAE=60°,
cos 60°===,
即m=3n.
故===.
5.y2=3x
解析分别过点A,B作准线的垂线AE,BD,分别交准线于点E,D,则BF=BD,
∵BC=2BF,∴BC=2BD,
∴∠BCD=30°,
又AE=AF=3,∴AC=6,
即点F是AC的中点,
根据题意得p=,
∴抛物线的方程是y2=3x.
6.(-3,0)
解析设直线l的方程为y=kx+b,由得k2x2+(2kb-2)x+b2=0.
设A(x1,y1),B(x2,y2),则x1+x2=-,
x1x2=.由k1k2==,得2x1x2-3y1y2=2x1x2-3(kx1+b)·(kx2+b)=(2-3k2)x1x2-3kb(x1+x2)-3b2=0,代入可得b=3k,所以y=kx+3k=k(x+3),所以直线l一定过点(-3,0).
7.30°
解析因为点A到抛物线C的准线的距离为AN+,点A到焦点F的距离为AB+,所以AN=AB,因为∠AFO=120°,所以∠BAN=60°,所以在△ABN中,∠ANB=∠ABN =60°,则∠ONB=30°.
8.2
解析由题意知,抛物线的准线l:y=-1,过点A作AA1⊥l于点A1,过点B作BB1⊥l 于点B1,设弦AB的中点为M,过点M作MM1⊥l于点M1,则MM1=.因为AB≤AF+BF(F 为抛物线的焦点),即AF+BF≥6,所以AA1+BB1≥6,2MM1≥6,MM1≥3,故点M到x 轴的距离d≥2.
9.1
解析由题意得,四边形PP1Q1Q为直角梯形,PP1+QQ1=PQ=2,P1Q1=PQ·sin 30°=1,∴S=·P1Q1=1.
10.2 2
解析设A(x0,y0),由抛物线定义知x0+1=2,
∴x0=1,则直线AB⊥x轴,
∴BF=AF=2,AB=4.
故△OAB的面积S=AB·OF=×4×1=2.
11.2 6
解析如图所示,建立平面直角坐标系,设抛物线方程为x2=-2py(p>0).
由题意将点A(2,-2)代入x2=-2py,
得p=1,故x2=-2y.
设B(x,-3),代入x2=-2y中,得x=,
故水面宽为2 米.
12.8
解析根据对称性,如图所示,不妨设
l:x=my+1(m>0),A(x1,y1),B(x2,y2).由得y2-4my-4=0,
∴y1+y2=4m,y1y2=-4,x1x2=·=1,x1+x2=m(y1+y2)+2=4m2+2.
∵tan∠AMB=tan(∠AMF+∠BMF),
∴=2,
即=2,
解得y1-y2=4m2,
∴4=4m2,
解得m2=1(负值舍去),
∴AB=AF+BF=x1+1+x2+1=4m2+4=8.
13.4+2 2
解析由y2=4x,得焦点F(1,0).又AB=8,故AB的斜率存在(否则AB=4).设直线AB的方程为y=k(x-1)(k≠0),A(x1,y1),B(x2,y2),将y=k(x-1)代入y2=4x,得k2x2-(2k2+4)x+k2=0,故x1+x2=2+,由AB=AF+BF=x1+x2+2=8,得x1+x2=2+=6,即k2=1,则x2-6x+1=0,又AF<BF,所以x1=3-2,x2=3+2,故BF=x2+1=3+2+1=4+2.
14.y2=16x
解析 设抛物线的方程为y2=2px ,
由⎩⎪⎨⎪⎧ 4x +y -20=0,y2=2px ,
可得2y2+py -20p =0,
由Δ>0,得p >0或p <-160, 设B(x1,y1),C(x2,y2),
则y1+y2=-,
所以x1+x2=5-+5-y24
=10-(y1+y2)=10+,
设A(x3,y3),由三角形重心为F(,0), 可得=,=0,
所以x3=-10,y3=,
因为A 在抛物线上,
所以()2=2p(p -10),
从而p =8,所以所求抛物线的方程为 y2=16x.。