高考100题圆锥曲线:专题三 求离心率
- 格式:pdf
- 大小:407.64 KB
- 文档页数:8
I .题源探究·黄金母题【例1】人造地球卫星的运行轨道是以地心为一个焦点的椭圆.设地球半径为R ,卫星近地点、远地点离地面的距离分别为21,r r ,求卫星轨道的离心率.II .考场精彩·真题回放【例2】(2016江苏10)如图所示,在平面直角坐标系xOy 中,F 是椭圆22221x y a b +=()0a b >>的右焦点,直线2b y =与椭圆交于,B C 两点,且90BFC ∠=o,则该椭圆的离心率是 .【解析】 由题意得(),0F c ,直线2by =与椭圆方程联立, 可得32a b B ⎛⎫⎪⎝⎭,32a b C ⎫⎪⎝⎭.由90BFC ∠=o , 可得0BF CF ⋅=u u u r u u u r ,32a b BF c ⎛⎫=+- ⎪⎝⎭u u u r ,32a b CF c ⎛⎫=- ⎪⎝⎭u u u r ,则22231044c a b -+=,由222b a c =-,可得223142c a =,则2633c e a ===. 评注 另外也可以结合23CF BF a BC a+=⎧⎪⎨=⎪⎩,得22224CF CF BF BF a +⋅+=,212CF BF a ⋅=, 21124BCF S CF BF a =⋅=△113222b CB h a =⋅=⨯,解得3a b =,进而6e =.设BC 与y 轴的交点为A ,则经典转化90BFC ∠=︒⇔以BC 为直径的圆过点F ⇔0BF CF ⋅=u u u r u u u r ⇔12AF BC =.6.(2016全国丙卷理11)已知O 为坐标原点,F 是椭圆:C 22221(0)x y a b a b+=>>的左焦点,A ,B 分别为C 的左,右顶点.P 为C 上一点,且PF x ⊥轴.过点A 的直线l 与线段PF 交于点M ,与y 轴交于点E .若直线BM 经过OE 的中点,则C 的离心率为( ).A. 13B. 12C. 23D.3413.(2016山东理13)已知双曲线:E 22221x y a b-=()0,0a b >>,若矩形ABCD 的四个顶点在E 上,AB ,CD 的中点为E 的两个焦点,且23AB BC =,则E 的离心率是_______.【解析】 由题意,2BC c =,又因为23AB BC =,则3AB c =,于是点3,2c c ⎛⎫⎪⎝⎭在双曲线E 上,代入方程22221x y a b -=,得2222914c c a b -=,再由2c b a =+22得E 的离心率为2ce a==.精彩解读【试题来源】人教版选修2-1第80页复习参考题A 组第2题.【母题评析】离心率是椭圆和双曲线的重要概念,是教材中要求必须掌握的概念,求离心率是历年高考的热点,本题借助于椭圆的几何性质,直接求出c a ,,进而求出离心率,从大量的求离心率题目可以看出,求离心率大多要寻求c a ,的关系,进而求出离心率.【思路方法】求离心率问题有三种思路,一是求出,,a b c 三个量中的任何两个,然后利用离心率的计算公式求解;二是求出,a c 或,a b 或,c b 之间关系,然后利用离心率的计算公式求解;三是构造出关于离心率e 的方程来求解.此题中关键是灵活的应用椭圆和双曲线的定义构造出方程即可求解.一般是依据题设寻求一个关于,,a b c 的等量关系,再利用,,a b c 的关系消去b ,得到关于,a c 的等式,再转化为关于离心率e 的方程,解方程求出e 的值,最后根据椭圆或双曲线的离心率的取值范围,给出离心率的值.【命题意图】求离心率的题目很多,形式繁多,命题巧妙,从不同的角度考查学生对圆锥曲线及其他部分知识的灵活应用情况,是高考命题者最青睐的题型之一【考试方向】这类试题在考查题型上,通常基本以选择题或填空题的形式出现,难度中等或较小.【难点中心】由于求离心率问题,形式多样,涉及知识较多,命题者匠心独运,确有一小部分问题难度较大,多出自选择题的12题. III .理论基础·解题原理1.椭圆的焦距与长轴之比a c ,叫做椭圆的离心率,因为0>>c a ,ace =,则10<<e 2.与椭圆类似,双曲线的焦距与长轴之比a c ,叫做双曲线的离心率,因为0>>a c ,ace =,则1>=ace 3.求椭圆的离心率问题的一般思路:求椭圆的离心率或其范围时,一般是依据题设得出一个关于a ,b ,c 的等式(或不等式),利用a 2=b 2+c 2消去b ,即可求得离心率或离心率的范围. V .举一反三·触类旁通求离心率问题有三种思路,一是求出,,a b c 三个量中的任何两个,然后利用离心率的计算公式求解;二是求出,a c 或,a b 或,c b 之间关系,然后利用离心率的计算公式求解;三是构造出关于离心率e 的方程来求解.此题中关键是灵活的应用椭圆和双曲线的定义构造出方程即可求解.一般是依据题设寻求一个关于,,a b c 的等量关系,再利用,,a b c 的关系消去b ,得到关于,a c 的等式,再转化为关于离心率e 的方程,解方程求出e 的值,最后根据椭圆或双曲线的离心率的取值范围,给出离心率的值. 考点1.利用题设条件求出,a c 的值【例1】【黑龙江省双鸭山一中2015届高三上学期期末考试数学文试题】已知双曲线22219x y b-= (0)b >,过其右焦点F 作圆229x y +=的两条切线,切点记作C ,D ,双曲线的右顶点为E ,0150CED ∠=,其双曲线的离心率为( )B.32【解析】由题意3a =,易得OD OE =,075CEO OCE ∠=∠=,所以030=∠COE ,在Rt OCF ∆中,⇒=+=0230cos 93bOF OC 33212322==⇒=⇒=a c e c b 【例2】已知抛物线24y x =点F 为抛物线的交点,若FAB ∆是 .【解析】根据已知条件画出图形(如右图)线的准线为1x =-.在Rt AKF ∆中,30,2,AFK KF ∠=︒=2323tan 30,1,AK KF A ⎛⎫∴=︒=∴- ⎪ ⎪⎝⎭.又点A 在双曲线上, 2223114a ⎛⎫⎪⎝⎭∴-=,解得234a =,又24b =,22219,4c a b ∴=+=故双曲线离心率19357c e a ==÷=. 考点2.根据题设条件直接列出,,a b c 的等量关系【例3】【2014-2015年豫晋冀高三第二次调研考试文科数学】已知双曲线22221(0,0)x y a b a b-=>>的一条渐近线与圆22(3)9x y -+=相变于A.B 两点,若||2AB =,则该双曲线的离心率为( )A.8B. 22 C 3 D.4考点3.借助直角三角形的边角关系【例4】【2012全国新课标,理4】设12F F 是椭圆2222:1(0)x y E a b a b +=>>的左、右焦点,P为直线32a x =上一点,12F PF ∆是底角为30o的等腰三角形,则E 的离心率为( )()A 12 ()B 23 ()C 34 ()D 45【解析】12F PF ∆是底角为30o的等腰三角形,22132()22PF F F a c c ⇒==-=, 则34c e a ==【例5】【2014届福建厦门5月适应性考试】 设1F ,2F 分别是椭圆()222210x y a b a b+=>>的左、右焦点,过2F 的直线交椭圆于P ,Q 两点,若160F PQ ∠=︒,1PF PQ =,则椭圆的离心率为( )A.13B.23C.233D.33【解析】由条件1PF PQ =,则PQ ⊥x 轴,而0160F PQ ∠=,∴1F PQ ∆为等边三角形,而周长为4a ,∴ 等边三角形的边长为43a ,焦点在直角三角形12PF F ∆中,14||3a PF =,22||3aPF =,12||2F F c =,∴22242()()(2)33a a c -=,即223a c =,∴22213c e a ==,∴33e =. 考点4. 借助与其它曲线的关系求离心率【例6】(湖北省黄冈中学等八校2015届高三12月第一次联考数学(文))点A 是抛物线21:2(0)C y px p =>与双曲线22222:1(0,0)x y C a b a b-=>>的一条渐近线的交点(异于原点),若点A 到抛物线1C 的准线的距离为p ,则双曲线2C 的离心率等于( ) A .2 B .2 C .5 D .4【解析】Θ点A 到抛物线C 1的准线的距离为p ,∴⎪⎭⎫⎝⎛p p A ,2适合x a b y =,∴422=a b ,∴5=e故选C.【例7】(2015·北京东城区统一检测)如图,已知抛物线y 2=2px (p >0)的焦点恰好是椭圆x 2a2+y 2b 2=1(a >b >0)的右焦点F ,且这两条曲线交点的连线过点F ,则该椭圆的离心率为________.【解析】如图,设F ′为椭圆的左焦点,椭圆与抛物线在x 轴上方的交点为A ,连接AF ′,所以|FF ′|=2c=p ,因为|AF |=p ,所以|AF ′|=2p .因为|AF ′|+|AF |=2a ,所以2a =2p +p ,所以e =c a=2-1.考点5. 利用椭圆或双曲线的定义求离心率【例8】(成都外国语学校高2014级高二(下)期末考试文科数学试题)椭圆)0(12222>>=+b a b y a x 上一点A 关于原点的对称点为B ,F 为其左焦点,若AF ^BF ,设6π=∠ABF ,则该椭圆的离心率为 ( )A .22 B .13- C .33 D .231- 【解析】取椭圆右焦点M ,连接BM AM ,,由椭圆对称性以及AF ^BF 知四边形AFBM 为矩形,由 6π=∠ABF 得c AF =,c AM 3=,由椭圆定义知a AM AF 2=+,32c c a +=,13-=∴e .【例9】【2013湖南,理14】设12,F F 是双曲线2222:1(0,0)x y C a b a b -=>>的两个焦点,P是C 上一点,若216,PF PF a +=且12PF F ∆的最小内角为30o,则C 的离心率为___.【例10】 F 1,F 2是双曲线2222:1(,0)x y C a b b a b-=>>的左、右焦点,过左焦点F 1的直线l 与双曲线C 的左、右两支分别交于A ,B 两点,若22||:||:||3:4:5AB BF AF =,则双曲线的离心率是 ( )A BC .2D 【解析】画出图形,在2ABF ∆中,根据题意可设223,4,5(0)AB t BF t AF t t ===>, 222222,AB BF AF ABF +=∴∆Q 为直角三角形.设1AF m =,由双曲线的定义知1221BF BF AF AF -=-,即345t m t t m +-=-,∴3m t =,∴212532a AF AF t t t =-=-=.在12Rt BF F ∆中,12F F ===,∴ce a==,故选D . 考点6. 借助双曲线的渐近线求离心率【例11】已知双曲线)0,0(1:2222>>=-b a by a x E 的两条渐近线分别为x y l x y l 2:,2:21-==.则双曲线E 的离心率为_______________.【解析】因为双曲线E 的渐近线分别为y =2x ,y =-2x ,所以b a =2,所以c 2-a 2a=2,故c =5a ,从而双曲线E 的离心率e =ca= 5.【例12](株洲市2015届高三年级教学质量统一检测文)已知双曲线22221x y a b-=的一条渐近线的离心率等于( )A .3 D . 3【解析】双曲线22221x y a b-=的一条渐近线的倾斜角的余弦值为10,所以110e =,即e =故选C.考点7. 利用弦中点坐标,代点相减求离心率 【例13】【2014江西,理15】过点(1,1)M 作斜率为12-的直线与椭圆C :22221(0)x y a b a b+=>>相交于,AB ,若M 是线段AB 的中点,则椭圆C 的离心率为 【解析】设),(),,(2211y x B y x A ,则1,1222222221221=+=+b ya xb y a x两式相减得:()()()()1212121222x x x x y y y y a b -+-++=2,22121=+=+y y x x ,1212y y x x --=12- 则2212220a b -⨯+=,222a b =,22e =. 考点8. 利用点在曲线上求离心率【例14】(资阳市高中2012级第二次诊断性考试理)已知F 1、F 2是双曲线22221x y a b-=(a >0,b >0)的左、右焦点,点F 1关于渐近线的对称点恰好落在以F 2为圆心,|OF 2|为半径的圆上,则该双曲线的离心率为(A)2 (B)3 (C) 2(D) 3。
