解析几何专题二(焦点弦及焦点三角形)
- 格式:doc
- 大小:1.10 MB
- 文档页数:77
专题二:圆锥曲线焦点弦、焦点△知识专题【焦半径——椭圆】θ取弦与焦点轴的锐角为121212::=2:=2a ex;a ex;|AB |a e(x x );|AB |a e(x x )ρρ=+=-++-+左焦半径右焦半径左焦弦右焦弦【焦半径——双曲线】θ取弦与焦点轴的锐角为 (1) 单支焦点半径112::=-2(a ex );|AB |a e(x x );ρ=-+-+左焦半径左焦弦 1122::=ex a;|AB |e(x x )a;ρ=-+-右焦半径右焦弦(2) 双支焦点半径1122::=a ex;|AB |a e(x x );ρ=+++异支左焦半径异支左焦弦 1122::=a ex;|AB |a e(x x );ρ=--+异支右焦半径异支右焦弦【焦半径——抛物线】θ取弦与焦点轴的锐角为1212==y x |AB |x x p;y |AB |y p ++++焦点在轴上焦点在轴上::【焦点弦有关推论——椭圆】θ取弦与焦点轴的锐角为1、过椭圆、双曲线的一焦点F 交椭圆或双曲线(单支)于A,B 两点,则2、过双曲线的焦点F 的直线分别与两支交于A,B ,与焦点轴夹角为)2(πθ<21122cos a cos |AF ||BF |p b θθ•+==3、过抛物线的焦点F 直线交抛物线于A,B 两点,与焦点轴夹角为)2(πθ<112|AF ||BF |p+= 4、已知点是离心率为的椭圆或双曲线的焦点,过点的弦与的焦点所在的轴的夹角为θ,且。
(1) 当焦点内分弦时,有(2) 当焦点外分弦时(此时曲线为双曲线),有【椭圆焦三角形 面积】q 为动点到原点的距离,,m,n 为弦长,α为弦夹角【椭圆】222122()S (a c )tanb tanαα=-=22()S b mn b =-3()S (a c )(a c )(a q )(a q )=+-+-【双曲线焦△ 面积】q 为动点到原点的距离,,m,n 为弦长,α为弦夹角212b ()S tanα=22()Sb mn b =-3()S (a c )(a c )(a q )(a q )=+-+-【抛物线焦点弦与原点△ 面积】θ取弦与焦点轴的锐角为【焦点△顶角】椭圆:双曲线一、焦半径与焦点弦 2πθ取弦与焦点轴小于的夹角22221x y a b+=焦点弦,准线图【焦半径——椭圆】 分析:如上左图,11:22|F A ||F B |a b e;e;p =-c =|AM ||BN |c c==根据椭圆第二定义准线与对应焦点距离11111|F A |epx e |F A |e |AM |e(p |F A |cos )|F A ||AM |e cos θθθ=⇒==+⇒=-设焦点弦与轴成角;11111|F B |epe |F B |e |BN |e(p |F B |cos )|F B ||BN |e cos θθ=⇒==-⇒=+12222111::=ep ep ep;;|AB |e cos e cos e cos ρρθθθ==-+-小结:长半焦短半焦焦点弦分析:如上右图,1:22|F A |a b e;p =-c =|AM |c c=根据椭圆第二定义准线与对应焦点距离11111|F A |epx e |F A |e |AM |e(p |F A |cos )|F A ||AM |e cos θθθ=⇒==-⇒=+设焦点弦与轴成角;11111|F B |epe |F B |e |BN |e(p |F B |cos )|F B ||BN |e cos θθ=⇒==+⇒=-12222111::=ep ep epx ;;|AB |e cos e cos e cos ρρθθθ==-+-焦点在轴上结论:长半焦短半焦焦点弦22221y x a b += 22221y x a b+=分析:如上左图,1:22|F A |a b e;p =-c =|AM |c c=根据椭圆第二定义准线与对应焦点距离11111|F A |epx e |F A |e |AM |e(p |F A |cos )|F A ||AM |e cos θθθ=⇒==-⇒=+设焦点弦与轴成角;11111|F B |epe |F B |e |BN |e(p |F B |cos )|F B ||BN |e cos θθ=⇒==+⇒=-分析:如上右图,1:22|F A |a b e;p =-c =|AM |c c=根据椭圆第二定义准线与对应焦点距离11111|F A |epe |F A |e |AM |e(p |F A |cos )|F A ||AM |e cos θθ=⇒==+⇒=-11111|F B |epe |F B |e |BN|e(p |F B |sin )|F B ||BN |e sin θθ=⇒==-⇒=+AB MN2b p c=2a x c=θ【焦半径——双曲线】内部焦点半径 2)x(y πθ取弦与或轴小于的夹角22221y x a b -=12222:=111ep ep ep;;|AB |e cos e cos e cos ρρθθθ==-+-:短结论:长半焦半焦焦点弦外部焦点半径 2πθ取弦与焦点轴小于的夹角AF12a x c=F2MBNAF12a x c=-F2MBN121212::=2:=2a ex;a ex;|AB |a e(x x );|AB |a e(x x )ρρ=+=-++-+左焦半径右焦半径左焦弦右焦弦21a a a |F A |e |AM |e(x )a ex c ==+=+21b ba |F B |e |BN |e(x )a ex c ==+=+22a aa |F A |e |AM |e(x )a ex c==-=-22b ba |F B |e |BN |e(x )a ex c==-=-ABM N2b p c=2a x c=θM‘MBAAM’M分析:如上左图, 122|F A |a b e;p =c =|AM |c c=-:根据第二定义准线与对应焦点距离 11111|F A |x e |F A |e |AM |e(|AM'|p )|AM |epe(|F A |cos p )|F A |e cos θθθ=⇒==-=-⇒=-设焦点弦与轴成角;11111|F B |epe |F B |e |BN |e(p |F B |cos )|F B ||BN |e cos θθ=⇒==-⇒=+ 11222111ep ep ep|AB ||AF ||BF |e cos e cos e cos θθθ⇒=-=-=-+- 分析:如上右图,22221|F A |epe |F A |e |AM |e(|AM'|p )e(|F A |cos p )|F A ||AM |e cos θθ=⇒==-=-⇒=-22221|F B |epe |F B |e |BN |e(p |F B |cos )|F B ||BN |e cos θθ=⇒==-⇒=+11222111ep ep ep|AB ||AF ||BF |e cos e cos e cos θθθ⇒=-=-=-+- 12222111焦点在轴上结论:=ep ep epx ;;|AB |e cos e cos e cos ρρθθθ==-+-:长半焦半焦焦点弦:短同理可以推出:(也可从旋转的角度得出以下结论)12222111:短ep ep epy ;;|AB |e cos e cos e cos ρρθθθ==-+-:=焦点在轴上结论:长半焦半焦焦点弦θM‘MN’NBABθN‘N【焦半径——抛物线】2)x(yπθ取弦与或轴小于的夹角从上图容易得出以下结论122211p p p;;|AB|cos cos sinρρθθθ==-+:=:短结论:长半焦半焦焦点弦从上图分析12在轴上=x|AB||AM||B N|(|AM'||M'M|)(|BN'||N'N|)|AB|x x p −−−→=+=+++⇒++焦点定义:12在轴上=y|AB||AM||B N|(|AM'||M'M|)(|BN'||N'N|)|AB|y y p −−−→=+=+++⇒++焦点定义:【焦半径与焦点弦有关推论】21a aa|F A|e|AM|e(x)a exc==+=+22a aa|F A|e|AM|e(x)a exc==-+=-122:==a b a ba b a ba ex;a ex|AB|a ex a ex e(x x)|AB|a ex a ex a e(x x)ρρ=+=-+--=--+-=-+异左焦半径异右焦半径异左异右AB F2a x c=-2b p c=MN Fθ ABMN2b p c=2a x c=θ【推论1】——常用来求定值过椭圆、双曲线的一焦点F 交椭圆或双曲线(单支)于A,B 两点,则21122a |AF ||BF |b ep+== 过双曲线的一焦点F 的直线分别与两支交于A,B ,与焦点轴夹角为)2(πθ<21122cos a cos |AF ||BF |p b θθ•+==过抛物线的一焦点F 直线交抛物线于A,B 两点,与焦点轴夹角为)2(πθ<112|AF ||BF |p+= 【推论2】2πθ取弦与焦点轴小于的夹角————常用来求定角或斜率已知点是离心率为的椭圆或双曲线的焦点,过点的弦与的焦点所在的轴的夹角为θ,且。
专题突破二 焦点弦的性质抛物线的焦点弦是考试的热点,有关抛物线的焦点弦性质较为丰富,对抛物线焦点弦性质进行研究获得一些重要结论,往往能给解题带来新思路,有利于解题过程的优化.一、焦点弦性质的推导例1 抛物线y 2=2px (p >0),设AB 是抛物线的过焦点的一条弦(焦点弦),F 是抛物线的焦点,A (x 1,y 1),B (x 2,y 2)(y 1>0,y 2<0),A ,B 在准线上的射影为A 1,B 1.证明:(1)x 1x 2=p 24,y 1y 2=-p 2; (2)若直线AB 的倾斜角为θ,则|AF |=p 1-cos θ,|BF |=p 1+cos θ; (3)|AB |=x 1+x 2+p =2p sin 2θ(其中θ为直线AB 的倾斜角),抛物线的通径长为2p ,通径是最短的焦点弦;(4)1|AF |+1|BF |=2p为定值; (5)S △OAB =p 22sin θ(θ为直线AB 的倾斜角); (6)以AB 为直径的圆与抛物线的准线相切;(7)A ,O ,B 1三点共线,B ,O ,A 1三点也共线.考点 抛物线中过焦点的弦长问题题点 与弦长有关的其它问题证明 (1)①当AB ⊥x 轴时,不妨设A ⎝⎛⎭⎫p 2,p ,B ⎝⎛⎭⎫p 2,-p , ∴y 1y 2=-p 2,x 1x 2=p 24. ②当AB 的斜率存在时,设为k (k ≠0),则直线AB 的方程为y =k ⎝⎛⎭⎫x -p 2, 代入抛物线方程y 2=2px ,消元得y 2=2p ⎝⎛⎭⎫y k +p 2,即y 2-2py k-p 2=0,∴y 1y 2=-p 2,x 1x 2=p 24. (2)当θ≠90°时,过A 作AG ⊥x 轴,交x 轴于G ,由抛物线定义知|AF |=|AA 1|,在Rt △AFG 中,|FG |=|AF |cos θ,由图知|GG 1|=|AA 1|,则p +|AF |cos θ=|AF |,得|AF |=p 1-cos θ, 同理得|BF |=p 1+cos θ; 当θ=90°时,可知|AF |=|BF |=p ,对于|AF |=p 1-cos θ,|BF |=p 1+cos θ亦成立, ∴|AF |=p 1-cos θ,|BF |=p 1+cos θ. (3)|AB |=|AF |+|BF |=x 1+x 2+p=p 1-cos θ+p 1+cos θ=2p sin 2θ≥2p , 当且仅当θ=90°时取等号. 