高中数学167;3.3.1几何概型导学案新人教A版必修3
- 格式:doc
- 大小:123.00 KB
- 文档页数:3
黑龙江省伊春市高中数学第三章概率3.3.1 几何概型导学案(无答案)新人教A版必修3编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(黑龙江省伊春市高中数学第三章概率3.3.1 几何概型导学案(无答案)新人教A版必修3)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为黑龙江省伊春市高中数学第三章概率3.3.1 几何概型导学案(无答案)新人教A版必修3的全部内容。
3.3。
1几何概型【学法指导】1。
认真阅读教科书,努力完成“基础导学”部分的内容;2.探究部分内容可借助资料,但是必须谈出自己的理解;不能独立解决的问题,用红笔做好标记;3。
课堂上通过合作交流研讨,认真听取同学讲解及教师点拨,排除疑难;4.全力以赴,相信自己!学习目标知识与技能过程与方法情感态度与价值观(1)通过本节课的学习使学生掌握几何概型的特点,明确几何概型与古典概型的区别.(2)通过学生玩转盘游戏,分析得出几何概型概率计算公式。
(3)通过例题,使学生能掌握几何概型概率计算公式的应用。
(1)发现法教学,通过师生共同探究,体会数学知识的形成,学会应用数学知识来解决问题,体会数学知识与现实世界的联系,培养逻辑推理能力;(2)通过模拟试验,感知应用数字解决问题的方法,自觉养成动手、动脑的良好习惯通过对几何概型的教学,帮助学生树立科学的世界观和辩证的思想,养成合作交流的习惯,初步形成建立数学模型的能力.学习重点1、几何概型概率计算公式及应用。
2、如何利用几何图形,把问题转化为几何概型问题。
学习难点正确判断几何概型并求出概率。
【学习过程】复习提问:1、古典概型的两个特点:(1)试验中所有可能出现的基本事件只有____________.(2)每个基本事件出现的_____________________________.2、计算古典概型的公式:探究(一)1。
几何概型【教材分析】本节课是高中数学人教A版必修三第三章第三节第一课时几何概型,是新课程改革后新增的内容,是在学习了随机事件的概率及古典概型之后,引入的另一类等可能模型,在概率论中占有相当重要的地位学好几何概型有利于理解概率的概念,有利于计算一些事件的概率,有利于解释生活中的一些现象【学情分析】学生通过古典概型的学习初步形成了解决概率问题的思维模式,但还不是很成熟学生在学习本节课时特别容易和古典概型相混淆,究其原因是思维不严谨,对几何概型的概念理解不清另外,在解决几何概型的问题时,几何度量的选择也需要特别重视,在实际授课时,应当引导学生发现规律,找出适当的方法来解决问题【教学目标】知识与技能:初步体会几何概型的意义,会用公式求解简单的几何概型的概率.过程与方法:通过试验与已学过计算概率的方法进行比较,提出新问题,师生共同探究,提出可行性解决问题的建议或想法情感态度与价值观:感知生活中的数学,培养学生用随机的观点来理解世界,加强与现实生活的联系,以科学的态度评价身边的随机现象,学会用科学的方法去观察世界和认识世界【重点难点】教学重点: 几何概型的基本特征及如何求几何概型的概率教学难点: 如何判断一个试验是否是几何概型,如何将实际背景转化为几何度量【教法学法】本节课教师采用层层设疑、启发引导学生自主探究的教学模式;使用多媒体来辅助教学,为学生提供直观感性的材料,有助于学生对问题的理解和认识【教学情景设计】习回顾古典概型概率公式:in ……[50,60min 合计实验次数发生频率思考:实验结果的频率呈现怎样的规律?你能用学过的知识解释这一规律吗?这是不是古典概型?问题1:一根长为3米的绳子,从中随机选一个位置剪断,则事件A:“两段长度都不小于1米”的概率是多少?问题2:某海域面积约为17万平方公里,如果在此海域里有面积达万平方公里的大陆架蕴藏着石油,假设在这个海域里任意选定一点钻探,则事件A:“钻出石油”的概率是多少?问题3:一杯1升的水,其中含有1个草履虫,用一个小杯从这杯水中取出升,求小杯水中含有这个草履虫的概率引导学生分析实际问题,通过实验积累经验并理解“等可能”的含义。
2021年高中数学《3.3.1几何概型》教案设计新人教A版必修3教学分析这部分是新增加的内容.介绍几何概型主要是为了更广泛地满足随机模拟的需要,但是对几何概型的要求仅限于初步体会几何概型的意义,所以教科书中选的例题都是比较简单的.随机模拟部分是本节的重点内容.几何概型是另一类等可能概型,它与古典概型的区别在于试验的结果不是有限个,利用几何概型可以很容易举出概率为0的事件不是不可能事件的例子,概率为1的事件不是必然事件的例子.利用古典概型产生的随机数是取整数值的随机数,是离散型随机变量的一个样本;利用几何概型产生的随机数是取值在一个区间的随机数,是连续型随机变量的一个样本.比如[0,1]区间上的均匀随机数,是服从[0,1]区间上均匀分布的随机变量的一个样本.随机模拟中的统计思想是用频率估计概率.本节的教学需要一些实物模型为教具,如教科书中的转盘模型、例3中的随机撒豆子的模型等.教学中应当注意让学生实际动手操作,以使学生相信模拟结果的真实性,然后再通过计算机或计算器产生均匀随机数进行模拟试验,得到模拟的结果.在这个过程中,要让学生体会结果的随机性与规律性,体会随着试验次数的增加,结果的精度会越来越高.随机数的产生与随机模拟的教学中要充分使用信息技术,让学生亲自动手产生随机数,进行模拟活动.几何概型也是一种概率模型,它与古典概型的区别是试验的可能结果不是有限个.它的特点是在一个区域内均匀分布,所以随机事件的概率大小与随机事件所在区域的形状、位置无关,只与该区域的大小有关.如果随机事件所在区域是一个单点,由于单点的长度、面积、体积均为0,则它出现的概率为0,但它不是不可能事件;如果一个随机事件所在区域是全部区域扣除一个单点,则它出现的概率为1,但它不是必然事件.均匀分布是一种常用的连续型分布,它来源于几何概型.由于没有讲随机变量的定义,教科书中均匀分布的定义仅是描述性的,不是严格的数学定义,要求学生体会如果X 落到[0,1]区间内任何一点是等可能的,则称X 为[0,1]区间上的均匀随机数. 三维目标1.通过师生共同探究,体会数学知识的形成,正确理解几何概型的概念;掌握几何概型的概率公式:P (A )=)()(面积或体积的区域长度试验的全部结果所构成面积或体积的区域长度构成事件A ,学会应用数学知识来解决问题,体会数学知识与现实世界的联系,培养逻辑推理能力.2.本节课的主要特点是随机试验多,学习时养成勤学严谨的学习习惯,会根据古典概型与几何概型的区别与联系来判别某种概型是古典概型还是几何概型,会进行简单的几何概率计算,培养学生从有限向无限探究的意识.重点难点教学重点:理解几何概型的定义、特点,会用公式计算几何概率.教学难点:等可能性的判断与几何概型和古典概型的区别.课时安排1课时教学过程导入新课思路1复习古典概型的两个基本特点:(1)所有的基本事件只有有限个;(2)每个基本事件发生都是等可能的.