1.(福建卷)已知双曲线12222=-by a x (a >0,b <0)的右焦点为F ,若过点F 且倾斜角为60°的直线与双曲线的右支有且只有一个交点,则此双曲线离心率的取值范围是A.( 1,2)B. (1,2]C.[2,+∞)D.(2,+∞)2.(湖南卷)过双曲线M:2221y x b-=的左顶点A 作斜率为1的直线l ,若l 与双曲线M 的两条渐近线分别相交于B 、C,且|AB|=|BC|,则双曲线M 的离心率是 ( )3.(辽宁卷)方程22520x x -+=的两个根可分别作为()A.一椭圆和一双曲线的离心率 B.两抛物线的离心率 C.一椭圆和一抛物线的离心率D.两椭圆的离心率4.(全国II )已知双曲线x 2a 2-y 2b 2=1的一条渐近线方程为y =43x ,则双曲线的离心率为( )(A )53 (B )43 (C )54 (D )325.(陕西卷)已知双曲线x 2a 2 - y 22 =1(a>2)的两条渐近线的夹角为π3 ,则双曲线的离心率为A.2B. 3C.263D.2336. (全国卷)设椭圆的两个焦点分别为F 1、、F 2,过F 2作椭圆长轴的垂线交椭圆于点P ,若△F 1PF 2为等腰直角三角形,则椭圆的离心率是( )(A (B )12(C )2 (D 1 7. (广东卷)若焦点在x 轴上的椭圆2212x y m +=的离心率为12,则m=( )(B)32(C)83(D)238.(福建卷)已知F 1、F 2是双曲线)0,0(12222>>=-b a by a x 的两焦点,以线段F 1F 2为边作正三角形MF 1F 2,若边MF 1的中点在双曲线上,则双曲线的离心率是( ) A .324+B .13-C .213+D .13+9.[全国]设双曲线的焦点在x 轴上,两条渐近线为x y 21±=,则该双曲线的离心率=e ( )A .5 B . 5 C .25 D .45 10.( 福建理)已知F 1、F 2是椭圆的两个焦点,过F 1且与椭圆长轴垂直的直线交椭圆于A 、B 两点,若△ABF 2是正三角形,则这个椭圆的离心率是( )A .33B .32 C .22 D .2311.( 重庆理)已知双曲线22221,(0,0)x y a b a b-=>>的左,右焦点分别为12,F F ,点P 在双曲线的右支上,且12||4||PF PF =,则此双曲线的离心率e 的最大值为:( )A .43B .53C .2D .7312.(福建卷11)又曲线22221x y a b==(a >0,b >0)的两个焦点为F 1、F 2,若P 为其上一点,且|PF 1|=2|PF 2|,则双曲线离心率的取值范围为( )A.(1,3)B.(]1,3 C.(3,+∞)D.[)3,+∞13.(江西卷 7)已知1F 、2F 是椭圆的两个焦点,满足120MF MF ⋅=u u u u r u u u u r的点M 总在椭圆内部,则椭圆离心率的取值范围是( )A .(0,1) B .1(0,]2C .(0,2D .,1)2 14.(全国二9)设1a >,则双曲线22221(1)x y a a -=+的离心率e 的取值范围是( )A .B .C .(25),D .(215.(陕西卷8)双曲线22221x y a b-=(0a >,0b >)的左、右焦点分别是12F F ,,过1F 作倾斜角为30o的直线交双曲线右支于M 点,若2MF 垂直于x 轴,则双曲线的离心率为( )ABC D16.(天津卷(7)设椭圆22221x y m n+=(0m >,0n >)的右焦点与抛物线28y x =的焦点相同,离心率为12,则此椭圆的方程为( )(A )2211216x y += (B )2211612x y += (C )2214864x y += (D )2216448x y +=17.(江苏卷12)在平面直角坐标系中,椭圆2222x y a b+=1( a b >>0)的焦距为2,以O 为圆心,a 为半径的圆,过点2,0a c ⎛⎫⎪⎝⎭作圆的两切线互相垂直,则离心率e = . 18.(全国一15)在ABC △中,AB BC =,7cos 18B =-.若以A B ,为焦点的椭圆经过点C ,则该椭圆的离心率e= .19、(全国2理11)设F 1,F 2分别是双曲线22221x y a b-=的左、右焦点。
圆锥曲线中的离心率的问题一、题型选讲题型一 、求离心率的值求离心率的值关键是找到等式关系,解出a 与c 的关系,进而求出离心率。
常见的等式关系主要有:1、题目中给出等式关系;2、通过几何关系如垂直或者夹角的关系得出等式关系;3、挖掘题目中的等式关系。
例1、【2019年高考全国Ⅱ卷理数】设F 为双曲线C :22221(0,0)x y a b a b-=>>的右焦点,O 为坐标原点,以OF 为直径的圆与圆222x y a +=交于P ,Q 两点.若PQ OF =,则C 的离心率为A BC .2D例2、(2020届山东省泰安市高三上期末)已知圆22:10210C x y y +-+=与双曲线22221(0,0)x y a b a b-=>>的渐近线相切,则该双曲线的离心率是( )A B .53C .52D例3、(2020届山东省九校高三上学期联考)已知直线1l ,2l 为双曲线M :()222210,0x y a b a b-=>>的两条渐近线,若1l ,2l 与圆N :2221x y 相切,双曲线M 离心率的值为( )A BCD .3例4、(2020届山东省德州市高三上期末)双曲线22221x y a b-=(0a >,0b >)的右焦点为()1F ,点A 的坐标为()0,1,点P 为双曲线左支上的动点,且1APF ∆周长的最小值为8,则双曲线的离心率为( )AB C .2D .例5、(2020届山东省潍坊市高三上期末)已知点P 为双曲线()2222:10,0x y C a b a b-=>>右支上一点,12,F F 分别为C 的左,右焦点,直线1PF 与C 的一条渐近线垂直,垂足为H ,若114PF HF =,则该双曲线的离心率为( ) A .15 B .21 C .53D .73例6、(2020·浙江省温州市新力量联盟高三上期末)已知双曲线22212x y a -=的一条渐近线的倾斜角为6π,则双曲线的离心率为( ) A .233B .263C .3D .2题型二、求离心率的范围求离心率的值关键是找到不等关系,解出a 与c 的关系,进而求出离心率的范围。
圆锥曲线专题 求离心率的值师生互动环节讲课内容:历年高考或模拟试题关于离心率的求值问题分类精析与方法归纳点拨。
策略一:根据定义式求离心率的值在椭圆或双曲线中,如果能求出c a 、的值,可以直接代公式求离心率;如果不能得到ca 、的值,也可以通过整体法求离心率:椭圆中221ab ac e -==;双曲线中221a b a c e +==.所以只要求出ab值即可求离心率. 例1.(2010年全国卷2)己知斜率为1的直线l 与双曲线C :()2222100x y a b a b-=>,>相交于D B 、两点,且BD 的中点为)3,1(M ,求曲线C 的离心率.解析:如图,设),(),(2211y x D y x B 、,则1221221=-b y a x ① 1222222=-by a x ② ①-②整理得0))(())((2212122121=+--+-b y y y y a x x x x ③又因为)3,1(M 为BD 的中点,则6,22121=+=+y y x x ,且21x x ≠,代入③得13222121==--=a b x x y y k BD,解得322=ab ,所以231122=+=+=a b e .方法点拨:此题通过点差法建立了关于斜率与a b 的关系,解得22ab 的值,从而整体代入求出离心率e .当然此题还可以通过联立直线与曲线的方程,根据韦达定理可得),(21b a x x ϕ=+,2),(=b a ϕ或者),(21b a y y ω=+,6),(=b a ω从而解出22a b 的值,最后求得离心率.【同类题型强化训练】1.(呼市二中模拟)已知中心在原点,焦点在x 轴上的双曲线的渐近线方程为032=±y x ,则双曲线的离心率为( ). 313.A 213.B 315.C 210.D 2.(衡水中学模拟)已知中心在原点,焦点在x 轴上的一椭圆与圆222)1()2(r y x =-+-交于B A 、两点,AB 恰是该圆的直径,且直线AB 的斜率21-=k ,求椭圆的离心率.3.(母题)已知双曲线)0(1:22>=-m y m x C ,双曲线上一动点P 到两条渐近线的距离乘积为21,求曲线C 的离心率. 【强化训练答案】1.答案:由双曲线焦点在x 上,则渐近线方程0=±ay bx ,又题设条件中的渐近线方程为032=±y x ,比较可得32=a b ,则313941122=+=+=a b e .2.答案:设椭圆方程为)0(12222>>=+b a by a x ,),(),,(2211y x B y x A ,则1221221=+b y a x ① 1222222=+by a x ② ①-②整理得0))(())((2212122121=+-++-b y y y y a x x x x ③因为AB 恰是该圆的直径,故AB 的中点为圆心)1,2(,且21x x ≠则2,42121=+=+y y x x ,代入③式整理得2221212ab x x y y k -=--=直线AB 的斜率21-=k ,所以21222-=-=a b k ,解得4122=a b所以离心率23411122=-=-==a b a c e .3.答案:曲线C 的渐近线方程分别为0:1=+y m x l 和0:2=-y m x l ,设),(00y x P ,则 点),(00y x P 到直线1l 的距离m y m x d ++=1001,点),(00y x P 到直线2l 的距离my m x d +-=1002,mmy x my m x y m x d d +-=+-⋅+=⋅11220000021因为),(00y x P 在曲线C 上,所以m my x =-2020,故21121=+=⋅m m d d ,解得1=m 所以2=e .策略二:构造c a ,的关系式求离心率根据题设条件,借助c b a ,,之间的关系,沟通c a 、的关系(特别是齐次式),进而得到关于e 的一元方程,从而解方程得出离心率e .例 2.已知21,F F 是双曲线)0,0(12222>>=-b a by a x 的两焦点,以线段21F F 为边作正三角形21F MF ,若边1MF 的中点P 在双曲线上,求双曲线的离心率.解析:如图1,1MF 的中点为P ,则点P 的横坐标为2c-.由c F F PF ==21121, 焦半径公式a ex PF p --=1有a ca c c --⨯-=)2(,即02222=--ac a c 有0222=--e e解得31+=e ,或31-=e (舍去).方法点拨:此题根据条件构造关于c a ,的齐次式,通过齐次式结合离心率的定义ace =整理成关于e 的一元方程,从而解出离心率的值.注意解出的结果要做验证,取符合离心率的范围的结果:),1(),1,0(+∞∈∈双曲线椭圆e e . 【同类题型强化训练】1.(2011新课标)已知直线l 过双曲线C 的一个焦点,且与C 的对称轴垂直,l 与C 交于A 、B 两点,||AB 为C 的实轴长的2倍,则C 的离心率为( ).A 2.B 3.C 2 .D 32.(2008浙江)若双曲线12222=-b y a x 的两个焦点到一条准线的距离之比为3:2,则双曲线的离心率是( ).A 3 .B 5 .C 3 .D 5 【同类题型强化训练答案】1.答案:依据题意a aa c AB 22222=-=,解得2=e .2.答案:依据题意2:3)(:)(22=-+c a c c a c ,整理得223a c =,所以3==ace .策略三:根据圆锥曲线的统一定义求离心率(第二定义)由圆锥曲线的第二定义,知离心率e 是动点到焦点的距离和动点到准线的距离之比,适用于条件含有焦半径的圆锥曲线问题,即e dMF =.例3.(2010年辽宁卷)设椭圆2222:1(0)x y C a b a b +=>>的左焦点为F ,过点F 的直线与椭圆C相交于B A ,两点,直线l 的倾斜角为︒60,2AF FB =,求椭圆C 的离心率.解法一:作椭圆的左准线B A '',过A 作B A ''的垂线,垂足为A ';过B 作B B '的垂线,垂足为B '.过B 作A A '的垂线,垂足为M .如图2.由图,由椭圆的第二定义,则e A A AF ='e AF A A ='⇒,e B B BF ='e BFB B ='⇒ 12::==''e BF e AF B B A A B B A A '='⇒2 且A A BM '⊥,所以M 是A A '的中点又因为直线l 的倾斜角为︒60,即︒=∠=∠60AFx BAM , 所以在BAM Rt ∆中,A A AM AB '==2,故3232=⋅='=AB AB A A AF e . 解法二:设1122(,),(,)A x y B x y ,由题意知10y <,20y >.直线l 的方程为 3()y x c =-,其中22c a b =-联立22223(),1y x c x y ab ⎧=-⎪⎨+=⎪⎩得22224(3)2330a b y b cy b ++-=解得221222223(2)3(2),33b c a b c a y y a b a b -+--==++因为2AF FB =,所以122y y -=.即 2222223(2)3(2)233b c a b c a a b a b +--=⋅++得离心率 23c e a ==. 方法点拨:该题对于课标地区选择第二种代数法处理,对于自主命题对圆锥曲线的第二定义要求的地区,两种方法都可以给学生讲讲。