故通径为最短的焦点弦.(4)由(2)可得,1|AF |+1|BF |=1-cos θp +1+cos θp =2p. (5)当θ=90°时,S △OAB =12×2p ×p 2=p 22, 故满足S △OAB =p 22sin θ; 当θ≠90°时,设直线AB :y =tan θ⎝⎛⎭⎫x -p 2, 原点O 到直线AB 的距离d =⎪⎪⎪⎪p 2tan θ1+tan 2θ=p 2sin θ,S △OAB =d 2|AB |=p 4sin θ×2p sin 2θ=p 22sin θ. (6)如图:⊙M 的直径为AB ,过圆心M 作MM 1垂直于准线于点M 1,则|MM 1|=|AA 1|+|BB 1|2=|AF |+|BF |2=|AB |2, 故以AB 为直径的圆与准线相切.(7)设直线AB 的方程:x =my +p 2,代入y 2=2px 得y 2-2pmy -p 2=0.由(1)可得y 1y 2=-p 2.因为BB 1∥x 轴,∴B 1⎝⎛⎭⎫-p 2,y 2,即B 1⎝⎛⎭⎫-p 2,-p 2y 1, 1OB k =-p 2y 1-p 2=2p y 1=y 21x 1×1y 1=y 1x 1=k OA , 所以OB 1→∥OA →且公共点为O ,所以直线AB 1过点O .所以A ,O ,B 1三点共线,同理得B ,O ,A 1三点共线.二、焦点弦性质的应用例2 (1)设F 为抛物线C :y 2=3x 的焦点,过F 且倾斜角为30°的直线交C 于A ,B 两点,O 为坐标原点,则△OAB 的面积为( )A.334B.938C.6332D.94考点 抛物线中过焦点的弦长问题题点 与弦长有关的其它问题答案 D解析 方法一 由题意可知,直线AB 的方程为y =33⎝⎛⎭⎫x -34, 代入抛物线的方程可得4y 2-123y -9=0,设A (x 1,y 1),B (x 2,y 2),则y 1+y 2=33,y 1y 2=-94, 故所求三角形的面积为12×34×(y 1+y 2)2-4y 1y 2=94. 方法二 运用焦点弦倾斜角相关的面积公式,则S △OAB =p 22sin θ=942sin 30°=94. (2)已知F 为抛物线C :y 2=4x 的焦点,过F 作两条互相垂直的直线l 1,l 2,直线l 1与C 交于A ,B 两点,直线l 2与C 交于D ,E 两点,则|AB |+|DE |的最小值为( )A .16B .14C .12D .10考点 抛物线中过焦点的弦长问题题点 与弦长有关的其它问题答案 A解析 方法一 抛物线C :y 2=4x 的焦点为F (1,0),由题意可知l 1,l 2的斜率存在且不为0.不妨设直线l 1的斜率为k ,l 1:y =k (x -1),l 2:y =-1k(x -1), 由⎩⎪⎨⎪⎧y 2=4x ,y =k (x -1),消去y 得k 2x 2-(2k 2+4)x +k 2=0, 设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=2k 2+4k 2=2+4k2, 由抛物线的定义可知,|AB |=x 1+x 2+2=2+4k 2+2=4+4k2. 同理得|DE |=4+4k 2,∴|AB |+|DE |=4+4k 2+4+4k 2=8+4⎝⎛⎭⎫1k 2+k 2≥8+8=16, 当且仅当1k 2=k 2,即k =±1时取等号, 故|AB |+|DE |的最小值为16.方法二 运用焦点弦的倾斜角公式,注意到两条弦互相垂直,设直线AB 的倾斜角为θ,则θ≠π2且θ≠0, 因此|AB |+|DE |=2p sin 2θ+2p sin 2⎝⎛⎭⎫π2+θ =4sin 2θ+4cos 2θ=4sin 2θcos 2θ=16sin 22θ≥16. 当且仅当θ=π4或34π时,等号成立. 点评 上述两道题目均是研究抛物线的焦点弦问题,涉及抛物线焦点弦长度与三角形面积,从高考客观题快速解答的要求来看,常规解法显然小题大做了,而利用焦点弦性质,可以快速解决此类小题.跟踪训练 过抛物线y 2=2x 的焦点F 作直线交抛物线于A ,B 两点,若|AB |=2512,|AF |<|BF |,则|AF |=________.考点 抛物线中过焦点的弦长问题题点 与弦长有关的其它问题答案 56解析 由于y 2=2x 的焦点坐标为⎝⎛⎭⎫12,0,由题意知A ,B 所在直线的斜率存在,设A ,B 所在直线的方程为y =k ⎝⎛⎭⎫x -12,A (x 1,y 1),B (x 2,y 2),x 1<x 2, 将y =k ⎝⎛⎭⎫x -12代入y 2=2x ,得k 2⎝⎛⎭⎫x -122=2x , ∴k 2x 2-(k 2+2)x +k 24=0. ∴x 1x 2=14. 而|AB |=x 1+x 2+p =x 1+x 2+1=2512, ∴x 1+x 2=1312.又|AF |<|BF |,∴x 1=13,x 2=34. ∴|AF |=x 1+p 2=13+12=56.1.