那么对于有无限多个试验结果的情况相应的概率应如何求呢?为此我们学习几何概型,教师板书本节课题几何概型.思路2下图中有两个转盘,甲、乙两人玩转盘游戏,规定当指针指向B 区域时,甲获胜,否则乙获胜.在两种情况下分别求甲获胜的概率是多少?为解决这个问题,我们学习几何概型.思路3在概率论发展的早期,人们就已经注意到只考虑那种仅有有限个等可能结果的随机试验是不够的,还必须考虑有无限多个试验结果的情况.例如一个人到单位的时间可能是8:00至9:00之间的任何一个时刻;往一个方格中投一个石子,石子可能落在方格中的任何一点……这些试验可能出现的结果都是无限多个.这就是我们要学习的几何概型.推进新课新知探究提出问题(1)随意抛掷一枚均匀硬币两次,求两次出现相同面的概率?(2)试验1.取一根长度为3 m的绳子,拉直后在任意位置剪断.问剪得两段的长都不小于1 m 的概率有多大?试验 2.射箭比赛的箭靶涂有五个彩色得分环.从外向内为白色,黑色,蓝色,红色,靶心是金色.金色靶心叫“黄心”.奥运会的比赛靶面直径为122 cm,靶心直径为12.2 cm.运动员在70 m外射箭.假设射箭都能射中靶面内任何一点都是等可能的.问射中黄心的概率为多少?(3)问题(1)(2)中的基本事件有什么特点?两事件的本质区别是什么?(4)什么是几何概型?它有什么特点?(5)如何计算几何概型的概率?有什么样的公式?(6)古典概型和几何概型有什么区别和联系?活动:学生根据问题思考讨论,回顾古典概型的特点,把问题转化为学过的知识解决,教师引导学生比较概括.讨论结果:(1)硬币落地后会出现四种结果:分别记作(正,正)、(正,反)、(反,正)、(反,反).每种结果出现的概率相等,P(正,正)=P(正,反)=P(反,正)=P(反,反)=1/4.两次出现相同面的概率为.(2)经分析,第一个试验,从每一个位置剪断都是一个基本事件,剪断位置可以是长度为 3 m 的绳子上的任意一点.第二个试验中,射中靶面上每一点都是一个基本事件,这一点可以是靶面直径为122 cm 的大圆内的任意一点.在这两个问题中,基本事件有无限多个,虽然类似于古典概型的“等可能性”,但是显然不能用古典概型的方法求解.考虑第一个问题,如右图,记“剪得两段的长都不小于1 m”为事件A.把绳子三等分,于是当剪断位置处在中间一段上时,事件A发生.由于中间一段的长度等于绳长的, 于是事件A发生的概率P(A)=.第二个问题,如右图,记“射中黄心”为事件B,由于中靶心随机地落在面积为×π×1222 cm2的大圆内,而当中靶点落在面积为×π×12.22 cm2的黄心内时,事件B发生,于是事件B 发生的概率P(B)=22122412.1241⨯⨯⨯⨯ππ=0.01.(3)硬币落地后会出现四种结果(正,正)、(正,反)、(反,正)、(反,反)是等可能的,绳子从每一个位置剪断都是一个基本事件,剪断位置可以是长度为3 m 的绳子上的任意一点,也是等可能的,射中靶面内任何一点都是等可能的,但是硬币落地后只出现四种结果,是有限的;而剪断绳子的点和射中靶面的点是无限的;即一个基本事件是有限的,而另一个基本事件是无限的.(4)几何概型.对于一个随机试验,我们将每个基本事件理解为从某个特定的几何区域内随机地取一点,该区域中的每一个点被取到的机会都一样,而一个随机事件的发生则理解为恰好取到上述区域内的某个指定区域中的点.这里的区域可以是线段、平面图形、立体图形等.用这种方法处理随机试验,称为几何概型.如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型(geometric models of probability ),简称几何概型. 几何概型的基本特点:a.试验中所有可能出现的结果(基本事件)有无限多个;b.每个基本事件出现的可能性相等.(5)几何概型的概率公式:P (A )=)()(面积或体积的区域长度试验的全部结果所构成面积或体积的区域长度构成事件A . (6)古典概型和几何概型的联系是每个基本事件的发生都是等可能的;区别是古典概型的基本事件是有限的,而几何概型的基本事件是无限的,另外两种概型的概率计算公式的含义也不同.应用示例思路1例1 判断下列试验中事件A 发生的概率是古典概型,还是几何概型.(1)抛掷两颗骰子,求出现两个“4点”的概率;(2)如下图所示,图中有一个转盘,甲、乙两人玩转盘游戏,规定当指针指向B 区域时,甲获胜,否则乙获胜,求甲获胜的概率.活动:学生紧紧抓住古典概型和几何概型的区别和联系,然后判断.解:(1)抛掷两颗骰子,出现的可能结果有6×6=36种,且它们都是等可能的,因此属于古典概型;(2)游戏中指针指向B 区域时有无限多个结果,而且不难发现“指针落在阴影部分”,概率可以用阴影部分的面积与总面积的比来衡量,即与区域长度有关,因此属于几何概型.点评:本题考查的是几何概型与古典概型的特点,古典概型具有有限性和等可能性.而几何概型则是在试验中出现无限多个结果,且与事件的区域长度有关.例2 某人午休醒来,发觉表停了,他打开收音机想听电台整点报时,求他等待的时间短于10分钟的概率.活动:学生分析,教师引导,假设他在0—60之间的任一时刻,打开收音机是等可能的,但0—60之间有无数个时刻,不能用古典概型的公式来计算随机事件发生的概率,因为他在0—60之间的任一时刻打开收音机是等可能的,所以他在哪个时间段打开收音机的概率只与该时间段的长度有关,而与该时间段的位置无关,这符合几何概型的条件,所以可用几何概型的概率计算公式计算.解:记“等待的时间小于10分钟”为事件A,打开收音机的时刻位于[50,60]时间段内则事件A发生.由几何概型的求概率公式得P(A)=(60-50)/60=1/6,即“等待报时的时间不超过10分钟”的概率为1/6.打开收音机的时刻X是随机的,可以是0—60之间的任何时刻,且是等可能的.我们称X服从[0,60]上的均匀分布,X称为[0,60]上的均匀随机数.变式训练某路公共汽车5分钟一班准时到达某车站,求任一人在该车站等车时间少于3分钟的概率(假定车到来后每人都能上).解:可以认为人在任一时刻到站是等可能的.设上一班车离站时刻为a,则某人到站的一切可能时刻为Ω=(a,a+5),记A g={等车时间少于3分钟},则他到站的时刻只能为g=(a+2,a+5)中的任一时刻,故P(A g)=.点评:通过实例初步体会几何概型的意义.思路2例 1 某人欲从某车站乘车出差,已知该站发往各站的客车均每小时一班,求此人等车时间不多于20分钟的概率.活动:假设他在0—60分钟之间任何一个时刻到车站等车是等可能的,但在0到60分钟之间有无穷多个时刻,不能用古典概型公式计算随机事件发生的概率.可以通过几何概型的求概率公式得到事件发生的概率.因为客车每小时一班,他在0到60分钟之间任何一个时刻到站等车是等可能的,所以他在哪个时间段到站等车的概率只与该时间段的长度有关,而与该时间段的位置无关,这符合几何概型的条件.