圆锥曲线离心率专题训练1.已知F1,F2是椭圆的两个焦点,若椭圆上存在点P,使得PF1⊥PF2,则椭圆离心率的取值范围是()A.[,1)B.[,1)C.(0,]D.(0,]2.二次曲线时,该曲线离心率e的范围是()A.B.C.D.3.椭圆焦点在x轴上,A为该椭圆右顶点,P在椭圆上一点,∠OPA=90°,则该椭圆的离心率e的范围是()A.[,1)B.(,1)C.[,)D.(0,)4.双曲线的离心率e∈(1,2),则k的取值范围是()A.(﹣∞,0)B.(﹣3,0)C.(﹣12,0)D.(﹣60,﹣12)5.设F1,F2为椭圆的两个焦点,若椭圆上存在点P满足∠F1PF2=120°,则椭圆的离心率的取值范围是()A.B.C.D.6.已知椭圆的内接三角形有一个顶点在短轴的顶点处,其重心是椭圆的一个焦点,求该椭圆离心率e的取值范围()A.B.C.D.7.已知椭圆x2+my2=1的离心率,则实数m的取值范围是()A.B.C.D.8.已知有公共焦点的椭圆与双曲线的中心为原点,焦点在x轴上,左、右焦点分别为F1,F2且它们在第一象限的交点为P,△PF1F2是以PF1为底边的等腰三角形,双曲线的离心率的取值范围为(1,2),则该椭圆的离心率的取值范围是()A.(0,)B.(,)C.(,)D.(,1)9.椭圆的内接矩形的最大面积的取值范围是[3b2,4b2],则该椭圆的离心率e的取值范围是()A.B.C.D.10.如图,等腰梯形ABCD中,AB∥CD且AB=2,AD=1,DC=2x(x∈(0,1)).以A,B为焦点,且过点D的双曲线的离心率为e1;以C,D为焦点,且过点A的椭圆的离心率为e2,则e1+e2的取值范围为()A.[2,+∞)B.(,+∞)C.[,+∞)D.(,+∞)11.已知双曲线的焦距为2c,离心率为e,若点(﹣1,0)与点(1,0)到直线的距离之和为S,且S,则离心率e的取值范围是()A.B.C.D.12.已知F1,F2是椭圆的两个焦点,若存在点P为椭圆上一点,使得∠F1PF2=60°,则椭圆离心率e的取值范围是()A.B.C.D.13.已知方程x3+2ax2+3bx+c=0(a,b,c∈R)的三个实根可分别作为一椭圆,一双曲线、一抛物线的离心率,则的取值范围是()A.B.C.D.14.已知椭圆上到点A(0,b)距离最远的点是B(0,﹣b),则椭圆的离心率的取值范围为()A.B.C.D.15.已知双曲线的中心在原点,焦点x轴上,它的一条渐近线与x轴的夹角为α,且,则双曲线的离心率的取值范围是()A.B.C.(1,2)D.16.已知双曲线﹣=1的两焦点为F1、F2,点P在双曲线上,∠F1PF2的平分线分线段F1F2的比为5:1,则双曲线离心率的取值范围是()A.(1,]B.(1,)C.(2,]D.(,2]17.椭圆+=1(a>b>0)上一点A关于原点的对称点为B,F为其右焦点,若AF⊥BF,设∠ABF=a,且a∈[,],则该椭圆离心率的取值范围为()A.[,1]B.[,]C.[,1)D.[,]18.已知椭圆的左、右焦点分别为F1(﹣c,0),F2(c,0),若椭圆上存在点P使,则该椭圆的离心率的取值范围为()A.(0,)B.()C.(0,)D.(,1)19.已知直线l:y=kx+2(k为常数)过椭圆的上顶点B和左焦点F,且被圆x2+y2=4截得的弦长为L,若,则椭圆离心率e的取值范围是()A.B.C.D.20.双曲线的焦距为2c,直线l过点(a,0)和(0,b),且点(1,0)到直线l的距离与点(﹣1,0)到直线l的距离之和.则双曲线的离心率e的取值范围是()A.B.C.D.21.点A是抛物线C1:y2=2px(p>0)与双曲线C2:(a>0,b>0)的一条渐近线的交点,若点A到抛物线C1的准线的距离为p,则双曲线C2的离心率等于()A.B.C.D.22.在椭圆上有一点M,F1,F2是椭圆的两个焦点,若,则椭圆离心率的范围是()A.B.C.D.23.椭圆+y2=1上存在一点P,使得它对两个焦点F1,F2的张角∠F1PF2=,则该椭圆的离心率的取值范围是()A.B.C.D.24.椭圆(a>b>0)上存在点P到原点的距离等于该椭圆的焦距,则椭圆的离心率的取值范围是()A.(0,1)B.(0,C.D.25.椭圆的左右焦点分别为F1,F2,若椭圆C上恰好有6个不同的点P,使得△F1F2P为等腰三角形,则椭圆C的离心率的取值范围是()A.B.C.D.26.设A1、A2为椭圆的左右顶点,若在椭圆上存在异于A1、A2的点P,使得,其中O为坐标原点,则椭圆的离心率e的取值范围是()A.B.C.D.27.已知点F1、F2分别是双曲线=1的左、右焦点,过F1且垂直于x轴的直线与双曲线交于A、B两点,若A、B和双曲线的一个顶点构成的三角形为锐角三角形,则该双曲线的离心率e的取值范围是()A.(1,1+)B.(1,)C.(﹣1,1+)D.(1,2)28.如图,已知A(﹣2,0),B(2,0),等腰梯形ABCD满足|AB|=﹣2|CD|,E为AC上一点,且.又以A、B为焦点的双曲线过C、D、E三点.若,则双曲线离心率e的取值范围为()A.B.C.D.29.已知椭圆(a>b>0)上一点A关于原点的对称点为B,F为其右焦点,若AF⊥BF,设∠ABF=α,且,则该椭圆离心率e的取值范围为()A.B.C.D.30.已知P为椭圆(a>b>0)上一点,F1,F2是椭圆的左、右焦点,若使△PF1F2为直角三角形的点P 有且只有4个,则椭圆离心率的取值范围是()A.(0,)B.(,1)C.(1,)D.(,+∞)参考答案与试题解析1.已知F1,F2是椭圆的两个焦点,若椭圆上存在点P,使得PF1⊥PF2,则椭圆离心率的取值范围是()A.[,1)B.[,1)C.(0,]D.(0,]解:如图所示,下面证明椭圆的短轴的一个端点是到椭圆的中心距离最短的点.设椭圆上任意一点P(x0,y0),则,可得.∴|OP|2==+=≥b2,当且仅当x0=0时取等号.∴椭圆的短轴的一个端点是到椭圆的中心距离最短的点.若椭圆上存在点P,使得PF1⊥PF2,则c≥b,∴c2≥b2=a2﹣c2,化为,解得.又e<1,∴.故选B.2.二次曲线时,该曲线离心率e的范围是()A.B.C.D.解:∵m∈[﹣2,﹣1],∴该曲线为双曲线,a=2,b2=﹣m,∴c=离心率e==∵m∈[﹣2,﹣1],∴∈[,],∴e∈故选C3.椭圆焦点在x轴上,A为该椭圆右顶点,P在椭圆上一点,∠OPA=90°,则该椭圆的离心率e的范围是()A.[,1)B.(,1)C.[,)D.(0,)解:可设椭圆的标准方程为:(a>b>0).设P(x,y),∵∠OPA=90°,∴点P在以OA为直径的圆上.该圆为:,化为x2﹣ax+y2=0.联立化为(b2﹣a2)x2+a3x﹣a2b2=0,则,解得,∵0<x<a,∴,化为c2>b2=a2﹣c2,∴,又1>e>0.解得.∴该椭圆的离心率e的范围是.故选:C.4.双曲线的离心率e∈(1,2),则k的取值范围是()A.(﹣∞,0)B.(﹣3,0)C.(﹣12,0)D.(﹣60,﹣12)解:∵双曲线的离心率e∈(1,2),∴双曲线标准方程为:﹣=1∴k<0,∴1<e2<4,1<<4,﹣12<k<0,故答案选C5.设F1,F2为椭圆的两个焦点,若椭圆上存在点P满足∠F1PF2=120°,则椭圆的离心率的取值范围是()A.B.C.D.解:F1(﹣c,0),F2(c,0),c>0,设P(x1,y1),则|PF1|=a+ex1,|PF2|=a﹣ex1.在△PF1F2中,由余弦定理得cos120°==,解得x12=.∵x12∈(0,a2],∴0≤<a2,即4c2﹣3a2≥0.且e2<1∴e=≥.故椭圆离心率的取范围是e∈.故选A.6.已知椭圆的内接三角形有一个顶点在短轴的顶点处,其重心是椭圆的一个焦点,求该椭圆离心率e的取值范围()A.B.C.D.解:不防设椭圆方程:(a>b>0),再不妨设:B(0,b),三角形重心G(c,0),延长BG至D,使|GD|=,设D(x,y),则,,由,得:,解得:,.而D是椭圆的内接三角形一边AC的中点,所以,D点必在椭圆内部,则.把b2=a2﹣c2代入上式整理得:.即.又因为椭圆离心率e∈(0,1),所以,该椭圆离心率e的取值范围是.故选B.7.已知椭圆x2+my2=1的离心率,则实数m的取值范围是()A.B.C.D.解:椭圆x2+my2=1化为标准方程为①若1>,即m>1,,∴,∴,∴②若,即0<m<1,,∴,∴,∴∴实数m的取值范围是故选C.8.已知有公共焦点的椭圆与双曲线的中心为原点,焦点在x轴上,左、右焦点分别为F1,F2且它们在第一象限的交点为P,△PF1F2是以PF1为底边的等腰三角形,双曲线的离心率的取值范围为(1,2),则该椭圆的离心率的取值范围是()A.(0,)B.(,)C.(,)D.(,1)解:设椭圆的方程为+=1(a>b>0),其离心率为e1,双曲线的方程为﹣=1(m>0,n>0),|F1F2|=2c,∵有公共焦点的椭圆与双曲线在第一象限的交点为P,△PF1F2是以PF1为底边的等腰三角形,∴在椭圆中,|PF1|+|PF2|=2a,而|PF2|=|F1F2|=2c,∴|PF1|=2a﹣2c;①同理,在该双曲线中,|PF1|=2m+2c;②由①②可得a=m+2c.∵e2=∈(1,2),∴<=<1,又e1==,∴==+2∈(,3),故选C.9.椭圆的内接矩形的最大面积的取值范围是[3b2,4b2],则该椭圆的离心率e的取值范围是()A.B.C.D.解:在第一象限内取点(x,y),设x=acosθ,y=bsinθ,(0<θ<)则椭圆的内接矩形长为2acosθ,宽为2bsinθ,内接矩形面积为2acosθ•2bsinθ=2absin2θ≤2ab,由已知得:3b2≤2ab≤4b2,∴3b≤2a≤4b,平方得:9b2≤4a2≤16b2,9(a2﹣c2)≤4a2≤16(a2﹣c2),5a2≤9c2且12a2≥16c2,∴≤≤即e∈故选B.10.如图,等腰梯形ABCD中,AB∥CD且AB=2,AD=1,DC=2x(x∈(0,1)).以A,B为焦点,且过点D的双曲线的离心率为e1;以C,D为焦点,且过点A的椭圆的离心率为e2,则e1+e2的取值范围为()D.(,+∞)A.[2,+∞)B.(,+∞)C.[,+∞)解:BD==,∴a1=,c1=1,a2=,c2=x,∴e1=,e2=,e1e2=1但e1+e2中不能取“=”,∴e1+e2=+=+,令t=﹣1∈(0,﹣1),则e1+e2=(t+),t∈(0,﹣1),∴e1+e2∈(,+∞)∴e1+e2的取值范围为(,+∞).故选B.11.已知双曲线的焦距为2c,离心率为e,若点(﹣1,0)与点(1,0)到直线的距离之和为S,且S,则离心率e的取值范围是()A.B.C.D.解:直线l的方程为,即bx﹣ay﹣ab=0.由点到直线的距离公式,且a>1,得到点(1,0)到直线l的距离d1=,同理得到点(﹣1,0)到直线l的距离.d2=,s=d1+d2==.由S,即得•a≥2c2.于是得4e4﹣25e2+25≤0.解不等式,得.由于e>1>0,所以e的取值范围是e∈.故选A.12.已知F1,F2是椭圆的两个焦点,若存在点P为椭圆上一点,使得∠F1PF2=60°,则椭圆离心率e的取值范围是()A.B.C.D.解:如图,当动点P在椭圆长轴端点处沿椭圆弧向短轴端点运动时,P对两个焦点的张角∠F1PF2渐渐增大,当且仅当P点位于短轴端点P0处时,张角∠F1PF2达到最大值.由此可得:∵存在点P为椭圆上一点,使得∠F1PF2=60°,∴△P0F1F2中,∠F1P0F2≥60°,可得Rt△P0OF2中,∠OP0F2≥30°,所以P0O≤OF2,即b c,其中c=∴a2﹣c2≤3c2,可得a2≤4c2,即≥∵椭圆离心率e=,且a>c>0∴故选C13.已知方程x3+2ax2+3bx+c=0(a,b,c∈R)的三个实根可分别作为一椭圆,一双曲线、一抛物线的离心率,则的取值范围是()A.B.C.D.解:设f(x)=x3+2ax2+3bx+c,由抛物线的离心率为1,可知f(1)=1+2a+3b+c=0,故c=﹣1﹣2a﹣3b,所以f(x)=(x﹣1)[x2+(2a+1)x+(2a+3b+1)]的另外两个根分别是一个椭圆一个双曲线的离心率,故g(x)=x2+(2a+1)x+(2a+3b+1),有两个分别属于(0,1),(1,+∞)的零点,故有g(0)>0,g(1)<0,即2a+3b+1>0且4a+3b+3<0,则a,b满足的可行域如图所示,由于,则P(﹣1,)而表示(a,b)到(0,0)的距离,且(0,0)到P(﹣1,)的距离为d=可确定的取值范围是(,+∞).故答案为:A.14.已知椭圆上到点A(0,b)距离最远的点是B(0,﹣b),则椭圆的离心率的取值范围为()A.B.C.D.解:设点P(x,y)是椭圆上的任意一点,则,化为.∴|PA|2=x2+(y﹣b)2===f(y),∵椭圆上的点P到点A(0,b)距离最远的点是B(0,﹣b),由二次函数的单调性可知:f(y)在(﹣b,b)单调递减,∴,化为c2≤b2=a2﹣c2,即2c2≤a2,∴.