过抛物线y =2x 2的焦点且垂直于它的对称轴的直线被抛物线截得的弦长为( )A .2B .1 C.14 D.12考点题点答案 D2. 直线l 过抛物线y 2=4x 的焦点,与抛物线交于A ,B 两点,若|AB |=8,则直线l 的方程为( )A .y =-x +1B .y =x -1C .y =-x +1或y =x -1D .以上均不对考点题点答案 C 解析 由焦点弦长|AB |=2p sin 2α(α为直线AB 的倾斜角), ∴8=4sin 2α,sin 2α=12, 则tan α=±1,又直线过抛物线焦点,∴直线l 的方程为y =-x +1或y =x -1.故选C.3.直线l 过抛物线y 2=-2px (p >0)的焦点,且与该抛物线交于A ,B 两点,若线段AB 的长是8,AB 的中点到y 轴的距离是2,则此抛物线的方程是( )A .y 2=-12xB .y 2=-8xC .y 2=-6xD .y 2=-4x 答案 B解析 设A (x 1,y 1),B (x 2,y 2),根据抛物线的定义可知|AB |=-(x 1+x 2)+p =8.又AB 的中点到y 轴的距离为2,∴-x 1+x 22=2,∴x 1+x 2=-4,∴p =4,∴所求抛物线的方程为y 2=-8x .故选B.4.过抛物线y 2=4x 的焦点作直线交抛物线于点A (x 1,y 1),B (x 2,y 2),若|AB |=7,则AB 的中点M 到抛物线准线的距离为________________.考点题点答案 72 解析 抛物线的焦点为F (1,0),准线方程为x =-1.由抛物线定义知|AB |=|AF |+|BF |=x 1+x 2+p ,即x 1+x 2+2=7,得x 1+x 2=5,于是弦AB 的中点M 的横坐标为52,又准线方程为x =-1,因此点M 到抛物线准线的距离为52+1=72. 5.过抛物线焦点F 的直线与抛物线相交于A ,B 两点,若点A ,B 在抛物线准线上的射影分别为A 1,B 1,则∠A 1FB 1为________.考点题点答案 90°解析 设抛物线方程为y 2=2px (p >0),如图.∵|AF |=|AA 1|,|BF |=|BB 1|,∴∠AA 1F =∠AF A 1,∠BFB 1=∠FB 1B .又AA 1∥Ox ∥B 1B ,∴∠A 1FO =∠F A 1A ,∠B 1FO =∠FB 1B ,∴∠A 1FB 1=12∠AFB =90°.。
第一篇圆锥曲线专题01焦点三角形问题焦点三角形的边角关系如下:三条边:122F F c =122PF PF a+==22a c +三角形周长ce a=222a b c =+三个角:随着动点P 的移动,三个角都在变化,可能为锐角,直角和钝角,这里我们只研究顶角P ∠,利用余弦定理,P ∠又和三边a,b,c 的大小有关系三角形的面积:12S ah =底为定值,面积最大时高最大1sin 2S ab c =面积和三边长有关系一、与焦点三角形边长有关的问题焦点三角形中三边长涉及a,c ,因此最直观的是可以根据三边关系求出离心率的值或取值范围,前提是三边之间存在可以转化的关系。
若单独分析三角形的两个腰长,则若能够构成三角形,则需满足1a c PF a c-≤≤+例1椭圆22221x y a b+=的右焦点为F ,其右准线与x 轴的交点为A ,在椭圆上存在一点P ,满足线段AP 的垂直平分线过点F ,则椭圆的离心率的取值范围是________.例2.已知12,F F 是椭圆22221x y a b+=的左右焦点,若在其右准线上存在点P ,使得线段1PF 的中垂线过点2F ,则椭圆的离心率的取值范围是________.【解析】求离心率的范围问题,需要根据条件列出不等式,在含有动点的题目中,需要找出动态的量和常量之间的大小关系。
题目中:2122PF F F c==因为点P 在右准线上下移动,2PF 虽然是常量,但由于不知道a,b,c 的关系,因此还是相对的变量。
本题的定值为22a F H c c=-在2RT PHF 中,222,2a PF F H c c c >≥-解得:313e ≤<例3.设12,F F 是双曲线2214x y -=的左右焦点,点P 在双曲线上,且满足1290F PF ︒∠=,则12PF F ∆的面积是________.方法一:方法二:此题目有更简单的做法,方法一只是为了巩固焦半径的知识,设12,PF x PF y ==则有:4x y -=,又因为2220x y +=解得:2xy =,因此面积等于1.上面两题都是关于焦点三角形中两条腰长的问题,在焦点三角形中两腰长之和为2a ,底边为2c ,因此三边之间暗含离心率的关系,因此在一些出现焦点三角形求离心率的问题中一般腰长和底边之间都存在一个可以互相转化的关系,通过这个关系可以求出离心率。