解:设A={等待的时间不多于10分钟},我们所关心的事件A恰好是到站等车的时刻位于[40,60]这一时间段内,因此由几何概型的概率公式,得P(A)=(60-40)/60=1/3.即此人等车时间不多于10分钟的概率为1/3.点评:在本例中,到站等车的时刻X是随机的,可以是0到60之间的任何一刻,并且是等可能的,我们称X服从[0,60]上的均匀分布,X为[0,60]上的均匀随机数.变式训练在1万平方千米的海域中有40平方千米的大陆架储藏着石油,假设在海域中任意一点钻探,钻到油层面的概率是多少?分析:石油在1万平方千米的海域大陆架的分布可以看作是随机的,而40平方千米可看作构成事件的区域面积,由几何概型公式可以求得概率.解:记“钻到油层面”为事件A,则P(A)=0.004.答:钻到油层面的概率是0.004.例2 小明家的晚报在下午5:30—6:30之间任何一个时间随机地被送到,小明一家人在下午6:00—7:00之间的任何一个时间随机地开始晚餐.则晚报在晚餐开始之前被送到的概率是多少?活动:学生读题,设法利用几何概型公式求得概率.解:建立平面直角坐标系,如右图中x=6,x=7,y=5.5,y=6.5围成一个正方形区域G.设晚餐在x(6≤x≤7)时开始,晚报在y(5.5≤y≤6.5)时被送到,这个结果与平面上的点(x,y)对应.于是试验的所有可能结果就与G中的所有点一一对应.由题意知,每一个试验结果出现的可能性是相同的,因此,试验属于几何概型.晚报在晚餐开始之前被送到,当且仅当y<x,因此图中的阴影区域g就表示“晚报在晚餐开始之前被送到”.容易求得g的面积为,G的面积为1.由几何概型的概率公式,“晚报在晚餐开始之前被送到”的概率为P(A)=.变式训练在1升高产小麦种子中混入了一种带麦锈病的种子,从中随机取出10毫升,则取出的种子中含有麦锈病的种子的概率是多少?分析:病种子在这1升中的分布可以看作是随机的,取得的10毫升种子可视作构成事件的区域,1升种子可视作试验的所有结果构成的区域,可用“体积比”公式计算其概率.解:取出10毫升种子,其中“含有病种子”这一事件记为A,则P(A)=0.01.所以取出的种子中含有麦锈病的种子的概率是0.01.知能训练1.已知地铁列车每10 min一班,在车站停1 min,求乘客到达站台立即乘上车的概率.解:由几何概型知,所求事件A的概率为P(A)=.2.两根相距6 m的木杆上系一根绳子,并在绳子上挂一盏灯,求灯与两端距离都大于2 m的概率.解:记“灯与两端距离都大于2 m”为事件A,则P(A)==.3.在500 mL的水中有一个草履虫,现从中随机取出2 mL水样放到显微镜下观察,则发现草履虫的概率是()A.0.5B.0.4C.0.004D.不能确定解析:由于取水样的随机性,所求事件A:“在取出2 mL的水样中有草履虫”的概率等于水样的体积与总体积之比=0.004.答案:C4.平面上画了一些彼此相距2a 的平行线,把一枚半径r<a 的硬币任意掷在这个平面上,求硬币不与任何一条平行线相碰的概率.解:把“硬币不与任一条平行线相碰”的事件记为事件A,为了确定硬币的位置,由硬币中心O 向靠得最近的平行线引垂线OM,垂足为M,如右图所示,这样线段OM 长度(记作OM )的取值范围就是[0,a ],只有当r <OM≤a 时硬币不与平行线相碰,所以所求事件A 的概率就是P (A )=.拓展提升1.约会问题两人相约8点到9点在某地会面,先到者等候另一人20分钟,过时就可离去,试求这两人能会面的概率.解:因为两人谁也没有讲好确切的时间,故样本点由两个数(甲、乙两人各自到达的时刻)组成.以8点钟作为计算时间的起点,设甲、乙各在第x 分钟和第y 分钟到达,则样本空间为Ω:{(x,y)|0≤x≤60,0≤y≤60},画成图为一正方形.以x,y 分别表示两人的到达时刻,则两人能会面的充要条件为|x-y|≤20.这是一个几何概率问题,可能的结果全体是边长为60的正方形里的点,能会面的点的区域用阴影标出(如下图).所求概率为P=95604060222=-=的面积的面积G g .2.(蒲丰(Buffon)投针问题)平面上画很多平行线,间距为a.向此平面投掷长为l(l<a)的针,求此针与任一平行线相交的概率.解:以针的任一位置为样本点,它可以由两个数决定:针的中点与最接近的平行线之间的距离x,针与平行线的交角φ(见下图左).样本空间为Ω:{(φ,x),0≤φ≤π,0≤x≤a/2},为一矩形.针与平行线相交的充要条件是g :x≤sinφ(见下图右).所求概率是P= ππφφπa l a d l 22/sin )2/(0=••=⎰.注:因为概率P 可以用多次重复试验的频率来近似,由此可以得到π的近似值.方法是重复投针N次,(或一次投针若干枚,总计N枚),统计与平行线相交的次数n,则P≈n/N.又因a 与l都可精确测量,故从2l/aπ≈n/N,可解得π≈2lN/an.历史上有不少人做过这个试验.做得最好的一位投掷了3 408次,算得π≈3.141 592 9,其精确度已经达到小数点后第六位. 设计一个随机试验,通过大量重复试验得到某种结果,以确定我们感兴趣的某个量,由此而发展的蒙特卡洛(Monte-Carlo)方法为这种计算提供了一种途径.课堂小结几何概型是区别于古典概型的又一概率模型,使用几何概型的概率计算公式时,一定要注意其适用条件:每个事件发生的概率只与构成该事件区域的长度成比例.作业课本习题3.3A组1、2、3.设计感想本节课首先对古典概型进行了复习,使学生掌握古典概型的适用条件,巩固了古典概型的概率计算公式,接着设计了多个试验,从课题的引入,到问题的提出都非常有针对性,引人入胜,接着从求概率不能问题引出几何概型这一不同于古典概型的又一概率模型,并通过探究,归纳出几何概型的概率计算公式,同时比较了古典概型和几何概型的区别和联系,通过思路1和思路2两种不同的例题类型和层次,加深理解和运用,由于它们与实际生活联系密切,所以要反复练习,达到为我们的工作与生活服务,然而这部分内容高考是新内容,因此同学们要高度重视,全面把握,争取好成绩.。
§3.3 几何概型授课时间第周星期第节课型新授课主备课人学习目标1初步体会模拟方法在概率方面的应用;2.理解几何概型的定义及其特点,会用公式计算简单的几何概型问题。
重点难点重点:借助模拟方法来估计某些事件发生的概率;几何概型的概念及应用,体会随机模拟中的统计思想:用样本估计总体难点:设计和操作一些模拟试验,对从试验中得出的数据进行统计、分析;应用随机数解决各种实际问题。
学习过程与方法自主学习1.模拟方法:通常借助____________来估计某些随机事件发生的概率。
用模拟方法可以在短时间内完成大量的重复试验,对于某些无法确切知道概率的问题,模拟方法能帮助我们得到其概率的近似值。
2.几何概型:(1)向平面上有限区域(集合)G内随机地投掷点M,若点M落在的概率与G1的成正比,而与G的、无关,即P(点M落在G1) =,则称这种模型为几何概型。
(2)几何概型中G也可以是或的有限区域,相应的概率是或。