又e>0.∴离心率的取值范围是.故选:C.15.已知双曲线的中心在原点,焦点x轴上,它的一条渐近线与x轴的夹角为α,且,则双曲线的离心率的取值范围是()A.B.C.(1,2)D.解:∵双曲线的焦点在x轴上,故其渐近线方程为y=x则tanα=∵,∴1<tanα<,即1<<∴1<=<3求得<<2故选B.16.已知双曲线﹣=1的两焦点为F1、F2,点P在双曲线上,∠F1PF2的平分线分线段F1F2的比为5:1,则双曲线离心率的取值范围是()A.(1,]B.(1,)C.(2,]D.(,2]解:根据内角平分线的性质可得=,再由双曲线的定义可得5PF2﹣PF2=2a,PF2=,由于PF2=≥c﹣a,∴≥c,≤.再由双曲线的离心率大于1可得,1<e≤,故选A.17.椭圆+=1(a>b>0)上一点A关于原点的对称点为B,F为其右焦点,若AF⊥BF,设∠ABF=a,且a∈[,],则该椭圆离心率的取值范围为()A.[,1]B.[,]C.[,1)D.[,]解:∵B和A关于原点对称∴B也在椭圆上设左焦点为F′根据椭圆定义:|AF|+|AF′|=2a又∵|BF|=|AF′|∴|AF|+|BF|=2a …①O是Rt△ABF的斜边中点,∴|AB|=2c又|AF|=2csinα…②|BF|=2ccosα…③②③代入①2csinα+2ccosα=2a∴=即e==∵a∈[,],∴≤α+π/4≤∴≤sin(α+)≤1∴≤e≤故选B18.已知椭圆的左、右焦点分别为F1(﹣c,0),F2(c,0),若椭圆上存在点P使,则该椭圆的离心率的取值范围为()A.(0,)B.()C.(0,)D.(,1)解:在△PF1F2中,由正弦定理得:则由已知得:,即:aPF1=cPF2设点P(x0,y0)由焦点半径公式,得:PF1=a+ex0,PF2=a﹣ex0则a(a+ex0)=c(a﹣ex0)解得:x0==由椭圆的几何性质知:x0>﹣a则>﹣a,整理得e2+2e﹣1>0,解得:e<﹣﹣1或e>﹣1,又e∈(0,1),故椭圆的离心率:e∈(﹣1,1),故选D.19.已知直线l:y=kx+2(k为常数)过椭圆的上顶点B和左焦点F,且被圆x2+y2=4截得的弦长为L,若,则椭圆离心率e的取值范围是()A.B.C.D.解:圆x2+y2=4的圆心到直线l:y=kx+2的距离为d=∵直线l:y=kx+2被圆x2+y2=4截得的弦长为L,∴由垂径定理,得2,即,解之得d2≤∴≤,解之得k2∵直线l经过椭圆的上顶点B和左焦点F,∴b=2且c==﹣,即a2=4+因此,椭圆的离心率e满足e2===∵k2,∴0<≤,可得e2∈(0,]故选:B20.双曲线的焦距为2c,直线l过点(a,0)和(0,b),且点(1,0)到直线l的距离与点(﹣1,0)到直线l的距离之和.则双曲线的离心率e的取值范围是()A.B.C.D.解:直线l的方程为+=1,即bx+ay﹣ab=0.由点到直线的距离公式,且a>1,得到点(1,0)到直线l的距离,同理得到点(﹣1,0)到直线l的距离.,.由,得..于是得5≥2e2,即4e4﹣25e2+25≤0.解不等式,得≤e2≤5.由于e>1>0,所以e的取值范围是.故选D.21.点A是抛物线C1:y2=2px(p>0)与双曲线C2:(a>0,b>0)的一条渐近线的交点,若点A到抛物线C1的准线的距离为p,则双曲线C2的离心率等于()A.B.C.D.解:取双曲线的其中一条渐近线:y=x,联立⇒;故A(,).∵点A到抛物线C1的准线的距离为p,∴+=p;∴=.∴双曲线C2的离心率e===.故选:C.22.在椭圆上有一点M,F1,F2是椭圆的两个焦点,若,则椭圆离心率的范围是()A.B.C.D.解:由椭圆定义可知:|MF1|+|MF2|=2a,所以…①,在△MF1F2中,由余弦定理可知…②又,…③,由①②③可得:4c2=4a2﹣4b2﹣2|MF1|•|MF2|cosθ.所以|MF1|•|MF2|cosθ=0.所以c≥b,即c2≥b2=a2﹣c2,2c2≥a2,,所以e∈.故选B.23.椭圆+y2=1上存在一点P对两个焦点F1,F2的张角∠F1PF2=,则该椭圆的离心率的取值范围是()A.(0,]B.[,1)C.(0,]D.[,1)解:∵椭圆方程为:+y2=0,∴b2=1,可得c2=a2﹣1,c=∴椭圆的离心率为e=又∵椭圆上一点P,使得角∠F1PF2=,∴设点P的坐标为(x0,y0),结合F1(﹣c,0),F2(c,0),可得=(﹣c﹣x0,﹣y0),=(c﹣x0,﹣y0),∴=+=0…①∵P(x0,y0)在椭圆+y2=1上,∴=1﹣,代入①可得+1﹣=0将c2=a2﹣1代入,得﹣a2﹣+2=0,所以=,∵﹣a≤x0≤a∴,即,解之得1<a2≤2∴椭圆的离心率e==∈[,1).24.如果椭圆(a>b>0)上存在点P,使P到原点的距离等于该椭圆的焦距,则椭圆的离心率的取值范围是()A.(0,1)B.C.D.(0,解:设P(x,y),∵P到原点的距离等于该椭圆的焦距,∴x2+y2=4c2①∵P在椭圆上,∴②联立①②得,∵0≤x2≤a2∴∴∴∴e∈故选C25.椭圆的左右焦点分别为F1,F2,若椭圆C上恰好有6个不同的点P,使得△F1F2P为等腰三角形,则椭圆C的离心率的取值范围是()A.B.C.D.解:①当点P与短轴的顶点重合时,△F1F2P构成以F1F2为底边的等腰三角形,此种情况有2个满足条件的等腰△F1F2P;②当△F1F2P构成以F1F2为一腰的等腰三角形时,以F2P作为等腰三角形的底边为例,∵F1F2=F1P,∴点P在以F1为圆心,半径为焦距2c的圆上因此,当以F1为圆心,半径为2c的圆与椭圆C有2交点时,存在2个满足条件的等腰△F1F2P,此时a﹣c<2c,解得a<3c,所以离心率e当e=时,△F1F2P是等边三角形,与①中的三角形重复,故e≠同理,当F1P为等腰三角形的底边时,在e且e≠时也存在2个满足条件的等腰△F1F2P这样,总共有6个不同的点P使得△F1F2P为等腰三角形综上所述,离心率的取值范围是:e∈(,)∪(,1)26.设A1、A2为椭圆的左右顶点,若在椭圆上存在异于A1、A2的点P,使得,其中O为坐标原点,则椭圆的离心率e的取值范围是()A.B.C.D.解:A1(﹣a,0),A2(a,0),设P(x,y),则=(﹣x,﹣y),=(a﹣x,﹣y),∵,∴(a﹣x)(﹣x)+(﹣y)(﹣y)=0,y2=ax﹣x2>0,∴0<x<a.代入=1,整理得(b2﹣a2)x2+a3x﹣a2b2=0 在(0,a )上有解,令f(x)=(b2﹣a2)x2+a3x﹣a2b2=0,∵f(0)=﹣a2b2<0,f(a)=0,如图:△=(a3)2﹣4×(b2﹣a2)×(﹣a2b2)=a2(a4﹣4a2b2+4b4)=a2(a2﹣2c2)2≥0,∴对称轴满足0<﹣<a,即0<<a,∴<1,>,又0<<1,∴<<1,故选D.27.已知点F1、F2分别是双曲线=1的左、右焦点,过F1且垂直于x轴的直线与双曲线交于A、B两点,若A、B和双曲线的一个顶点构成的三角形为锐角三角形,则该双曲线的离心率e的取值范围是()A.(1,1+)B.(1,)C.(﹣1,1+)D.(1,2):解:根据双曲线的对称性,得△ABE中,|AE|=|BE|,∴△ABE是锐角三角形,即∠AEB为锐角由此可得Rt△AF1E中,∠AEF<45°,得|AF1|<|EF1|∵|AF1|==,|EF1|=a+c∴<a+c,即2a2+ac﹣c2>0两边都除以a2,得e2﹣e﹣2<0,解之得﹣1<e<2∵双曲线的离心率e>1∴该双曲线的离心率e的取值范围是(1,2)故选D.28.如图,已知A(﹣2,0),B(2,0),等腰梯形ABCD满足|AB|=﹣2|CD|,E为AC上一点,且.又以A、B为焦点的双曲线过C、D、E三点.若,则双曲线离心率e的取值范围为()A.B.C.D.解:如图,以AB的垂直平分线为γ轴,直线AB为x轴,建立直角坐标系xOγ,则CD⊥γ轴.因为双曲线经过点C、D,且以A、B为焦点,由双曲线的对称性知C、D关于γ轴对称,设c为双曲线的半焦距(c=2),依题意,记,h是梯形的高,由定比分点坐标公式得,.设双曲线的方程为,则离心率,由点C、E在双曲线上,将点C、E坐标和代入双曲线的方程,得,①.②由①式得,③将③式代入②式,整理得,故由题设得,,解得,所以,双曲线的离心率的取值范围为[].故选A.29.已知椭圆(a>b>0)上一点A关于原点的对称点为B,F为其右焦点,若AF⊥BF,设∠ABF=α,且,则该椭圆离心率e的取值范围为()A.B.C.D.解:把x=c代入椭圆的方程可得,解得.取A,则B,∵∠OBF=∠AOF﹣∠OFB,,=∴tanα=tan∠OBF=====,∵,∴,∴.解得.故选A.30.已知P为椭圆(a>b>0)上一点,F1,F2是椭圆的左、右焦点,若使△PF1F2为直角三角形的点P 有且只有4个,则椭圆离心率的取值范围是()A.(0,)B .(,1)C.(1,)D.(,+∞)解:①当PF1⊥x轴时,由两个点P满足△PF1F2为直角三角形;同理当PF2⊥x轴时,由两个点P满足△PF1F2为直角三角形.∵使△PF1F2为直角三角形的点P有且只有4个,∴以原点为圆心,c为半径的圆与椭圆无交点,∴c<b,∴c2<b2=a2﹣c2,∴,又e >0,解得.故选A.21。
高中数学《圆锥曲线的离心率问题》基础知识与练习题(含答案解析)离心率是圆锥曲线的一个重要几何性质,一方面刻画了椭圆,双曲线的形状,另一方面也体现了参数,a c 之间的联系。
一、基础知识: 1、离心率公式:ce a=(其中c 为圆锥曲线的半焦距) (1)椭圆:()0,1e ∈ (2)双曲线:()1,+e ∈∞2、圆锥曲线中,,a b c 的几何性质及联系 (1)椭圆:222a b c =+,① 2a :长轴长,也是同一点的焦半径的和:122PF PF a += ② 2b :短轴长 ③ 2:c 椭圆的焦距 (2)双曲线:222c b a =+① 2a :实轴长,也是同一点的焦半径差的绝对值:122PF PF a −=② 2b :虚轴长 ③ 2:c 椭圆的焦距3、求离心率的方法:求椭圆和双曲线的离心率主要围绕寻找参数,,a b c 的比例关系(只需找出其中两个参数的关系即可),方法通常有两个方向:(1)利用几何性质:如果题目中存在焦点三角形(曲线上的点与两焦点连线组成的三角形),那么可考虑寻求焦点三角形三边的比例关系,进而两条焦半径与a 有关,另一条边为焦距。
从而可求解 (2)利用坐标运算:如果题目中的条件难以发掘几何关系,那么可考虑将点的坐标用,,a b c 进行表示,再利用条件列出等式求解2、离心率的范围问题:在寻找不等关系时通常可从以下几个方面考虑:(1)题目中某点的横坐标(或纵坐标)是否有范围要求:例如椭圆与双曲线对横坐标的范围有要求。
如果问题围绕在“曲线上存在一点”,则可考虑该点坐标用,,a b c 表示,且点坐标的范围就是求离心率范围的突破口(2)若题目中有一个核心变量,则可以考虑离心率表示为某个变量的函数,从而求该函数的值域即可(3)通过一些不等关系得到关于,,a b c 的不等式,进而解出离心率注:在求解离心率范围时要注意圆锥曲线中对离心率范围的初始要求:椭圆:()0,1e ∈,双曲线:()1,+e ∈∞ 二、典型例题:例1:设12,F F 分别是椭圆()2222:10x y C a b a b +=>>的左、右焦点,点P 在椭圆C 上,线段1PF 的中点在y 轴上,若1230PF F ∠=,则椭圆的离心率为( ) A .33 B .36C .13D .16思路:本题存在焦点三角形12PF F ,由线段1PF 的中点在y 轴上,O 为12F F 中点可得2PF y ∥轴,从而212PF F F ⊥,又因为1230PF F ∠=,则直角三角形12PF F 中,1212::2:1:3PF PF F F =,且12122,2a PF PF c F F =+=,所以12122323F F c c e a a PF PF ∴====+ 答案:A小炼有话说:在圆锥曲线中,要注意O 为12F F 中点是一个隐含条件,如果图中存在其它中点,则有可能与O 搭配形成三角形的中位线。
圆锥曲线离心率专题历年真题1.题目:已知双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b<0)$的右焦点为F,若过点F且倾斜角为60°的直线与双曲线的右支有且只有一个交点,则此双曲线离心率的取值范围是?答案:D.(2,+∞)改写:双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b<0)$的右焦点为F。
过点F且倾斜角为60°的直线与双曲线的右支有且只有一个交点,求此双曲线离心率的取值范围。
答案为D.(2,+∞)。
2.题目:过双曲线M:$x-\frac{y^2}{b^2}=1$的左顶点A作斜率为1的直线l,若l与双曲线M的两条渐近线分别相交于B、C,且$|AB|=|BC|$,则双曲线M的离心率是?答案:$\frac{10}{3}$改写:双曲线M:$x-\frac{y^2}{b^2}=1$的左顶点为A。