抛物线焦点弦三角形的面积本内容主要研究抛物线焦点弦三角形的面积.以抛物线的顶点及其焦点弦的两个端点为顶点的三角形,称为抛物线的焦点弦三角形.给出三种抛物线焦点弦三角形的面积公式,根据已知条件合理选择.例:过抛物线y 2=4x 的焦点F 的直线交该抛物线于A ,B 两点,O 为坐标原点.若|AF |=3,则△AOB 的面积为( ) A.22 B.2 C.322 D.22解:抛物线的焦点F 的坐标为(1,0),设A (x 1,y 1),B (x 2,y 2)(y 1>0,y 2<0),因为|AF |=3,所以x 1+1=3,x 1=2,代入抛物线方程得122y =,故A (2,22),所以直线AB 的方程为22(1)=-y x ,由22220,4x y y x⎧--=⎪⎨=⎪⎩得2240y --=. 所以122y y +y 1y 2=-4,则22121219||1()[()4]222AB y y y y ⎡⎤=++-=⎢⎥⎣⎦.又可求得圆点O 到直线AB 的距离为223,故△AOB 的面积为1922322222S =⨯⨯=.[一题多解]设∠AFx =θ(0<θ<π)及|BF |=m ,则点A 到准线l :x =-1的距离为3,得1323cos cos 3θθ=+⇔=,又 232cos()1cos 2,=+π-⇔===+m m BF m m θθ,△AOB 的面积为113||||sin 1(3)22233S OF AB θ=⨯⨯⨯=⨯⨯+⨯=. 答案:C注意:前法是解决此类问题的通法,一般通过求弦长和点到直线的距离进行求解,后法则有一定的技巧性.整理:B AOF过抛物线22(0)y px p =>的焦点F 作直线交抛物线于A ,B 两点,且11(,)A x y ,22(,)B x y ,O 为坐标原点.则△AOB 的面积为(1)121||||2S OF y y =⨯⨯-=; (2) 1||2=⨯⨯S AB d ,d 为点O 到直线AB 的距离; (3)11sin sin 22OAB OBF OAF S S S OF BF OF AF θθ∆∆∆=+=⋅⋅+⋅⋅()11sin sin 22OF AF BF OF AB θθ=⋅+=⋅⋅其中∠AFx =θ(0<θ<π).再看一个例题:例:设F 为抛物线C :y 2=4x 的焦点,过F 且倾斜角为60°的直线交C 于A ,B 两点,O 为坐标原点,则△OAB 的面积为( )解:抛物线的焦点F 的坐标为(1,0),设A (x 1,y 1),B (x 2,y 2)(y 1>0,y 2<0), ∠AFx =60°所以直线AB 的方程为3(1)=-y x ,由23(1),4⎧=-⎪⎨=⎪⎩y x y x得231020-+=x x . 所以12103x x +=,则1216||3AB x x p =++=. 又11sin sin 22OAB OBF OAF S S S OF BF OF AF θθ∆∆∆=+=⋅⋅+⋅⋅ ()11sin sin 22OF AF BF OF AB θθ=⋅+=⋅⋅ 故△AOB 的面积为116341=32323∆=⨯⨯⨯OAB S总结:1.根据已知条件合理选择我三种抛物线焦点弦三角形的面积公式.2.掌握抛物线的焦点弦长计算方法.练习:1.已知抛物线C 的顶点在坐标原点O ,焦点为F (1,0),经过点F 的直线l 与抛物线C 相交于A 、B 两点.(Ⅰ)求抛物线C 的标准方程;(Ⅱ)若△AOB 的面积为4,求|AB |.2. 设F 为抛物线C :y 2=3x 的焦点,过F 且倾斜角为30°的直线交C 于A ,B 两点,O 为坐标原点,则△OAB 的面积为( )C.6332D.943. 已知抛物线y 2=2px (p >0)的焦点为F ,准线为l ,过点F 的直线交抛物线于A ,B 两点,过点A 作准线l 的垂线,垂足为E ,当A 点坐标为(3,y 0)时,△AEF 为正三角形,则此时△OAB 的面积为( )A.4C.3D.3。
双曲线焦点弦公式概述说明以及解释1. 引言1.1 概述双曲线焦点弦公式是研究双曲线特性中的重要公式之一。
它描述了在一条双曲线上,两焦点之间的任意弦的长度与弦与对应焦点到中心点距离的乘积之和为常数。
这个公式在几何学、物理学和工程学等领域都有广泛应用。
1.2 文章结构本文将按以下结构逐步介绍双曲线焦点弦公式及其相关内容:- 引言:对文章进行引言和概述。
- 双曲线的基本概念和特性:介绍了双曲线的定义、焦点和焦距以及弦的特性。
- 双曲线焦点弦公式的介绍与解释:详细说明了焦点弦公式的概述,以及如何利用该公式求解双曲线参数,并提供实际应用案例分析。
- 双曲线焦点弦公式的推导过程与原理解释:探讨了该公式推导过程中的步骤说明,详细解释了公式背后所表示的几何意义,并介绍了数学推理与证明方法。
- 结论和总结:总结归纳了双曲线焦点弦公式的实际应用,并探讨了双曲线研究的启示和未来发展方向。
1.3 目的本文的目的是全面介绍双曲线焦点弦公式,为读者提供对其原理、应用和推导过程的深入理解。
通过这篇文章,读者可以了解到双曲线背后的数学原理以及在各个领域中该公式的具体应用。
同时,本文也将为读者提供一些关于双曲线研究的启示和未来发展方向,帮助他们更好地理解和应用这一概念。
2. 双曲线的基本概念和特性:2.1 双曲线定义:双曲线是由平面上满足特定条件的点构成的集合。
它具有一条对称轴和两个分离的焦点,以及与对称轴垂直并通过焦点的两条物理不可能存在的弦。
2.2 焦点和焦距:双曲线有两个焦点,分别表示为F1和F2。
每个焦点与双曲线上的任意一点之间的距离总是相等,这个共同的距离被称为焦距,用字母c表示。
2.3 弦的定义和特性:在双曲线上,弦是通过连接两个在双曲线上任意选取的点而形成的直线段。
弦将双曲线分成两部分,并且其长度小于或等于双曲线任何一边到原点(即与焦距c 相关)的距离。
而且对于给定长短固定,相同长度的弦总可以选择到达无穷远处或者退化成一个切线。