探索新知:1.几何概型中事件A的概率是否与构成事件A的区域形状有关?2.在几何概型中,如果A为随机事件,若P(A) = 0,则A一定为不可能事件吗?3.阅读p156 “问题提出”,你的结论是什么?精讲互动例1.在相距3m的两杆之间扯上一铁丝,小明洗完衣服后,将衣服挂在铁丝上晾晒,则所挂衣服与两杆的距离都不小于1m的概率有多大?例2.(选讲)在区间[-1,1]上任取两个数,则(1)求这两个数的平方和不大于1的概率;(2)求这两个数的差的绝对值不大于1的概率。
达标训练1. 课本p157 练习1 22. 教辅资料作业习题3-3 1,2布置学习小结/教学反思。
课 题:3.3.1 几何概型教学目标:1.通过师生共同探究,体会数学知识的形成,正确理解几何概型的概念;掌握几何概型的概率公式:P (A )=)()(面积或体积的区域长度试验的全部结果所构成面积或体积的区域长度构成事件A ,学会应用数学知识来解决问题,体会数学知识与现实世界的联系,培养逻辑推理能力.2.本节课的主要特点是随机试验多,学习时养成勤学严谨的学习习惯,会根据古典概型与几何概型的区别与联系来判别某种概型是古典概型还是几何概型,会进行简单的几何概率计算,培养学生从有限向无限探究的意识.教学重点:理解几何概型的定义、特点,会用公式计算几何概率.教学难点:等可能性的判断与几何概型和古典概型的区别.教学方法:讲授法课时安排:1课时教学过程:一、导入新课:1、复习古典概型的两个基本特点:(1)所有的基本事件只有有限个;(2)每个基本事件发生都是等可能的.那么对于有无限多个试验结果的情况相应的概率应如何求呢?2、在概率论发展的早期,人们就已经注意到只考虑那种仅有有限个等可能结果的随机试验是不够的,还必须考虑有无限多个试验结果的情况.例如一个人到单位的时间可能是8:00至9:00之间的任何一个时刻;往一个方格中投一个石子,石子可能落在方格中的任何一点……这些试验可能出现的结果都是无限多个.这就是我们要学习的几何概型.二、新课讲授:提出问题(1)随意抛掷一枚均匀硬币两次,求两次出现相同面的概率?(2)试验1.取一根长度为3 m 的绳子,拉直后在任意位置剪断.问剪得两段的长都不小于1 m 的概率有多大?试验 2.射箭比赛的箭靶涂有五个彩色得分环.从外向内为白色,黑色,蓝色,红色,靶心是金色.金色靶心叫“黄心”.奥运会的比赛靶面直径为122 cm,靶心直径为12.2 cm.运动员在70 m 外射箭.假设射箭都能射中靶面内任何一点都是等可能的.问射中黄心的概率为多少?(3)问题(1)(2)中的基本事件有什么特点?两事件的本质区别是什么?(4)什么是几何概型?它有什么特点?(5)如何计算几何概型的概率?有什么样的公式?(6)古典概型和几何概型有什么区别和联系?活动:学生根据问题思考讨论,回顾古典概型的特点,把问题转化为学过的知识解决,教师引导学生比较概括.讨论结果:(1)硬币落地后会出现四种结果:分别记作(正,正)、(正,反)、(反,正)、(反,反).每种结果出现的概率相等,P (正,正)=P (正,反)=P (反,正)=P (反,反)=1/4.两次出现相同面的概率为214141=+. (2)经分析,第一个试验,从每一个位置剪断都是一个基本事件,剪断位置可以是长度为 3 m 的绳子上的任意一点.第二个试验中,射中靶面上每一点都是一个基本事件,这一点可以是靶面直径为122 cm 的大圆内的任意一点.在这两个问题中,基本事件有无限多个,虽然类似于古典概型的“等可能性”,但是显然不能用古典概型的方法求解.考虑第一个问题,如右图,记“剪得两段的长都不小于1 m”为事件A.把绳子三等分,于是当剪断位置处在中间一段上时,事件A 发生.由于中间一段的长度等于绳长的31, 于是事件A 发生的概率P(A)=31. 第二个问题,如右图,记“射中黄心”为事件B,由于中靶心随机地落在面积为41×π×1222 cm 2的大圆内,而当中靶点落在面积为41×π×12.22 cm 2的黄心内时,事件B 发生,于是事件B 发生的概率P(B)=22122412.1241⨯⨯⨯⨯ππ=0.01.(3)硬币落地后会出现四种结果(正,正)、(正,反)、(反,正)、(反,反)是等可能的,绳子从每一个位置剪断都是一个基本事件,剪断位置可以是长度为3 m 的绳子上的任意一点,也是等可能的,射中靶面内任何一点都是等可能的,但是硬币落地后只出现四种结果,是有限的;而剪断绳子的点和射中靶面的点是无限的;即一个基本事件是有限的,而另一个基本事件是无限的.(4)几何概型.对于一个随机试验,我们将每个基本事件理解为从某个特定的几何区域内随机地取一点,该区域中的每一个点被取到的机会都一样,而一个随机事件的发生则理解为恰好取到上述区域内的某个指定区域中的点.这里的区域可以是线段、平面图形、立体图形等.用这种方法处理随机试验,称为几何概型.如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型(geometric models of probability ),简称几何概型. 几何概型的基本特点:a.试验中所有可能出现的结果(基本事件)有无限多个;b.每个基本事件出现的可能性相等.(5)几何概型的概率公式:P (A )=)()(面积或体积的区域长度试验的全部结果所构成面积或体积的区域长度构成事件A .(6)古典概型和几何概型的联系是每个基本事件的发生都是等可能的;区别是古典概型的基本事件是有限的,而几何概型的基本事件是无限的,另外两种概型的概率计算公式的含义也不同.三、例题讲解:例1 判断下列试验中事件A 发生的概率是古典概型,还是几何概型.(1)抛掷两颗骰子,求出现两个“4点”的概率;(2)如下图所示,图中有一个转盘,甲、乙两人玩转盘游戏,规定当指针指向B 区域时,甲获胜,否则乙获胜,求甲获胜的概率.活动:学生紧紧抓住古典概型和几何概型的区别和联系,然后判断.解:(1)抛掷两颗骰子,出现的可能结果有6×6=36种,且它们都是等可能的,因此属于古典概型;(2)游戏中指针指向B 区域时有无限多个结果,而且不难发现“指针落在阴影部分”,概率可以用阴影部分的面积与总面积的比来衡量,即与区域长度有关,因此属于几何概型.点评:本题考查的是几何概型与古典概型的特点,古典概型具有有限性和等可能性.而几何概型则是在试验中出现无限多个结果,且与事件的区域长度有关.例2 某人午休醒来,发觉表停了,他打开收音机想听电台整点报时,求他等待的时间短于10分钟的概率.分析:见教材136页解:(略)变式训练1、某路公共汽车5分钟一班准时到达某车站,求任一人在该车站等车时间少于3分钟的概率(假定车到来后每人都能上).解:可以认为人在任一时刻到站是等可能的.设上一班车离站时刻为a,则某人到站的一切可能时刻为Ω=(a,a+5),记A g ={等车时间少于3分钟},则他到站的时刻只能为g=(a+2,a+5)中的任一时刻,故P(A g )=53=Ω的长度的长度g . 点评:通过实例初步体会几何概型的意义.2、 在1万平方千米的海域中有40平方千米的大陆架储藏着石油,假设在海域中任意一点钻探,钻到油层面的概率是多少?分析:石油在1万平方千米的海域大陆架的分布可以看作是随机的,而40平方千米可看作构成事件的区域面积,由几何概型公式可以求得概率.解:记“钻到油层面”为事件A,则P(A)=0.004.答:钻到油层面的概率是0.004.四、课堂小结:几何概型是区别于古典概型的又一概率模型,使用几何概型的概率计算公式时,一定要注意其适用条件:每个事件发生的概率只与构成该事件区域的长度成比例.五、课后作业:课本习题3.3A组1、2、3.板书设计课后反思:。