作斜率为1的直线l过点A,与双曲线M的两条渐近线分别相交于B、C,且$|AB|=|BC|$,求双曲线M的离心率。
答案为$\frac{10}{3}$。
3.题目:方程$2x-5x+2=$的两个根可分别作为()A.一椭圆和一双曲线的离心率C.一椭圆和一抛物线的离心率B.两抛物线的离心率D.两椭圆的离心率答案:无法确定改写:方程$2x-5x+2=$的两个根可分别作为哪些图形的离心率?答案无法确定。
4.题目:已知双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$的一条渐近线方程为$y=x$,则双曲线的离心率为?答案:$\frac{\sqrt{3}}{3}$改写:已知双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$的一条渐近线方程为$y=x$,求双曲线的离心率。
答案为$\frac{\sqrt{3}}{3}$。
5.题目:已知双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>2)$的两条渐近线的夹角为$\frac{\pi}{3}$,则双曲线的离心率为?答案:D.$\frac{3}{\sqrt{23}}$改写:已知双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>2)$的两条渐近线的夹角为$\frac{\pi}{3}$,求双曲线的离心率。
圆锥曲线离心率求法专题训练(一)1.已知椭圆22221(0)x y a b a b+=>>的左、右焦点分别为1(,0)F c -,2(,0)F c ,点P 在椭圆上,且1230PF F ∠=︒,2160PF F ∠=︒,则椭圆的离心率等于( )A 1B 1CD -2.已知椭圆2222:1(0)x y C a b a b+=>>的左、右焦点分别是1F ,2F ,过右焦点2F 相交于A ,B 两点,若满足223AF F B =,则椭圆的离心率为( )A .35B .12C D3.在平面直角坐标系xOy 中,椭圆22221(0)x y a b a b+=>>上存在点P ,使得12||3||PF PF =,其中1F 、2F 分别为椭圆的左、右焦点,则该椭圆的离心率取值范围是( ) A .1[,1)4B .1(,1)4C .1(,1)2D .1[,1)24.已知椭圆22221(0)x y a b a b+=>>,1F ,2F 分别为椭圆的左、右焦点,若椭圆上存在一点P ,使得12||||2PF PF b -=,则该椭圆离心率的取值范围为( )A .1(0,]2B .1[.1)2C .D .5.已知平行四边形ABCD 内接于椭圆2222:1(0)x y a b a bΩ+=>>,且AB ,AD 斜率之积的取值范围为43(,)54--,则椭圆Ω的离心率的取值范围为( )A .1)2B .C .1(4D .11(,)546.在椭圆222211x y m m +=-,(1)m >的左、右焦点分别为1F ,2F ,过2F 垂直于x 轴的直线交椭圆于A ,B 两点,且83ABO S ∆=,则椭圆的离心率为( )A .13B .12C .2D .167.已知椭圆C 的两个焦点分别为1F ,2F ,以12F F 为直径的圆交椭圆于点P ,且21122PF F PF F ∠=∠,则C 的离心率为( )A .1-B .2-CD 18.椭圆2222:1(0,0)x y M a b a b+=>>的左、右焦点分别为1F ,2F ,P 为椭圆M 上任一点,且12||||PF PF ⋅最大值取值范围为2[2c ,23]c (其中222)c a b =-,则椭圆M 的离心率的取值范围是( )A .B .C .D .11[,]32圆锥曲线离心率求法专题训练(二)1.已知1F ,2F 是椭圆22221(0)x y a b a b+=>>的左、右焦点,椭圆上一点M 满足1260F MF ∠=︒,则该椭圆离心率取值范围是( )A .1(0,]2B .1[,1)2C .D .2.已知1F ,2F 分别是椭圆2222:1(0)x y C a b a b+=>>的左、右焦点,点P ,Q 是C 上位于x 轴上方的任意两点,且12//PF QF .若12||||PF QF b +,则C 的离心率的取值范围是( )A .1(0,]2B .1[,1)2C .D .3.已知椭圆2222:1(0)x y C a b a b+=>>的一个焦点为(1,0)F ,一个顶点为(2,0)A ,设(,0)B t ,点P 是椭圆C上的动点,若||||PB AB 恒成立,则t 的取值范围是( )A .1[0,]2B .1[,)2+∞C .[2-,2]D .(2,)+∞4.已知双曲线22221(0,0)y x a b a b-=>>的上下焦点分别为1F ,2F ,过1F 作双曲线渐近线的垂线1F P ,垂足为点P ,若1POF ∆2,则双曲线的离心率为( )A .2BC D5.已知双曲线22221(0,0)x y a b a b-=>>的左、右焦点分别为1F ,2F ,过右焦点作平行于其中一条渐近线的直线交双曲线于点A ,若△12AF F 的内切圆半径为3b,则双曲线的离心率为( )A B .2CD .36.设双曲线2222:1x y C a b-=的左、右焦点分别为1F 、2F ,右顶点为A ,M 为双曲线上一点,且2212MF A MAF MF A ∠=∠=∠,则双曲线的离心率为( )A .2BCD .37.已知双曲线2222:1(0,0)x y C a b a b-=>>的两条渐近线为1l ,2l ,若双曲线C 的右支上存在一点P ,使得点P 到1l ,2l 的距离之和为b ,则双曲线C 离心率的取值范围是( )A .)+∞B .C .[2,)+∞D .(1,2]8.双曲线2222:1(0,0)x y C a b a b-=>>的左顶点为A ,右焦点为F ,过点A 的直线交双曲线C 于另一点B ,当BF AF ⊥时满足||2||AF BF >,则双曲线离心率e 的取值范围是( )A .12e <<B .312e <<C .322e << D .1e <<圆锥曲线离心率求法专题训练(三)1.已知椭圆22221(0)x y a b a b+=>>上一点A 关于原点的对称点为点B ,F 为其右焦点,若AF BF ⊥,设ABF α∠=,且[6πα∈,]4π,则该椭圆离心率e 的取值范围为( )A .[2B .[2,1) C .[21] D .2.椭圆22110064x y +=的焦点为1F 、2F ,椭圆上的点P 满足1260F PF ∠=︒,则△12F PF 的面积是( )A B C D .6433.已知椭圆22221(0)x y a b a b+=>>的右顶点为A ,点P 在椭圆上,O 为坐标原点,且90OPA ∠=︒,则椭圆的离心率的取值范围为( )A . B .(2 C .2 D .4.设椭圆2222:1(0)x y C a b a b+=>>的右焦点为F ,椭圆C 上的两点A 、B 关于原点对称,且满足0FA FB =,||||2||FB FA FB ,则椭圆C 的离心率的取值范围是( )A .B .1)C .1]D .1,1)5.椭圆22221(0)x y a b a b+=>>的两个焦点为1F ,2F ,若P 为椭圆上一点,且12||3||PF PF =,则该椭圆离心率的取值范围为( )A .(0,1]3 B .1[3,1) C .(0,1]2 D .1[2,1)6.设椭圆2222:1(0)x y E a b a b+=>>的一个焦点为(1,0)F ,点(1,1)A -为椭圆E 内一点,若椭圆E 上存在一点P ,使得||||9PA PF +=,则椭圆E 的离心率的取值范围是( ) A .1[,1)2B .11[,]32C .11[,]54D .12[,]237.已知椭圆2222:1(0)x y C a b a b +=>>的右焦点为(,0)F c ,上顶点为(0,)A b ,直线2a x c=上存在一点P 满足FP AP FA AP =-,则椭圆的离心率的取值范围为( )A .1[,1)2B .C .D .8.椭圆2221x y a +=上存在一点P ,使得它对两个焦点1F ,2F 的张角122F PF π∠=,则该椭圆的离心率的取值范围是( )A .(0B .,1)C .(0,1]2D .1[2,1)圆锥曲线离心率求法专题训练(四)1.设椭圆方程为22221(0)x y a b a b+=>>,焦距为2c ,(2,0)A c -,(2,0)B c ,如果椭圆上存在一点P ,使得AP BP ⊥,则离心率的取值范围为( )A .1)2B .4)5C .D .2.设椭圆22221(0)x y a b a b+=>>的两焦点为1F 、2F ,若椭圆上存在一点Q ,使12120FQF ∠=︒,椭圆离心率e 的取值范围为( )A 1e <B 1e <<C .603e< D .112e <<3.已知椭圆22221(0)x y a b a b+=>>的左,右焦点分别为1F ,2F ,若椭圆上存在点P ,使得12PF PF ⊥,则椭圆离心率的取值范围是( )A .B .C .D .4.已知点1F ,2F 为椭圆22221(0)x y a b a b+=>>的左右焦点,若椭圆上存在点P 使得12||2||PF PF =,则此椭圆的离心率的取值范围是( )A .1(0,)3 B .(0,1]2 C .1(3,1]2D .1[3,1)5.已知椭圆22221(0)x y a b a b+=>>的两个焦点分别为1F ,2F ,若椭圆上存在点P 使得12F PF ∠是钝角,则椭圆离心率的取值范围是( )A . B . C .1(0,)2D .1(,1)26.已知椭圆22221(0)x y a b a b +=>>的左、右焦点分别为1F ,2F ,且12||2F F c =,若椭圆上存在点M 使得1221sin sin a cMF F MF F =∠∠,则该椭圆离心率的取值范围为( )A .1)B .1)C .D .1,1)7.已知椭圆的左、右焦点为1F 、2F ,若椭圆上存在点P 使1260F PF ∠=︒,则椭圆的离心率的取值范围为()A .,1)B .(0C .1[2,1)D .(0,1]28.设1F ,2F 为椭圆的两个焦点,若椭圆上存在点P 满足12120F PF ∠=︒,则椭圆的离心率的取值范围是( )A . B . C . D .圆锥曲线离心率求法专题训练(五)1.已知椭圆:22221(,0)x y a b a b+=>和圆222:O x y b +=,过椭圆上一点P 引圆O 的两条切线,切点分别为A ,B .若椭圆上存在点P ,使得0PA PB =,则椭圆离心率e 的取值范围是( )A .1[2,1)B .(0C.,1) D .1[22.若双曲线22221(0,0)x y a b a b-=>>的两个焦点为1F ,2F ,若双曲线上存在一点P ,满足12||3||PF PF =,则该双曲线的离心率的取值范围是( ) A .12e << B .12eC .12e <D .12e <3.设椭圆22221x y a b+=的左、右焦点分别是1F ,2F ,如果在椭圆上存在一点p ,使12F PF ∠为钝角,则椭圆离心率的取值范围是 .4.已知双曲线22221(0,0)x y a b a b-=>>的左、右焦点分别为1(,0)F c -,2(,0)F c ,若双曲线上存在一点P 使21||||PF aPF c=,则该双曲线的离心率的取值范围是 .5.已知1F 、2F 分别为双曲线22221(0,0)xy a b ab-=>>的左、右焦点,若双曲线左支上存在一点P 使得221||8||PF a PF =,则双曲线的离心率的取值范围是 .圆锥曲线离心率求法专题训练(一)1.(2021秋•昌邑区校级期中)已知椭圆22221(0)x y a b a b+=>>的左、右焦点分别为1(,0)F c -,2(,0)F c ,点P 在椭圆上,且1230PF F ∠=︒,2160PF F ∠=︒,则椭圆的离心率等于( )A1B1CD-解:1230PF F ∠=︒,2160PF F ∠=︒,12||2F F c =,∴△12PF F 是直角三角形,2||PF c =,1||PF =,由椭圆的定义可得,12||||2PF PF a +=,∴2c a +=,∴1c e a ==.故选:B . 2.(2021秋•平城区校级月考)已知椭圆2222:1(0)x y C a b a b+=>>的左、右焦点分别是1F ,2F ,过右焦点2F的直线与椭圆相交于A ,B 两点,若满足223AF F B =,则椭圆的离心率为( ) A .35B .12C.2D解:设直线方程为x y c +,设1(A x ,1)y ,2(B x ,2)y ,与椭圆方程联立得222241()02a b y cy b +-=,12222y y a b+=+4122212b y y a b =-+①223AF F B =,1(c x ∴-,12)3(y x c -=-,2)y ,得123y y =-②,由①②联立可得,22213242a b c +=,即22222323c a b a c =+=-,得2243c a =,椭圆的离心率c e a ==D . 