焦点三角形是指由椭圆或双曲线上一点与两个焦点构成的三角形.焦点三角形较为特殊,其一条边为椭圆的长轴或双曲线的实轴.与焦点三角形有关的问题经常出现在解析几何试题中.下面结合实例来探讨一下与焦点三角形有关的问题的解法.一、根据椭圆或双曲线的定义求解解答椭圆和双曲线中焦点三角形问题,首先要明确这两种圆锥曲线的几何特征和定义.椭圆的定义:平面内与两个定点F1、F2的距离的和等于常数(大于|F1F2|)的点的轨迹.若P为椭圆上一点,根据椭圆的定义可得|PF1|+|PF2|=2a.双曲线的定义:平面内与两个定点F1、F2的距离的差的绝对值等于常数(小于|F1F2|)的点的轨迹,用代数式可表示为||PF1|-|PF2||=2a.若∠F1PF2=θ,根据椭圆的定义可知(1)4c2=|PF1|2+|PF2|2-2|PF1||PF2|·cosθ;(2)S△PF1F2=|PF1||PF2|·sinθ;(3)焦点三角形的周长为2(a+c).对于双曲线,也有类似的性质.例1.已知双曲线的中心在原点,两个焦点F1,F2的坐标分别为()5,0和()-5,0,点P在双曲线上,且PF1⊥PF2,ΔABC的面积为2,则双曲线的方程为.解:设||PF1=r1,||PF2=r2,根据双曲线的第一定义可知,||r1-r2=2a,因为PF1⊥PF2,所以r21+r22=||F1F22,可得ìíîïïïïr21+r22=20,SΔABC=12r1r2=2,||r1-r2=2a,解得a2=3,而c=5,所以b2=2,可得双曲线方程:x23-y22=1.此题比较简单,根据题目中的垂直关系,利用双曲线的定义和三角形的面积公式即可建立关于||PF1、||PF2的方程组,解方程组就可以求出双曲线的方程.例2.已知椭圆C1与双曲线C2有相同的焦点F1,F2,曲线C1和C2的一个交点为P,且PF1⊥PF2,则C1的离心率e1与C2的离心率e2一定满足的关系是().A.e1+e2=2B.1e1+1e2=2C.e21+e22=2D.1e21+1e22=2解:设椭圆C1的方程为x2a21+y2b21=1,双曲线C2的方程为x2a22-y2b22=1,点P在第一象限,半焦距为c.则||PF1+||PF2=2a1,||PF1-||PF2=2a2,所以||PF1=a1+a2,||PF2=a1-a2,因为PF1⊥PF2,||PF12+||PF22=4c2,所以a21+a22=2c2,所以æèçöø÷a1c2+æèçöø÷a2c2=2,即1e21+1e22=2.解答本题,需利用椭圆与双曲线的定义,借助勾股定理建立关于||PF1、||PF2的方程,然后将其转化为a、c的方程,根据圆锥曲线离心率公式e=c a,得到e1、e2的关系式.二、根据正余弦定理求解若三角形ABC的三个内角的对边为a、b、c,则有正弦定理:asin A=b sin B=c sin C=2R.余弦定理:a2=b2+c2-2bc cos A;b2=c2+a2-2ca cos B;c2=a2+b2-2ab cos C.在解答与焦点三角形有关的问题时,可根据正余弦定理建立关于焦点三角形三边的关系式,通过解方程求考点透视36丈丈丈丈数列求和问题是高考数学试题中的“常客”.这类问题的命题形式多变,侧重于考查等差、等比数列的性质、通项公式、前n 项求和公式.解答此类问题的常用方法有分类讨论法、并项求和法、倒序相加法、裂项相消法等.本文主要介绍分类讨论法、倒序相加法和裂项相消法.一、分类讨论法有时数列中出现几类具有不同特征的项,此时需采用分类讨论法来求数列的和.运用分类讨论法求数列的和,需根据数列中各项的特点,对n 进行分类讨论,如分奇数项、偶数项,分整数项、分数项,分正数项、负数项等.运用该方法解题,需仔细观察数列的通项公式的结构或数列中各项的特点,并确定分类的标准,然后逐类进行讨论,求出各类数列的和,最后综合所得的结果即可解题.例1.已知数列{a n }的前n 项和为S n ,S 2=4,a n +1=2S n +1.(1)求{a n }的通项公式;(2)求数列{|a n -n -2|}的前n 项和.解:(1)数列n 的通项公式是a n n -1.(过程略)(2)设b n =||3n -1-n -2,则b 1=2,b 2=1,当n ≥3时,3n -1>n +2,可得b n =3n -1-n -2,n ≥3,设数列{b n }的前n 项和为T n ,则T 1=2,T 2=3.当n ≥3时,T n =3+9()1-3n -21-3-()n +7()n -22=3n-n 2-5n +112,故T n =ìíîïï2,(n =1)3n -n 2-5n +112.()n ≥2数列{b n }的通项公式中含有绝对值,经分析可知,当n =1、2时和当n ≥3时数列的前n 项和式不一样,因此需采用分类讨论法,分别讨论当n =1、2时和当n ≥3时数列的通项公式和前n 项和,最后综合所有情况即可.二、倒序相加法倒序相加法是求数列前n 项和的常用方法之一,考点透视。
解析几何知识点总结第一部分:直线一、直线的倾斜角与斜率1.倾斜角α(1)定义:直线l 向上的方向与x 轴正向所成的角叫做直线的倾斜角。
(2)范围:(0,180)2.斜率:直线倾斜角α的正切值叫做这条直线的斜率. k=tan α(1).倾斜角为90°的直线没有斜率。
(2).每一条直线都有唯一的倾斜角,但并不是每一条直线都存在斜率(直线垂直于x 轴时,其斜率不存在),这就决定了我们在研究直线的有关问题时,应考虑到斜率的存在与不存在这两种情况,否则会产生漏解。
(3)设经过A (x1,y1)和B (x2,y2)两点的直线的斜率为K ,则当X1≠X2时,k=tan α=Y1-Y2/X1-X2;当X1=X2时,α=90°;斜率不存在; 二、直线的方程1.点斜式:已知直线上一点P (x 0,y 0)及直线的斜率k (倾斜角α)求直线的方程用点斜式:y-y 0=k(x-x 0)注意:当直线斜率不存在时,不能用点斜式表示,此时方程为x=x0;2.斜截式:若已知直线在y 轴上的截距(直线与y 轴焦点的纵坐标)为b ,斜率为k ,则直线方程:y=kx+b ;特别地,斜率存在且经过坐标原点的直线方程为:y=kx注意:正确理解“截距”这一概念,它具有方向性,有正负之分,与“距离”有区别。