第三章概率3.3几何概型3.3.1几何概型学习目标1.通过本节内容的学习,了解几何概型,理解其基本计算方法并会运用.2.通过对照前面学过的知识,自主思考,寻找几何概型的随机模拟计算方法,设计估计未知量的方案,培养实际操作能力.3.通过学习,体会试验结果的随机性与规律性,培养科学思维方法,提高对自然界的认知水平.合作学习一、设计问题,创设情境问题1:前面我们都学过哪些求概率的方法?学生思考后给出:.问题2:下面事件的概率能否用古典概型的方法求解?[情境一]教师取一根长度为60厘米的绳子,拉直后在任意位置剪断,使得剪出的两段的长都不小于绳子长度13(记为事件A),求此事件发生的概率.师生共同探究:此试验中,从每一个位置剪断都是一个试验结果,剪断位置可以是绳子上任一点,试验的可能结果为,发现不是,不可以用古典概型的方法求解.探索:如图所示,把绳子三等分,于是当剪断位置在中间一段时,事件A发生,于是P(A)=中间绳子长度整条绳子长度=13.教师:这个模型就是我们今天要学习的几何概率模型,简称几何概型.[情境二]教师用多媒体展示商场里面的抽奖场景视频,拿出如图所示的两个转盘,规定当指针指向B区域时顾客中奖.问题3:在两种情况下某顾客中奖的概率分别是多少?学生思考并回答,可见在图(1)中,顾客中奖的概率为,图(2)中顾客中奖的概率为.[情境三]问题4:一只苍蝇在一棱长为60cm的正方体笼子里飞.苍蝇距笼边大于10cm的概率是多少?问题5:同学们观察对比,找出三个情境的共同点与不同点.问题6:同学们能否根据自己的理解说说什么是几何概型?二、信息交流,揭示规律在问题情境的铺垫下,教师引导学生用自己的语言描述几何概型的概念:,简称为几何概型.问题7:古典概型与几何概型的区别和联系是什么?引导学生通过对前面三个情境的总结,得到在几何概型中,事件A发生的概率的计算公式为三、运用规律,解决问题【例1】在500mL的水中有一只草履虫,现从中随机取出2mL水样放到显微镜下观察,求发现草履虫的概率.【例2】取一个边长为2a的正方形及其内切圆,随机向正方形内丢一粒豆子,求豆子落入圆内的概率.【例3】某人午觉醒来,发现表停了,他打开收音机,想听电台整点报时,求他等待的时间不多于10分钟的概率.归纳总结:怎样求几何概型的概率?对于复杂的实际问题,解题的关键是要建立模型,找出随机事件与所有基本事件相对应的几何区域,把问题转化为几何概率问题,利用几何概率公式求解,具体分以下四个步骤:(1)(2)(3)(4)四、变式训练,深化提高1.在区间[1,3]上任意取一个数,则这个数不小于1.5的概率是多少?2.在高产小麦种子100mL中混入了一粒带锈病的种子,从中随机取出3mL,求含有带锈病种子的概率是多少?3.在墙上挂着一块边长为16cm的正方形木板,上面画了小、中、大三个同心圆,半径分别为2cm,4cm,6cm,某人站在3m之外向此板投镖,投镖击中线上或没有投中木板时都不算,可重投,问:(1)投中大圆内的概率是多少?(2)投中小圆与中圆形成的圆环的概率是多少?(3)投中大圆之外的概率是多少?五、反思小结,观点提炼布置作业1.必做题课本P142习题3.3A组第1,2题.2.选做题(1)在等腰直角三角形ABC中,在斜边AB上任取一点M,求AM小于AC的概率.(2)平面上画了一些彼此相距2a的平行线,把一枚半径r<a的硬币任意掷在这个平面上,求硬币不与任何一条平行线相碰的概率.(3)两人相约8点到9点在某地会面,先到者等候另一人20分钟,过时就可离去,试求这两人能会面的概率.参考答案一、设计问题,创设情境问题1:用做试验或计算机模拟试验等方法得到事件发生的频率来估计概率;用古典概型的公式计算事件发生的概率.问题2:无限个古典概型问题3:123 5二、信息交流,揭示规律如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型问题7:P(A)=构成事件A的区域长度(面积或体积)试验的全部结果所构成的区域长度(面积或体积)三、运用规律,解决问题【例1】解:取出2mL水,其中“发现草履虫”这一事件记为A,则P(A)=取出水的体积所有水的体积=2500=0.004.答:发现草履虫的概率是0.004.【例2】解:记“豆子落入圆内”为事件A,则P(A)=圆的面积正方形的面积=πa24a2=π4.答:豆子落入圆内的概率为π4.【例3】解:记“等待的时间不多于10分钟”为事件A,则P(A)=1060=16.答:等待的时间不多于10分钟的概率为16.归纳总结(1)利用几何概型的定义判断该问题能否转化为几何概型求解;(2)把基本事件空间转化为与之对应的区域Ω;(3)把随机事件A转化为与之对应的区域A;(4)利用几何概型概率公式计算.四、变式训练,深化提高1.P=[1.5,3]的长度[1,3]的长度=3-1.53-1=1.52=0.75.2.P(A)=取出的小麦种子的体积所有小麦种子的体积=3100=0.03.3.(1)P 1=大圆的面积正方形的面积=36π256=9π64.(2)P 2=中圆的面积-小圆的面积正方形的面积=16π-4π256=3π64.(3)P 3=1-大圆的面积正方形的面积=1-9π64.五、反思小结,观点提炼1.几何概型的概念及基本特点.2.几何概型中概率的计算公式;一般地,在几何区域Ω中随机地取一点,记事件“该点落在其内部一个区域A 内”为事件A ,则事件A 的概率计算公式为P (A )=μA μΩ.其中μΩ表示区域Ω的几何度量,μA 表示区域A 的几何度量.3.背景相似的问题,当等可能的角度不同时,其概率是不一样的.4.区域Ω内随机取点是指:该点落在区域Ω内任何一处都是等可能的,落在任何部分的可能性大小只与该部分的测度成正比,而与其形状位置无关.布置作业 2.选做题:(1)解:在AB 上截取AC'=AC.于是 P (AM<AC )=P (AM<AC')=AC 'AB=AC AB=√22. 答:AM 小于AC 的概率为√22.(2)解:把“硬币不与任一条平行线相碰”记为事件A ,为了确定硬币的位置,由硬币中心O 向靠得最近的平行线引垂线OM ,垂足为M ,如图所示,这样线段OM 长度(记作OM )的取值范围就是[0,a ],只有当r<OM ≤a 时硬币才不与平行线相碰,所以,所求事件A 的概率P (A )=(r ,a ]的长度[0,a ]的长度=a -r a.(3)解:设甲、乙各在第x 分钟和第y 分钟到达,则样本空间为Ω:{(x ,y )|0≤x ≤60,0≤y ≤60},画成图为一正方形(如图).以x ,y 分别表示两人的到达时刻,则两人能会面的充要条件为|x -y|≤20,而能会面的点的区域用阴影标出,所求概率P=阴影的面积正方形的面积=602-402602=59.。