3.(2021秋•青羊区校级月考)在平面直角坐标系xOy 中,椭圆22221(0)x y a b a b+=>>上存在点P ,使得12||3||PF PF =,其中1F 、2F 分别为椭圆的左、右焦点,则该椭圆的离心率取值范围是( )A .1[,1)4B .1(,1)4C .1(,1)2D .1[,1)2解:12||3||PF PF =,又点P 在椭圆上,∴由椭圆的定义可得,12||||2PF PF a +=, 2||2a PF ∴=,点P 在椭圆上,2||PF a c ∴-,∴2a a c -,即12ce a=, 又1e <,∴112e <,故椭圆的离心率取值范围是1[,1)2.故选:D . 4.(2021秋•五华区校级月考)已知椭圆22221(0)x y a b a b+=>>,1F ,2F 分别为椭圆的左、右焦点,若椭圆上存在一点P ,使得12||||2PF PF b -=,则该椭圆离心率的取值范围为( )A .1(0,]2B .1[.1)2C. D. 解:由题意可得122||||2c PF PF c --,由题意可得22b c ,而222b a c =-,c e a=, 所以可得:22e,而(0,1)e ∈,故选:D . 5.(2021春•河南期中)已知平行四边形ABCD 内接于椭圆2222:1(0)x y a b a bΩ+=>>,且AB ,AD 斜率之积的取值范围为43(,)54--,则椭圆Ω的离心率的取值范围为( )A.1)2B. C.1(4D .11(,)54解:设1(A x ,1)y ,2(B x ,2)y ,由平行四边形对角线互相平分可得A 与C ,B 与D 关于原点对称, 所以可得2(D x -,2)y -,所以2221121222211212AB ADy y y y y y k k x x x x x x -+-⋅=⋅=-+-, 将A ,B 的坐标代入可得22112222222211x y a b x y a b ⎧+=⎪⎪⎨⎪+=⎪⎩相减可得22221212220x x y y a b --+=, 可得2221222212y y b x x a -=--,由题意可得:224354b a -<-<-,即223445b a <<, 可得:2234145c a <-<,解得:c e a =∈,1)2,故选:A .6.(2021秋•洛南县校级月考)在椭圆222211x y m m +=-,(1)m >的左、右焦点分别为1F ,2F ,过2F 垂直于x 轴的直线交椭圆于A ,B 两点,且83ABO S ∆=,则椭圆的离心率为( )A .13B .12CD .16解:由椭圆的方程可得22a m =,221b m =-,所以2221c a b =-=,可得1c =,设A 的坐标为0(,)c y ,则220221y c a b +=,所以20||b y a =,所以20182||23AOB b S c y c a ∆=⋅⋅=⋅=,可得3a =,所以离心率13c e a ==,故选:A .7.(2021•迎江区校级三模)已知椭圆C 的两个焦点分别为1F ,2F ,以12F F 为直径的圆交椭圆于点P ,且21122PF F PF F ∠=∠,则C 的离心率为( )A.1-B.2-CD1解:在△12F PF 中,1290F PF ∠=︒,2160PF F ∠=︒设2||PF m =,则1212||2,||c F F m PF ===,又由椭圆定义可知122||||1)a PF PF m =+=则离心率212c c e a a ===,故选:D . 8.(2021•新华区校级开学)椭圆2222:1(0,0)x y M a b a b+=>>的左、右焦点分别为1F ,2F ,P 为椭圆M 上任一点,且12||||PF PF ⋅最大值取值范围为2[2c ,23]c (其中222)c a b =-,则椭圆M 的离心率的取值范围是( )A .2B .[2C .D .11[,]32解:由题意的定义可得:12||||2PF PF a +=, 再由均值不等式可得:2221212||||2||||()()22PF PF aPF PF a +⋅==,12||||PF PF ⋅的最大值为2a ,由题意可得22223c a c 可得21132e,解得22e ,故选:A . 圆锥曲线离心率求法专题训练(二)1.(2021•安徽开学)已知1F ,2F 是椭圆22221(0)x y a b a b+=>>的左、右焦点,椭圆上一点M 满足1260F MF ∠=︒,则该椭圆离心率取值范围是( )A .1(0,]2B .1[,1)2C .D . 解:设11||MF r =,22||MF r =,由余弦定理得:222121212||||||2||||cos60F F MF MF MF MF =+-︒,∴22212124r r r r c +-=,又122r r a +=,即222121224r r r r a ++=,解得222212483a c r r ++=,2212443a c r r -=,2212122r r r r +,∴2222488833a c a c +-, 得224c a ,01e <<,∴1[,1)2e ∈.故选:B .2.(2021秋•河北月考)已知1F ,2F 分别是椭圆2222:1(0)x y C a b a b+=>>的左、右焦点,点P ,Q 是C 上位于x 轴上方的任意两点,且12//PF QF .若12||||PF QF b +,则C 的离心率的取值范围是( )A .1(0,]2B .1[,1)2C .D . 解:如图,延长1PF ,交椭圆C 于M ,根据椭圆的对称性可知,21||||QF F M =,则1211||||||||||PF QF PF MF PM +=+=,因为焦点弦||PM 的最小值为22b a ,由题意可知,22b b a ,所以12b a ,则2302e <=.所以C 的离心率的取值范围.故选:C .3.(2021春•泗县校级期末)已知椭圆2222:1(0)x yC a b a b+=>>的一个焦点为(1,0)F ,一个顶点为(2,0)A ,设(,0)B t ,点P 是椭圆C 上的动点,若||||PB AB 恒成立,则t 的取值范围是( )A .1[0,]2B .1[,)2+∞C .[2-,2]D .(2,)+∞解:由已知可得1c =,2a =,则2223b a c =-=,所以22143x y +=,设0(P x ,0)y ,则2200143x y +=,所以220003(22)4x y x =--,若||||PB AB 恒成立,则||2||2PB AB 恒成立,所以200()2(2)2x t y t -+-,整理可得000(2)(2)(2)8x x t x -+-,当02x =时,不等式恒成立,当022x -<,不等式可化为028x t+恒成立,因为021()82max x +=,所以12t , 综上,t 的取值范围是1[2,)+∞.故选:B .4.(2021秋•南充月考)已知双曲线22221(0,0)y x a b a b-=>>的上下焦点分别为1F ,2F ,过1F 作双曲线渐近线的垂线1F P ,垂足为点P ,若1POF ∆23,则双曲线的离心率为( ) A .2B 3C 39D 23解:焦点1(0,)F c ,设曲线的渐近线的方程为ay x b=,因为1F P OP ⊥, 所以直线1F P 的方程为b y c x a -=-,即a y x c b =+,联立b y x c aa y xb ⎧=-+⎪⎪⎨⎪=⎪⎩,解得ab x c =,所以121322OPF ab ab Sc c =⋅⋅=,所以3b a =2222232311()3c c b e a a a ===+=+, 故选:D .5.(2021秋•许昌月考)已知双曲线22221(0,0)x y a b a b-=>>的左、右焦点分别为1F ,2F ,过右焦点作平行于其中一条渐近线的直线交双曲线于点A ,若△12AF F 的内切圆半径为3b,则双曲线的离心率为( )A .3B .2C .5D .3解:设双曲线的左、右焦点,1(,0)F c -,2(,0)F c ,设双曲线的一条渐近线方程为by x a=, 可得直线2AF 的方程()by x c a =-,联立双曲线22221(0)x y b a a b -=>>,可得22(2c a A c +,22())2b a c ac -,设1||AF m =,2||AF n =,由三角形的面积的等积法可得,2211()(2)22322b b c a m n c c ac-⋅++=⋅⋅,化简可得2332c m n a c a+=--①,由双曲线的定义可得2m n a -=②,在三角形12AF F 中,22()sin 2b c a n ac θ-=,(θ为直线2AF 的倾斜角),由tan b a θ=,22sin cos 1θθ+=,可得22sin b b c a bθ==+,可得222c a n a -=③, 由①②③化简可得2220c ac a --=,()(2)0c a c a +-=,所以c a =-(舍),2c a =,所以离心率2ce a==, 故选:B .6.(2021秋•南宁月考)设双曲线2222:1x y C a b-=的左、右焦点分别为1F 、2F ,右顶点为A ,M 为双曲线上一点,且2212MF A MAF MF A ∠=∠=∠,则双曲线的离心率为( ) A .2BCD .3解:因为22MF A MAF ∠=∠,所以2||||AM MF =+,故M 在2AF 中垂线上,则M 在曲线右支上, 所以21112MAF MF A AMF MF A ∠=∠+∠=∠,所以11MF A AMF ∠=∠,所以1||||AF AM =, 所以12||||AF MF =,(,0)A a ,2(,0)F c ,故2M a cx +=,22||M MF c a a x c=-, 所以22||()2c a c a MF a c +=⋅-,1||AF c a =+,所以2()2c a c a c a a c+⋅-=+,即22ac c a c a a +-=+,即2242ac c a ac +=+,所以2()42c c c a a a+=+⋅,即240e e --=,所以e =1e >,所以e =B . 7.(2021•浙江开学)已知双曲线2222:1(0,0)x y C a b a b-=>>的两条渐近线为1l ,2l ,若双曲线C 的右支上存在一点P ,使得点P 到1l ,2l 的距离之和为b ,则双曲线C 离心率的取值范围是( ) A.)+∞B.C .[2,)+∞D .(1,2]解:由题意可得直线1l ,2l 的方程分别为:0bx ay +=,0bx ay -=,设0(P x ,0)y ,则2200221x y a b-=,所以22222200b x a y a b -=,即220000()()bx ay bx ay a b +-=, 所以220000a b bx ay bx ay +=-,设P 到直线1l ,2l 的距离分别为1d ,2d,则001||bx ay d c +==, 同理可得:002||bx ay d c-=, 由题意两点22002200000012||||||||22a b bx ay bx ay bx ay bx ay a b abd d c cc c +-++--+===, 当且仅当22200()bx ay a b -=,即00bx ay ab -=±,时取等号,由题意可得2ab b c ,所以可得2ca ,故选:C .8.(2021秋•恩施州月考)双曲线2222:1(0,0)x y C a b a b-=>>的左顶点为A ,右焦点为F ,过点A 的直线交双曲线C 于另一点B ,当BF AF ⊥时满足||2||AF BF >,则双曲线离心率e 的取值范围是( )A .12e <<B .312e <<C .322e << D .3312e +<<解:如图,(,0)F c ,把x c =代入22221x y a b -=,得2b y a =±,不妨设B 在第一象限,则2(,)b B c a ,由题意可得22b a c a +>,即2222()a ac c a +>-,可得2230e e --<,解得:312e -<<.又1e >,∴双曲线离心率e 的取值范围是312e <<.故选:B .圆锥曲线离心率求法专题训练(三)1.(2021•江西模拟)已知椭圆22221(0)x y a b a b+=>>上一点A 关于原点的对称点为点B ,F 为其右焦点,若AF BF ⊥,设ABF α∠=,且[6πα∈,]4π,则该椭圆离心率e 的取值范围为( )A .2[3B .2[,1) C .2[31] D .3[6 解:由已知,点B 和点A 关于原点对称,则点B 也在椭圆上,设椭圆的左焦点为1F ,则根据椭圆定义:1||||2AF AF a +=,根据椭圆对称性可知:1||||AF BF =,因此||||2AF BF a +=①;因为AF BF ⊥,则在Rt ABF ∆中,O 为斜边AB 中点,则||2||2AB OF c ==,那么||2sin AF c α=②,||2cos BF c α=③;将②、③代入①得,2sin 2cos 2c c a αα+=,则离心率11sin cos 2)4c e a πααα===++,由[6πα∈,]4π,5[412ππα+∈,]2π,由562sin 12π+62sin()[4πα++∈1],则2[e ∈31],故选:C .2.