3.两点式:若已知直线经过(x1,y1)和(x2,y2)两点,且(X1≠X2,y1≠y2)则直线的方程:121121x x x x y y y y --=--;注意:①不能表示与x 轴和y 轴垂直的直线;②当两点式方程写成如下形式0))(())((112112=-----x x y y y y x x 时,方程可以适应在于任何一条直线。
4截距式:若已知直线在x 轴,y 轴上的截距分别是a ,b (a ≠0,b ≠0)则直线方程:1=+bya x; 注意:1).截距式方程表不能表示经过原点的直线,也不能表示垂直于坐标轴的直线。
专题二:圆锥曲线焦点弦、焦点△知识专题【焦半径——椭圆】θ取弦与焦点轴的锐角为121212::=2:=2a ex;a ex;|AB |a e(x x );|AB |a e(x x )ρρ=+=-++-+左焦半径右焦半径左焦弦右焦弦【焦半径——双曲线】θ取弦与焦点轴的锐角为 (1) 单支焦点半径112::=-2(a ex );|AB |a e(x x );ρ=-+-+左焦半径左焦弦 1122::=ex a;|AB |e(x x )a;ρ=-+-右焦半径右焦弦(2) 双支焦点半径1122::=a ex;|AB |a e(x x );ρ=+++异支左焦半径异支左焦弦 1122::=a ex;|AB |a e(x x );ρ=--+异支右焦半径异支右焦弦【焦半径——抛物线】θ取弦与焦点轴的锐角为1212==y x |AB |x x p;y |AB |y p ++++焦点在轴上焦点在轴上::【焦点弦有关推论——椭圆】θ取弦与焦点轴的锐角为1、过椭圆、双曲线的一焦点F 交椭圆或双曲线(单支)于A,B 两点,则2、过双曲线的焦点F 的直线分别与两支交于A,B ,与焦点轴夹角为)2(πθ<3、过抛物线的焦点F 直线交抛物线于A,B 两点,与焦点轴夹角为)2(πθ<4、已知点是离心率为的椭圆或双曲线的焦点,过点的弦与的焦点所在的轴的夹角为 ,且。
(1)当焦点内分弦时,有(2)当焦点外分弦时(此时曲线为双曲线),有【椭圆焦三角形面积】q为动点到原点的距离,,m,n为弦长, 为弦夹角【椭圆【双曲线焦△面积】q为动点到原点的距离,,m,n为弦长,α为弦夹角【抛物线焦点弦与原点△面积】θ取弦与焦点轴的锐角为【焦点△顶角】椭圆:双曲线一、焦半径与焦点弦 2πθ取弦与焦点轴小于的夹角22221x y a b+=焦点弦,准线图【焦半径——椭圆】 分析:如上左图,11:22|F A ||F B |a b e;e;p =-c =|AM ||BN |c c==根据椭圆第二定义准线与对应焦点距离11111|F A |epx e |F A |e |AM |e(p |F A |cos )|F A ||AM |e cos θθθ=⇒==+⇒=-设焦点弦与轴成角;11111|F B |epe |F B |e |BN |e(p |F B |cos )|F B ||BN |e cos θθ=⇒==-⇒=+12222111::=ep ep ep;;|AB |e cos e cos e cos ρρθθθ==-+-小结:长半焦短半焦焦点弦分析:如上右图,1:22|F A |a b e;p =-c =|AM |c c=根据椭圆第二定义准线与对应焦点距离11111|F A |epx e |F A |e |AM |e(p |F A |cos )|F A ||AM |e cos θθθ=⇒==-⇒=+设焦点弦与轴成角;11111|F B |epe |F B |e |BN |e(p |F B |cos )|F B ||BN |e cos θθ=⇒==+⇒=-12222111::=ep ep epx ;;|AB |e cos e cos e cos ρρθθθ==-+-焦点在轴上结论:长半焦短半焦焦点弦22221y x a b += 22221y x a b+= 分析:如上左图,1:22|F A |a b e;p =-c =|AM |c c=根据椭圆第二定义准线与对应焦点距离11111|F A |epx e |F A |e |AM |e(p |F A |cos )|F A ||AM |e cos θθθ=⇒==-⇒=+设焦点弦与轴成角;11111|F B |epe |F B |e |BN |e(p |F B |cos )|F B ||BN |e cos θθ=⇒==+⇒=-分析:如上右图,1:22|F A |a b e;p =-c =|AM |c c=根据椭圆第二定义准线与对应焦点距离11111|F A |epe |F A |e |AM |e(p |F A |cos )|F A ||AM |e cos θθ=⇒==+⇒=-11111|F B |epe |F B |e |BN|e(p |F B |sin )|F B ||BN |e sin θθ=⇒==-⇒=+AB MN2b p c=2a x c=θ【焦半径——双曲线】内部焦点半径 2)x(y πθ取弦与或轴小于的夹角22221y x a b-=12222:=111ep ep ep;;|AB |e cos e cos e cos ρρθθθ==-+-:短结论:长半焦半焦焦点弦外部焦点半径 2πθ取弦与焦点轴小于的夹角AF12a x c=F2MBNAF12a x c=-F2MBN121212::=2:=2a ex;a