3. 3.1几何概型教材分析:和古典概型一样,在特定情形下,我们可以用几何概型来计算事件发生的概率.它也是一种等可能概型.教材首先通过实例对比概念给予描述,然后通过均匀随机数随机模拟的方法的介绍,给出了几何概型的一种常用计算方法.与本课开始介绍的P(A)的公式计算方法前后对应,使几何概型这一知识板块更加系统和完整.这节内容中的例题既通俗易懂,又具有代表性,有利于我们的教与学生的学.教学重点是几何概型的计算方法,尤其是设计模型运用随机模拟方法估计未知量;教学难点是突出用样本估计总体的统计思想,把求未知量的问题转化为几何概型求概率的问题.教学目标:1. 通过这节内容学习,让学生了解几何概型,理解其基本计算方法并会运用.2. 通过对照前面学过的知识,让学生自主思考,寻找几何概型的随机模拟计算方法,设计估计未知量的方案,培养学生的实际操作能力.3. 通过学习,让学生体会试验结果的随机性与规律性,培养学生的科学思维方法,提高学生对自然界的认知水平.教学重点与难点:是随机模拟部分.这节内容的教学需要一些实物模型作为教具,如教科书中的转盘模型、例2中的随机撒豆子的模型等.教学中应当注意让学生实际动手操作,以使学生相信模拟结果的真实性,然后再通过计算机或计算器产生均匀随机数进行模拟试验,得到模拟的结果.随机模拟的教学中要充分使用信息技术,让学生亲自动手产生随机数,进行模拟活动.教学过程:一、问题情境如图,有两个转盘.甲、乙两人玩转盘游戏,规定当指针指向B区域时,甲获胜,否则乙获胜.问题:在下列两种情况下分别求甲获胜的概率.二、建立模型1. 提出问题首先引导学生分析几何图形和甲获胜是否有关系,若有关系,和几何体图形的什么表面特征有关系?学生凭直觉,可能会指出甲获胜的概率与扇形弧长或面积有关.即:字母B所在扇形弧长(或面积)与整个圆弧长(或面积)的比.接着提出这样的问题:变换图中B 与N的顺序,结果是否发生变化?(教师还可做出其他变换后的图形,以示决定几何概率的因素的确定性).题中甲获胜的概率只与图中几何因素有关,我们就说它是几何概型.注意:(1)这里“只”非常重要,如果没有“只”字,那么就意味着几何概型的概率可能还与其他因素有关,这是错误的.(2)正确理解“几何因素”,一般说来指区域长度(或面积或体积).2. 引导学生讨论归纳几何概型定义,教师明晰———抽象概括如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型,简称为几何概型.在几何概型中,事件A的概率的计算公式如下:3. 再次提出问题,并组织学生讨论(1)情境中两种情况下甲获胜的概率分别是多少?(2)在500ml的水中有一个草履虫,现从中随机取出2ml水样放到显微镜下观察,求发现草履虫的概率.(3)某人午觉醒来,发现表停了,他打开收音机,想听电台报时,求他等待的时间不多于10min的概率.通过以上问题的研讨,进一步明确几何概型的意义及基本计算方法.三、典型例题1. 假设你家订了一份报纸,送报人可能在早上6:30~7:30之间把报纸送到你家,而你父亲离开家去工作的时间在早上7:00~8:00之间,问你父亲在离开家前能得到报纸(称为事件A)的概率是多少.分析:我们有两种方法计算事件的概率.(1)利用几何概型的公式.(2)利用随机模拟的方法.解法1:如图,方形区域内任何一点的横坐标表示送报人送到报纸的时间,纵坐标表示父亲离开家去工作的时间.假设随机试验落在方形内任一点是等可能的,所以符合几何概型的条件.根据题意,只要点落到阴影部分,就表示父亲在离开家前能得到报纸,即事件A发生,所以解法2:设X,Y是0~1之间的均匀随机数.X+6.5表示送报人送到报纸的时间,Y+7表示父亲离开家去工作的时间.如果Y+7>X+6.5,即Y>X-0.5,那么父亲在离开家前能得到报纸.用计算机做多次试验,即可得到P(A).教师引导学生独立解答,充分调动学生自主设计随机模拟方法,并组织学生展示自己的解答过程,要求学生说明解答的依据.教师总结,并明晰用计算机(或计算器)产生随机数的模拟试验.强调:这里采用随机数模拟方法,是用频率去估计概率,因此,试验次数越多,频率越接近概率.2. 如图,在正方形中随机撒一大把豆子,计算落在圆中的豆子数与落在正方形中的豆子数之比,并以此估计圆周率的值.解:随机撒一把豆子,每个豆子落在正方形内任何一点是等可能的,落在每个区域的豆子数与这个区域的面积近似成正比,即假设正方形的边长为2,则由于落在每个区域的豆子数是可以数出来的,所以这样就得到了π的近似值.另外,我们也可以用计算器或计算机模拟,步骤如下:(1)产生两组0~1区间的均匀随机数,a1=RAND,b1=RAND;(2)经平移和伸缩变换,a=(a1-0.5)*2,b=(b1-0.5)*2;(3)数出落在圆内a2+b2<1的豆子数N1,计算(N代表落在正方形中的豆子数).可以发现,随着试验次数的增加,得到π的近似值的精度会越来越高.本例启发我们,利用几何概型,并通过随机模拟法可以近似计算不规则图形的面积.[练习]1. 如图30-4,如果你向靶子上射200镖,你期望多少镖落在黑色区域.2. 利用随机模拟方法计算图30-5中阴影部分(y=1和y=x2围成的部分)的面积.3. 画一椭圆,让学生设计方案,求此椭圆的面积.作业:课本3.3.1几何概型课前预习学案一、预习目标1. 了解几何概型,理解其基本计算方法并会运用.2. 通过对照前面学过的知识,让学生自主思考,寻找几何概型的随机模拟计算方法,设计估计未知量的方案,培养学生的实际操作能力.二、预习内容1.,简称为几何概型.2.在几何概型中,事件A的概率的计算公式如下:3. 讨论:(1)情境中两种情况下甲获胜的概率分别是多少?( 2)在500ml的水中有一个草履虫,现从中随机取出2ml水样放到显微镜下观察,求发现草履虫的概率.三、提出疑惑课内探究学案一、学习目标:了解几何概型,理解其基本计算方法并会运用.学习重点与难点:几何概型的计算方法.二、学习过程:例1. 假设你家订了一份报纸,送报人可能在早上6:30~7:30之间把报纸送到你家,而你父亲离开家去工作的时间在早上7:00~8:00之间,问你父亲在离开家前能得到报纸(称为事件A)的概率是多少.分析:我们有两种方法计算事件的概率.(1)利用几何概型的公式.(2)利用随机模拟的方法.解法1:解法2:例2. 如图,在正方形中随机撒一大把豆子,计算落在圆中的豆子数与落在正方形中的豆子数之比,并以此估计圆周率的值.解:用计算器或计算机模拟,步骤如下:(1) (2) (3) 三、反思总结 1、数学知识: 2、数学思想方法: 四、当堂检测 一、选择题1. 取一根长度为3 m 的绳子,拉直后在任意位置剪断,那么剪得两段的长 都不小于1 m 的概率是.A.21 B.31 C.41D.不确定 2. 已知地铁列车每10 min 一班,在车站停1 min.则乘客到达站台立即乘上 车的概率是A.101 B.91 C.111 D.81 3. 