(2020秋•潞州区校级期末)椭圆22110064x y +=的焦点为1F 、2F ,椭圆上的点P 满足1260F PF ∠=︒,则△12F PF 的面积是( )A 643B 913C 163D .643 解:椭圆22110064x y +=的焦点为1F 、2F ,椭圆上的点P 满足1260F PF ∠=︒,∴由椭圆定义得:12||||20PF PF +=,221212||||2||||400PF PF PF PF ∴++=,① 由余弦定理得:22121212||||2||||cos 436PF PF PF PF F PF +-∠=⨯,② 联立①②,得:12256||||3PF PF =,∴△12F PF 的面积是12112563643||||sin 60223S PF PF =︒=⨯=故选:A .3.(2020秋•尖山区校级月考)已知椭圆22221(0)x y a b a b+=>>的右顶点为A ,点P 在椭圆上,O 为坐标原点,且90OPA ∠=︒,则椭圆的离心率的取值范围为( ) A .3(B .2(C .2D .3 解:设(,)P x y ,90OPA ∠=︒,∴点P 在以OA 为直径的圆上.该圆为:22()(2a x y -+=2)2a,化为220x ax y -+=.联立椭圆方程可化为222322()0b a x a x a b -+-=,解得22P ab x c=,0x a <<,220ab a c ∴<<,化为2222c b a c >=-,212e ∴>,又10e >>21e <<.故选:B .4.(2020•镇海区校级模拟)设椭圆2222:1(0)x y C a b a b+=>>的右焦点为F ,椭圆C 上的两点A 、B 关于原点对称,且满足0FA FB =,||||2||FB FA FB ,则椭圆C 的离心率的取值范围是( )A .2[5B .5[1) C .2[31] D .[31,1)解:作出椭圆的左焦点F ',由椭圆的对称性可知,四边形AFBF '为平行四边形, 又0FA FB =,即FA FB ⊥,故平行四边形AFBF '为矩形,||||2AB FF c '∴==,设AF n '=,AF m =,则在直角三角形ABF 中,2m n a +=,2224m n c +=,① 得22mn b =,②①÷②得222m n c n m b +=,令mt n=,得2212c t t b +=,又由||||2||FB FA FB ,得[1m t n =∈,2],2212[2c t t b ∴+=∈,5]2,即22[1c b ∈,5]4即22514c b ,得22415b c , 即222415a c c -,即224115a c -,则22925a c ,即221529c a ,得1529e 得2523e 则椭圆的离心率的取值范围是2[2,5]3,故选:A .5.(2020•永康市模拟)椭圆22221(0)x y a b a b+=>>的两个焦点为1F ,2F ,若P 为椭圆上一点,且12||3||PF PF =,则该椭圆离心率的取值范围为( )A .(0,1]3B .1[3,1)C .(0,1]2D .1[2,1)解:P 为椭圆22221(0)x y a b a b+=>>上一点,1F ,2F 为椭圆焦点,且12||3||PF PF =,可得12||||2PF PF a +=,13||2PF a a c =+,12e ∴.∴椭圆离心率的范围是1[2,1)故选:D .6.(2018•恩施州一模)设椭圆2222:1(0)x y E a b a b+=>>的一个焦点为(1,0)F ,点(1,1)A -为椭圆E 内一点,若椭圆E 上存在一点P ,使得||||9PA PF +=,则椭圆E 的离心率的取值范围是( ) A .1[,1)2B .11[,]32C .11[,]54D .12[,]23解:记椭圆的左焦点为1(1,0)F -,则1||1AF =,11||||||PF PA AF +,112||||||||||1910a PF PF PA AF PF ∴=++++=,即5a ;11||||||PF PA AF -,112||||||||||918a PF PF PA AF PF ∴=+-+-=,即4a ,45a ∴,∴11[,]54c a ∈故选:C .7.(2020秋•安顺期末)已知椭圆2222:1(0)x y C a b a b +=>>的右焦点为(,0)F c ,上顶点为(0,)A b ,直线2a x c=上存在一点P 满足FP AP FA AP =-,则椭圆的离心率的取值范围为( )A .1[,1)2B .2[C .51[-D .2] 解:设2(a P c ,)y ,由FP AP FA AP =-,可得()0FP FA AP +=,则2(a FP FA c c+=-,)(y c +-,2)(2a b c c =-,)y b +,2(a AP c =,)y b -,所以由()0FP FA AP +=,可得:22(2)()()0a a c y b y b c c -++-=,可得:4222220a a b y c--=-,整理可得:4222222()0a a c a c c ---,即42310e e -+,235352e -+,即51512e-+,由于椭圆的离心率小于1511e -<, 故选:C .8.(2012•西安一模)椭圆2221x y a +=上存在一点P ,使得它对两个焦点1F ,2F 的张角122F PF π∠=,则该椭圆的离心率的取值范围是( ) A .(02B .2[,1) C .(0,1]2D .1[2,1)解:椭圆方程为:2220x y a +=,21b ∴=,可得221c a =-,21c a =-椭圆的离心率为21a e -=又椭圆上一点P ,使得角122F PF π∠=,∴设点P 的坐标为0(x ,0)y ,结合1(,0)F c -,2(,0)F c ,可得10(PF c x =--,0)y -,20(PF c x =-,0)y -,∴22212000PF PF x c y =-+=⋯① 0(P x ,0)y 在椭圆2221x y a+=上,∴220021x y a =-,代入①可得22200210x x c a -+-=将221c a =-代入,得22200220x x a a --+=,所以4220221a a x a -=-,0a x a -∴220x a ,即4222201a a a a --,解之得22a ∴椭圆的离心率221121[a e a -=-,1).圆锥曲线离心率求法专题训练(四)1.(2015秋•南关区校级期末)设椭圆方程为22221(0)x y a b a b+=>>,焦距为2c ,(2,0)A c -,(2,0)B c ,如果椭圆上存在一点P ,使得AP BP ⊥,则离心率的取值范围为( )A .1)2B .4)5C .D . 解:椭圆方程为22221(0)x y a b a b+=>>,焦距为2c ,(2,0)A c -,(2,0)B c ,椭圆上存在一点P ,使得AP BP ⊥,∴设(cos ,sin )P a b αα,则(cos 2,sin )AP a c b αα=+,(cos 2,sin )BP a c b αα=-,AP BP ⊥,∴22222cos 4sin 0AP BP a c b αα=-+=,22222222444c a cos b sin e a a θθ+∴==222222sin 4a cos a sin c a θθθ+-=22224a c sin a θ-=,02θπ<<,∴当0θ→时,12e =;当2πθ=时,e =,∴离心率的取值范围为1)2.2.(2013秋•安吉县校级月考)设椭圆22221(0)x y a b a b+=>>的两焦点为1F 、2F ,若椭圆上存在一点Q ,使12120FQF ∠=︒,椭圆离心率e 的取值范围为( )A 1e <B 1e <<C .603e< D .112e << 解:椭圆的焦点在x 轴,设椭圆的上顶点为A ,椭圆上存在一点Q ,12120FQF ∠=︒,160F AO ∴∠︒, 1tan 3c F AO b∴∠=,∴33b c∴2222222113b a c a c c c -==-,故2234c a ,32ce a ∴=,又1e <.∴1e <.故选:A . 3.(2020•池州模拟)已知椭圆22221(0)x y a b a b+=>>的左,右焦点分别为1F ,2F ,若椭圆上存在点P ,使得12PF PF ⊥,则椭圆离心率的取值范围是( )A .B .C .D . 解:由12PF PF ⊥,知△12F PF 是直角三角形,||OP c b ∴=,即222c a c -,2ac ∴,ce a=,01e <<,∴1e <,故选:C .4.(2015秋•晋安区校级期末)已知点1F ,2F 为椭圆22221(0)x y a b a b+=>>的左右焦点,若椭圆上存在点P使得12||2||PF PF =,则此椭圆的离心率的取值范围是( ) A .1(0,)3B .(0,1]2C .1(3,1]2D .1[3,1)解:由题意设12||2||2PF PF x ==,则22x x a +=,解得23a x =,故14||3a PF =,22||3a PF =,当P 与两焦点1F ,2F 能构成三角形时,由余弦定理可得222121644242cos 9933a a a ac F PF =+-⨯⨯⨯∠,由12cos (1,1)F PF ∠∈-可得222212201644cos (999a a a c F PF =-∠∈,236)9a ,即222436499a a c <<,∴22119c a <<,即2119e <<,∴113e <<; 当P 与两焦点1F ,2F 共线时,可得2()a c a c +=-,解得13c e a ==;综上可得此椭圆的离心率的取值范围为1[3,1)故选:D .5.(2015秋•西城区期末)已知椭圆22221(0)x y a b a b+=>>的两个焦点分别为1F ,2F ,若椭圆上存在点P 使得12F PF ∠是钝角,则椭圆离心率的取值范围是( )A .2(0,)2 B .2(,1)2 C .1(0,)2D .1(,1)2解:如图,当动点P 在椭圆长轴端点处沿椭圆弧向短轴端点运动时,P 对两个焦点的张角12F PF ∠渐渐增大,当且仅当P 点位于短轴端点0P 处时,张角12F PF ∠达到最大值.由此可得:椭圆上存在点P 使得12F PF ∠是钝角,∴△012P F F 中,10290F P F ∠>︒,Rt ∴△02P OF 中,0245OP F ∠>︒, 所以02P O OF <,即b c <,222a c c ∴-<,可得222a c <,22e ∴>,01e <<,∴212e <<.故选:B .6.(2018秋•城厢区校级期末)已知椭圆22221(0)x y a b a b+=>>的左、右焦点分别为1F ,2F ,且12||2F F c =,若椭圆上存在点M 使得1221sin sin a cMF F MF F =∠∠,则该椭圆离心率的取值范围为( ) A .(0,21)- B .2(2,1) C .2(0,)2D .(21-,1)解:在△12MF F 中,由正弦定理可得,122112||||sin sin MF MF MF F MF F =∠∠, 又1221sin sin a cMF F MF F =∠∠,即有1222||2||||||MF a MF c a MF MF -==,解得222||a MF a c=+, 由于2||a c MF a c -<<+,即有22()()2()a c a c a a c -+<<+,即为2222a c a -<,显然成立; 又2a a c <+,即有(21)c a >-,则离心率(21ce a=∈-,1).故选:D .7.已知椭圆的左、右焦点为1F 、2F ,若椭圆上存在点P 使1260F PF ∠=︒,则椭圆的离心率的取值范围为()A .3[2,1) B .(0,3]2 C .1[2,1) D .(0,1]2解:如图,当动点P 在椭圆长轴端点处沿椭圆弧向短轴端点运动时,P 对两个焦点的张角12F PF ∠渐渐增大,当且仅当P 点位于短轴端点0P 处时,张角12F PF ∠达到最大值.存在点P 为椭圆上一点, 使得1260F PF ∠=︒,∴△012P F F 中,10260F P F ∠︒, Rt ∴△02P OF 中,0230OP F ∠︒,所以023P OOF ,即3b c ,2223a c c ∴-,可得224a c ,∴12ca ,01e <<,∴112e <.故选:C . 8.