ex;|AB |a e(x x );|AB |a e(x x )ρρ=+=-++-+左焦半径右焦半径左焦弦右焦弦21a a a |F A |e |AM |e(x )a ex c ==+=+21b ba |F B |e |BN |e(x )a ex c ==+=+22a aa |F A |e |AM |e(x )a ex c==-=-22b ba |F B |e |BN |e(x )a ex c==-=-ABM N2b p c=2a x c=θθM‘MN’N BAABθN‘M’ N M分析:如上左图, 122|F A |a b e;p =c =|AM |c c=-:根据第二定义准线与对应焦点距离 11111|F A |x e |F A |e |AM |e(|AM'|p )|AM |epe(|F A |cos p )|F A |e cos θθθ=⇒==-=-⇒=-设焦点弦与轴成角;11111|F B |epe |F B |e |BN |e(p |F B |cos )|F B ||BN |e cos θθ=⇒==-⇒=+ 11222111ep ep ep|AB ||AF ||BF |e cos e cos e cos θθθ⇒=-=-=-+- 分析:如上右图,22221|F A |epe |F A |e |AM |e(|AM'|p )e(|F A |cos p )|F A ||AM |e cos θθ=⇒==-=-⇒=-22221|F B |epe |F B |e |BN |e(p |F B |cos )|F B ||BN |e cos θθ=⇒==-⇒=+11222111ep ep ep|AB ||AF ||BF |e cos e cos e cos θθθ⇒=-=-=-+- 12222111焦点在轴上结论:=ep ep epx ;;|AB |e cos e cos e cos ρρθθθ==-+-:长半焦半焦焦点弦:短同理可以推出:(也可从旋转的角度得出以下结论)12222111:短ep ep epy ;;|AB |e cos e cos e cos ρρθθθ==-+-:=焦点在轴上结论:长半焦半焦焦点弦θM‘MN’NBA【焦半径——抛物线】2)x(yπθ取弦与或轴小于的夹角从上图容易得出以下结论122211p p p;;|AB|cos cos sinρρθθθ==-+:=:短结论:长半焦半焦焦点弦从上图分析21a aa|F A|e|AM|e(x)a exc==+=+22a aa|F A|e|AM|e(x)a exc==-+=-122:==a b a ba b a ba ex;a ex|AB|a ex a ex e(x x)|AB|a ex a ex a e(x x)ρρ=+=-+--=--+-=-+异左焦半径异右焦半径异左异右12在轴上=x |AB ||AM ||B N |(|AM'||M'M |)(|BN'||N'N |)|AB |x x p −−−→=+=+++⇒++焦点定义:12在轴上=y |AB ||AM ||B N |(|AM'||M'M |)(|BN'||N'N |)|AB |y y p−−−→=+=+++⇒++焦点定义:【焦半径与焦点弦有关推论】 【推论1】——常用来求定值过椭圆、双曲线的一焦点F 交椭圆或双曲线(单支)于A,B 两点,则过双曲线的一焦点F 的直线分别与两支交于A,B ,与焦点轴夹角为)2(πθ<过抛物线的一焦点F 直线交抛物线于A,B 两点,与焦点轴夹角为)2(πθ<【推论2】2πθ取弦与焦点轴小于的夹角————常用来求定角或斜率已知点是离心率为的椭圆或双曲线的焦点,过点的弦与的焦点所在的轴的夹角为 ,且。
(3)当焦点内分弦时,有(4)当焦点外分弦时(此时曲线为双曲线),有ABF2axc=-2bpc=MNFθABMN2bpc=2axc=θθM‘MNBA【(1)分析证明】11111AF BFAM NB AM NB()BF()e ecos e cosAB AF BF()BF e()BF()λλθθλλλ-----====⇒=++++【(2)分析证明】11111AF BFAM'AM NB()BF()e ecos e cosAB AF BF()BF e()BF()λλθθλλλ++++ ====⇒=----【焦半径与焦点弦有关例题】例1 (2009年高考福建卷理科第13题)过抛物线的焦点作倾斜角为的直线,交抛物线于两点,若线段的长为8,则___【解】由抛物线焦点弦的弦长公式为得,,解得。
例2(2010年高考辽宁卷理科第20题)已知椭圆的右焦点为,经过且倾斜角为的直线与椭圆相交于不同两点,已知。
(1)求椭圆的离心率;(2)若,求椭圆方程。
【解】(1)这里,,由定理1的公式得,解得。
(2)将,代入焦点弦的弦长公式得,,解得,即,所以①,又,设,代入①得,所以,所以,故所求椭圆方程为。
例3(2007年重庆卷第16题)过双曲线的右焦点作倾斜角为的直线,交双曲线于两点,则的值为___【解】易知均在右支上,因为,离心率,点准距,因倾斜角为,所以。
由焦半径公式得,。
例4(由2007年重庆卷第16题改编)过双曲线的右焦点作倾斜角为的直线,交双曲线于两点,则的值为___【解】因为,离心率,点准距,因倾斜角为,所以。
注意到分别在双曲线的两支上,由焦半径公式得,。
例5(2010年高考全国卷Ⅰ理科第16题)已知是椭圆的一个焦点,是短轴的一个端点,线段的延长线交于点,且,则的离心率为___【解】设直线与焦点所在的轴的夹角为,则,又,代入公式得,所以。
例6(自编题)已知双曲线的离心率为,过左焦点且斜率为。