在1万 km 2的海域中有40 km 2的大陆架贮藏着石油,假如在海域中任意 一点钻探,钻到油层面的概率是.A.2511 B.2491 C.2501 D.2521二、填空题1. 如下图,在一个边长为3 cm 的正方形内部画一个边长为2 cm 的正方形, 向大正方形内随机投点,则所投的点落入小正方形内的概率是________.2. 如下图,在一个边长为a 、b (a >b >0)的矩形内画一个梯形,梯形上、下底分别为31a 与21a ,高为b ,向该矩形内随机投一点,则所投的点落在梯形内部的概率为________.aa a b1123三解答题1在等腰Rt △ABC 中,在斜边AB 上任取一点M ,求AM 的长小于AC 的长的概率. 答案一、选择题1. B2. A3. C 二、填空题1. 942. 125三、解答题 解:在AB 上截取AC ′=AC ,于是P (AM <AC )=P (AM <C A ')=答:AM 的长小于AC 的长的概率为22. 22=='AB AC AB C A 课后练习与提高1.两根相距6 m 的木杆上系一根绳子,并在绳子上挂一盏灯,则灯与两端距离都大于2 m 的概率是________.2. 如下图,在直角坐标系内,射线OT 落在60°的终边上,任作一条射线OA ,则射线落在∠xOT 内的概率是________.3. 如下图,在半径为1的半圆内,放置一个边长为21的正方形ABCD ,向半圆内任投一点,该点落在正方形内的概率为_________.4. 在1 L 高产小麦种子中混入了一粒带麦锈病的种子,从中随机取出10 mL ,含有麦锈病种子的概率是多少?。
第三章课题:§3.3.1几何概型一、探究求索初露身手(课前自学)(一)预习内容:课本P135-140(二)预习目标:1. 几何概型的特点;2. 几何概型的公式.(三)导师指点本课重点:几何概型的特点,几何概型的识别,几何概型的概率公式。
本课难点:将现实问题转化为几何概型问题,从实际背景中找几何度量.(四)预习检测:1.复习①.古典概型的两个特征:(1)_______________ .(2)_____________.②.古典概型的概率计算公式P A==()2.回答下列问题(1)掷一颗骰子,观察掷出的点数,则掷得奇数点的概率是()(2)在A= {0,1,2,3,4,5,6,7,8,9}中任取一个元素a,则a≥3的概率为_____________.(3)若以连续掷两次骰子分别得到的点数m,n作为点P的坐标,求点P落在圆x2+y2=16内的概率。
3.思考与探究:请问下列三题的基本事件是什么?基本事件有多少个?⑴、下图中中大奖的概率有多大?⑵、取一根长度为3米的绳子,拉直后在任意位置剪断,那么剪得两段的长都不小于1米的概率有多大?(演示绳子)⑶、在500ml的矿泉水中有一只草履虫,现从中随机取出2ml水样放到显微镜下观察,求发现草履虫的概率?对以上三个试验做出分析⑴以上三个试验共同点:⑵三个试验的概率是怎样求得的?⑶我们把满足上述条件的试验称为 .(五)问题生成:二、释疑整合展示提高(课堂完成)1、几何概型的定义、计算公式与特征(1)定义(2)特征(3)计算公式2古典概型几何概型所有基本事件的个数每个基本事件发生的可能性概率的计算公式三、实战演练检测反馈(课堂完成)1.某人午觉醒来,发现表停了,他打开收音机,想听电台整点报时,求他等待的时间不多于10分钟的概率。
2.一海豚在水池中自由游弋,水池长为30m,宽20m的长方形,求此刻海豚嘴尖离岸边不超过2m的概率.拓展题:1.在数轴上,设点x∈[-3,3]中按均匀分布出现,记a∈(-1,2】为事件A,则P(A)=()A、1B、0C、1/2D、1/32.如图, 图(1)是圆中一个等腰三角形,图(2)将一个圆八等分,假设你在每个图形上随机撒一粒黄豆,分别计算它落到红色部分的概率.3.某路公共汽车5分钟一班准时到达某车站,求某一人在该车站等车时间少于3分钟的概率(假定车到来后每人都能上).4.在高产小麦种子100ml中混入了一粒带锈病的种子,从中随机取出3ml,求含有麦锈病种子的概率是多少?5.在等腰直角三角形ABC中,在斜边AB上任取一点M,求AM小于AC的概率.四、学习感悟:。
几何概型教学设计(高中数学必修3第三章第3节第一课时)一、教材分析1、教材的地位和作用“几何概型”是继“古典概型”之后的第二类等可能概率模型,在概率论中占有相当重要的地位,是等可能事件的概念从有限向无限的延伸,是为更广泛的满足随机模拟的需要而新增加的内容,这充分体现了数学与实际生活的紧密关系。
《几何概型》共安排2课时,本节课是第1课时,注重概念的建构和公式的应用,为第二课时的几何概型的应用以及体会随机模拟中的统计思想打下基础。
2、教学重点与难点重点:掌握几何概型的判断及几何概型中概率的计算公式。
难点:在几何概型中把实验的基本事件和随机事件与某一特定的几何区域及其子区域对应,确定适当的几何测度。
通过数学建模解决实际问题。
[理论依据]本课是一节概念新授课,因此把掌握几何概型的判断及几何概型中概率的计算公式作为教学重点。
教学难点是在几何概型中把实验的基本事件和随机事件与某一特定的几何区域及其子区域对应,确定适当的几何测度。
此外,学生通过数学建模解决实际问题也较为困难,因此也是本节课的难点。
二、教学目标1、[知识与技能目标](1)体会几何概型的意义。
(2)了解几何概型的概率计算公式2、[过程与方法目标]通过转盘游戏,将有限个等可能结果推广到无限个等可能结果,让学生经历概念的建构这一过程,感受数学的拓广过程。
通过实际应用,培养学生把实际问题抽象成数学问题的能力,感知用图形解决概率问题的方法。
3、[情感与态度目标]体会概率在生活中的重要作用,感知生活中的数学,激发提出问题和解决问题的勇气,培养其积极探索的精神。
三、教学方法,教学模式,教学手段本节课采用以引导发现为主的教学方法,以归纳启发式作为教学模式,结合多媒体辅助教学。
四、教学过程提出问题引入课题一、复习旧知巩固旧知回顾古典概型的特征和概率公式二、提出问题引入课题口答1:在区间[0,9]上任取一个整数a,则]3,0[∈a的概率为提出问题2:在区间[0,9]上任取一个实数a ,则]3,0[∈a的概率为通过学生回顾古典概型的特征和概率公式,从学生熟悉并且容易解决的一个古典概型问题,稍加修改,转变成为一个几何概型的问题,学生思考后仍然解决不了,从而引出课题以境激情建构概念三、创设情境构建概念转盘游戏:如图所示,规定指针指向金额区域表示中奖问题1:图1中转盘中奖的概率是多少?(图1)问题2:若换成图2的转盘,中奖概率是多少(蓝红区域面积比为3:2)(图2)问题3:再换成图3的转盘,中奖概率是多少呢通过等分猜想引入几何概型,学生猜想依次得到概率。
《3.3.1 几何概型》导学案学习目标:(1)正确理解几何概型的概念及基本特点;(2)掌握几何概型的概率公式,会进行简单的几何概率计算;(3)会根据古典概型与几何概型的区别与联系来判别某种概型是古典概型还是几何概型;学习重点:几何概型计算公式的应用。
学习难点:几何概型中的几何度量的选取。
复习回顾:探究新知:几何概型的概念:思考1:有一根长度为3m的绳子,拉直后在任意位置剪断,那么剪得的两段的长度都不小于1m的概率是多少?定义:如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型,简称为几何概型.规律总结:1.几何概型的基本特点:(1)试验中所有可能出现的结果(基本事件)有无限多个;(2)每个基本事件出现的可能性相等.2.几何概型的概率公式:一般地,在几何区域D中随机地取一点,记事件"该点落在其内部一个区域d内"为事件A,则事件A发生的概率P()AA构成事件的区域 d 的长度(面积、角度或体积)试验的全部结果所构成的区域 D 的长度(面积、角度或体积)典例剖析:题型1 以线段为几何度量例1:取一根长度为60cm的绳子,拉直后在任意位置剪断,那么剪得两段的长度都不小于20cm的概率是多少?题型2. 以面积为几何度量例2:一海豚在水池中自由游弋,水池长为30m,宽为20m的长方形,求此刻海豚嘴尖离岸边不超过2m的概率。
题型3. 以体积为几何度量例3.在2L 高产优质小麦种子中混入了一粒患白粉病的种子,从中随机取出10ml ,则含有白粉病种子的概率是多少?题型4. 以角度为几何度量例4. 如图,在直角坐标系内,射线OT 落在60°角的终边上,任作一条射线OA ,求射线OA 落在XOT 内的概率练 习:1:某公共汽车站每隔10分钟有一辆汽车到达,乘客到达车站的时刻是任意的,求一个乘客候车时间不超过7分钟的概率.2:取一个边长为4a 的正方形及其内切圆,如图示,随机向正方形内丢一粒豆子,球豆子落入圆内的概率.3:在等腰直角三角形ABC 中,在直角ACB 内任作一条射线且交斜边AB 于点M,求AM 的长小于AC 的长的概率小 结:思考:参照古典概型的特性,几何概型有哪两个基本特征?课后作业:1.在区间[1,3]上任取一数,则这个数不小于1.5的概率为___________.2. (选作)如图示,在半径为1的半圆内,放置一个边长为21的正方形ABCD ,向半圆内任投一点,则该点落在正方形内的概率为( )A.21 B.π1 C.π21 D.21π3. 在区间[-1.1]上任取两数x ,y 组成有序数对(x ,y ),记事件A 为“122<+y x ”,则事件A 的概率为____________.4.(选作) 函数2)(2--=x x x f ,]5,5[-∈x ,那么任取一点]5,5[0-∈x ,使0)(≤x f 的概率为 ( )A. 1B.32 C. 103 D.525. (选作)在线段[0,3]上任取一点,则此点坐标大于1的概率是( )A 、34B 、23C 、12D 、136.在1万平方公里的海域中有40平方公里的大陆架贮藏着石油,假若在海域中任意一点钻探,那么钻到油层面的概率是( )A 、140B 、125C 、1250D 、15007.公共汽车站每隔5分钟有一辆汽车通过,乘客到达汽车站的任一时刻是等可能的,则乘客候车不超过3分钟的概率是___ ___。
§3.3.1 几何概型
◆课前导学
(一)学习目标
1.知道几何概型的基本特征,会判断一个试验是否几何概型;
2. 能记住几何概型的概率公式,会求几何概型的概率.
(二)重点难点:
重点:能记住几何概型的概率公式,会求几何概型的概率;
难点:求几何概型的概率.
(三)温故知新
1.古典概型的特征:____________和_____________;
2.古典概型的概率计算公式______________________.
◆课中导学
◎学习目标一:知道几何概型的基本特征,会判断一个试验是否几何概型.
(一)概念形成
引例1 转盘上有8个面积相等的扇形,转动转盘,求转盘停止转动时,指针落在阴影部分.
的概率
引例2 在500ml水中有一个草履虫,现从中随机抽取2ml水样放到显微镜下观察,求发现草履虫的概率.
引例3 取一根长为4米的绳子,拉直后在任意位置剪断,那么剪得两段的长度都不少于1米的概率是多少?
[问题1] 这3 个试验是古典概型吗?
[问题2] 它们具有怎样的特征?
[问题3] 你认为求它们的概率各是多少?说说你的理由.
结论:
1.以上3个试验的共同特征是_____________和
_____________
,我们称这样的试验为_____________.
2.几何概型的概率计算公式:_____________,只与_____________有关,与位置和形状_____________.
◎学习目标二:能记住几何概型的概率公式,会求几何概型的概率.
(二)巩固深化
例 1 设A 为圆周上一定点,在圆周上等可能地任取一点与A 连结,求弦长超过半径的概率? ★变式 如图,.在.对于指
针停留的可能性,下列说法正确的是( )
A .一样大 B. 黄、红区域大 C.
例2 如图,在面积为S P ,求PBC ∆的面积小于2S 的概率. P ,求PBC ∆的面积小于2S 的概★变式 1 向面积为S 率.
A BCD -内任投一点P ,求三★变式2 如图9,棱锥P BCD -的概率.
例3 一海豚在水池中自由游弋,水池为长30m ,宽20m 的长方形(如图5),求此刻海豚嘴尖离岸边不超过2m 的概率.
例4 平面上画了一些彼此相距2a 的平行线,把
一枚半径为()r r a <的硬币任意掷在这平面上(求硬币不与任一条平行线相碰的概率.
◆课后导学
一、选择题 1. 取一根长度为3 m 的绳子,拉直后在任意位置剪断,那么剪得两段的长都不小于1 m 的
B
图3 图6
概率是( ) A.21 B.3
1 C.41 D.不确定 2. 已知地铁列车每10 min 一班,在车站停 1 min.则乘客到达站台立即乘上车的概率是( ) A.101 B.91 C.111 D.8
1 3. 在1万 km 2的海域中有40 km 2的大陆架贮藏着石油,假如在海域中任意一点钻探,钻到
油层面的概率是( ) A.251
1 B.2491 C.2501 D.2521 二、填空题
4. 如下图,在一个边长为3 cm 的正方形内部画一个边长为2 cm 的正方形,向大正方形内随机投点,则所投的点落入小正方形内的概率是________.
5. 如下图,在一个边长为a 、b (a >b >0)的矩形内画一个梯形,梯形上、下底分别为3
1a 与2
1a ,高为b ,向该矩形内随机投一点,则所投的点落在梯形内部的概率为________. 6. 两根相距6 m 的木杆上系一根绳子,并在绳子上挂一盏灯,则灯与两端距离都大于2 m 的概率是________.
7. 如下图,在直角坐标系内,射线OT 落在60°的终边上,任作一条射线OA ,则射线落在∠xOT 内的概率是________.
8. 如下图,在半径为1的半圆内,放置一个边长为
2
1的正方形ABCD ,向半圆内任投一点,该点落在正方形内的概率为_________.
三、解答题
9. 在1 L 高产小麦种子中混入了一粒带麦锈病的种子,从中随机取出10 mL ,含有麦锈病种子的概率是多少?
10. 在等腰Rt △ABC 中,在斜边AB 上任取一点M ,求AM 的长小于AC 的长的概率.。