(2015•怀化二模)设1F ,2F 为椭圆的两个焦点,若椭圆上存在点P 满足12120F PF ∠=︒,则椭圆的离心率的取值范围是( ) A .3[,1)2B .3(,1)2C .3(0,)2D .3(0,]2解:1(,0)F c -,2(,0)F c ,0c >,设1(P x ,1)y ,则11||PF a ex =+,21||PF a ex =-.在△12PF F 中,由余弦定理得2221111()()41cos12022()()a ex a ex c a ex a ex ++--︒=-=+-,解得2221243c a x e -=.21(0x ∈,2]a ,2222430c a a e -∴<,即22430c a -.且21e <32c e a ∴=. 故椭圆离心率的取范围是3[,1)2e ∈.故选:A .圆锥曲线离心率求法专题训练(五)1.(2013•天心区校级二模)已知椭圆:22221(,0)x y a b a b+=>和圆222:O x y b +=,过椭圆上一点P 引圆O 的两条切线,切点分别为A ,B .若椭圆上存在点P ,使得0PA PB =,则椭圆离心率e 的取值范围是( )A .1[2,1) B .(0,]2 C.[2,1) D .1[2,2解:由0PA PB =,可得90APB ∠=︒,利用圆的性质,可得||OP =,222||2OP b a ∴=,222a c ∴ 212e ∴,01e <<∴1e <故选:C .2.(2017秋•海淀区校级期末)若双曲线22221(0,0)x y a b a b -=>>的两个焦点为1F ,2F ,若双曲线上存在一点P ,满足12||3||PF PF =,则该双曲线的离心率的取值范围是( ) A .12e <<B .12eC .12e <D .12e <解根据双曲线定义可知12||||2PF PF a -=,即223||||2PF PF a -=.2||a PF ∴=,1||3PF a = 在△12PF F 中,1212||||||F F PF PF <+,224||c PF <,22||2c PF a <=,∴2ca<, 当p 为双曲线顶点时,2ca=又双曲线1e >,12e ∴<故选:C . 3.(2016秋•双台子区校级期中)设椭圆22221x y a b+=的左、右焦点分别是1F ,2F ,如果在椭圆上存在一点p ,使12F PF ∠为钝角,则椭圆离心率的取值范围是. 解:设0(P x ,0)y ,则0||x a <,又12F PF ∠为钝角,当且仅当120PF PF <有解, 即22200c x y >+有解,即22200()minc x y >+.又2222002b y b x a =-,2222220002[c x y b x b a∴+=+∈,2)a ,即2220()minx y b +=.故22c b >,222c a c >-,∴2212c a >,即e >,又01e <<,∴1e <<.故答案为:. 4.已知双曲线22221(0,0)x y a b a b-=>>的左、右焦点分别为1(,0)F c -,2(,0)F c ,若双曲线上存在一点P 使21||||PF aPF c=,则该双曲线的离心率的取值范围是1] . 解:21||||PF aPF c=,P ∴在双曲线右支,设P 点的横坐标为o x ,注意到o x a . 由双曲线第二定义得:1||o PF a ex =+,2||o PF ex a =-,则有00ex a a a ex c -=+,得()o a a c x a ec ea+=-,分子分母同时除以a ,得:2a ca e e+-,∴211ee e+-,解得121e<+.故答案为:(11].5.(2012•江苏模拟)已知1F 、2F 分别为双曲线22221(0,0)xy a b a b-=>>的左、右焦点,若双曲线左支上存在一点P 使得221||8||PF a PF =,则双曲线的离心率的取值范围是 (1,3] . 解:P 为双曲线左支上一点,12||||2PF PF a ∴-=-,21||||2PF PF a ∴=+,①又221||8||PF a PF =,②∴由①②可得,1||2PF a =,2||4PF a =.1212||||||PF PF F F ∴+,即242a a c +,∴3c a ,③ 又1122||||||PF F F PF +>,224a c a ∴+>,∴1ca>.④ 由③④可得13c a <. 故答案为:(1,3].。
圆锥曲线离心率的求解举例——椭圆的离心率椭圆离心率的定义:我们把椭圆的焦距与长轴长的比叫做椭圆的离心率,记做aca c e e ==22,则,(0<e<1).下面举例说明其求法.如图,O 为椭圆的中心,F 为焦点,A 为顶点,准线L 交OA 于B ,P 、Q 在椭圆上,PD ⊥L 于D ,QF ⊥AD 于F,设椭圆的离心率为e.证明(并记忆):①e=|PF ||PD |②e=|QF ||BF |③e=|AO ||BO |④e=|AF ||BA |⑤e=|FO ||AO |1.以O 为中心,F1,F2为两个焦点的椭圆上存在一个点M ,满足|1MF |=2|MO →|=2|2MF |,则该椭圆的离心率为( )A .33B .23C .63D .255[答案] C[解析] 过M 作x 轴的垂线,交x 轴于N 点,则N 点坐标为(2c ,0),并设|1MF |=2||=2|2MF |=2t ,根据勾股定理可知, |1|2-|1|2=|2MF |2-|2NF |2, 解得到c =62t ,而a =3t 2,则e =c a =63.故选C .2.我们把焦点相同,且离心率互为倒数的椭圆和双曲线称为一对“相关曲线”.已知1F 、2F 是一对相关曲线的焦点,P 是它们在第一象限的交点,当21PF F ∠=60°时,这一对相关曲线中双曲线的离心率是( ) A .33 B .22C .32D .21[答案] A[解析] 设椭圆的半长轴为1a ,椭圆的离心率为1e ,则1111e e ca a c =⇒=;双曲线的实半轴长为a ,双曲线的离心率为e ,e =e ca a c =⇒,a =c e .设|PF 1|=x ,|PF 2|=y ,(x>y>0),则由余弦定理得4c 2=x 2+y 2-2xycos60°=x 2+y 2-xy ,当点P 看做是椭圆上的点时,有4c 2=(x +y)2-3xy =421a -3xy , 当点P 看做是双曲线上的点时,有 4c2=(x -y)2+xy =42a +xy , 两式联立消去xy 得4c 2=21a +32a ,即4c 2=(1c e )2+3(c e )2,所以(1e1)2+3(1e )2=4,又因为1e 1=e ,所以e 2+2e 3=4,整理得e 4-4e 2+3=0,解得e 2=3,所以e =3,即331=e ,亦即椭圆的离心率为33.选A .3.如图,已知抛物线y 2=2px(p>0)的焦点恰好是椭圆22a x +22by =1(a >b >0)的右焦点F ,且这两条曲线交点的连线过点F , 则该椭圆的离心率为________.[答案] 2-1[解析] 如图,设F ′为椭圆的左焦点,椭圆与抛物线在x 轴上方的交点为A ,连接AF ′,所以|FF ′|=2c =p ,因为|AF|=p ,所以|AF ′|=2p.因为|AF ′|+|AF|=2a ,所以2a =2p +p ,所以e =ac=2-1.4.椭圆(a >b >0)的四个顶点为A 、B 、C 、D ,若四边形ABCD 的内切圆恰好过焦点,则椭圆的离心率是________. [答案]21-5 [解析] 一条边所在直线的方程是ab ay bx =+,由条件可知,圆心到该直线的距离和半径等于c,也就是:c b a ab =+-+22|00|222111c b a =+⇒22244224)215(452625301303-=-=-=⇒=+-⇒=+-⇒e e e a c a c⇒215-=e5.已知是椭圆的两个焦点,P 是椭圆上一点,若,则椭圆的离心率为________.12222=+by a x 21F F 、 75,151221=∠=∠F PF F PF[答案]36 [解析] 易得02190PF F =∠,又a PF PF 2||||21=+,c c PF 242615sin 2||01⨯-==,c c PF 242675sin 2||02⨯+==,所以,3626=⇒=e a c6.若椭圆短轴端点为满足,则椭圆的离心率为________. [答案]22 [解析] 易知222==⇒=⇒=a c e c a c b (注意:在椭圆中,,)7.已知椭圆的长轴长是短轴长的2倍,则椭圆的离心率等于________. [答案]23 [解析] 由椭圆的性质及对应有2222243(42b a c a a b a =⇒-=⇒=), 所以,离心率23=e8.已知矩形ABCD ,BC =3,则以A 、B 为焦点,且过C 、D 两点的椭圆的离心率为________.)0(,12222>>=+b a by a x P 21PF PF ⊥a c e =22222221ab a b a ac a c e -=-===[答案] 21[解析] 依题意可知22=⇒=c AB c ,又CA =5,所以,8352=+=+=CB CA a 从而,4=a ,所以这个椭圆的离心率为219.P 是椭圆+=1(a >b >0)上一点,是椭圆的左右焦点,已知椭圆的离心率为________.[答案] 13—[解析] 根据三角形内角和定理可得030=α,从而有02190=∠PF F , 在21PF F Rt ∆中,c PF c PF c F F 3,,21221===, 由椭圆的定义可知1313223-=+==⇒=+a c e a c c10.已知椭圆的焦距、短轴长、长轴长成等差数列,则椭圆的离心率是________.[答案] 53[解析] 依据题设条件有c a b +=2,又222c b a +=,从而有5303250325222=⇒=-+⇒=-+e e e c ac c (构造a ,c 的齐次式,解出e )11.设椭圆的两个焦点分别为F 1、、F 2,过F 2作椭圆长轴的垂线交椭圆于点P ,若△F 1PF 2[答案] 12—[解析] 由椭圆的性质可知,△F 1PF 2为等腰直角三角形,则有22a x 22b y 21F F 、,2,1221αα=∠=∠F PF F PF ,321α=∠PF F 11201222||||2222221-=⇒=-+⇒-=⇒=⇒=e e e c a ac ab c PF F F12.已知F 1、F 2是椭圆的两个焦点,过F 1且与椭圆长轴垂直的直线交椭圆于A 、B 两点,若△ABF 2是正三角形,则这个椭圆的离心率是________. [答案]33 [解析] 由椭圆的性质可知,△2ABF 是正三角形(等边三角形),则有330323)(322232||23||222221=⇒=-+⇒-=⇒⨯=⇒=e e e c a ac a b c AB F F13.如图,正六边形ABCDEF 的顶点A 、D 为一椭圆的两个焦点,其余四个顶点B 、C 、E 、F[答案]33 [解析] 依据平面几何中正六边形的性质有c AD F F 2||||21==所以,有c AE c c c c c AE 3||3120cos 2||20222=⇒=⋅⋅-+=依据椭圆的定义有a c c a AE ED 232||||=+⇒=+所以,13132-=+==a c e。
圆锥曲线离心率范围四种题型椭圆的离心率的范围是高考的要点,其主假如列出 a, b,c 的不等式, 从而求出离心率的范围。
此中列不等式是这类题目的要点,下边我们说以下不等式的几种方法。
一、依据圆锥曲线中所隐含的不等关系列式例 1:已知椭圆x 2y 2 1( ab 0) 的左右焦点分别是F 1 ( ,0), F 2 ( ,0)a 2b 2c c ,若椭圆上存在点 P (异于长轴的端点) ,使得 csin PF 1 F 2 a sin PF 2 F 1 ,则该椭圆的离心率的范围是 _________.c sin PF 2 F 1 PF 1 sin PF 2 F 1解: 由已知得 esin PF 1F 2 , 由正弦定理得sinPF 1F 2aPF 2 PF 12a PF 2PF 22a 2因此 ePF 2,从而 a。
PF 2c又由于 a cPF 2 a c 且 0 e 1 ,解得离心率范围是 ( 21,1) 。
变式训练 1:设椭圆x 2y 2 1(ab 0) 的两焦点为 F 1 , F 2 ,若在其右准线上存在一a 2b 2点 P ,使得线段 PF 1 的中垂线过点 F 2 ,求椭圆离心率的范围。
变式训练 2:双曲线x 2y 2 1(a 0, b 0) 的两个焦点为 F 1 , F 2 ,若 P 为其上一点, a 2b 2且 PF 1 2 PF 2 ,则双曲线离心率的取值范围。
变式训练 3:双曲线x 2y 2 1(a 0, b 0) 的两个焦点为 F 1, F 2 ,若 P 为右支上一点,a 2b 2且PF 1 4 PF 2 ,则双曲线离心率的取值范围。
二、相关存在性问题求离心率例 2:设 P 是椭圆 x2y 2 1( a b 0) 上的一点, F 1, F 2 是椭圆的左右焦点,已知a 2b 2F 1 PF 2 60o ,求椭圆离心率的范围。
剖析:要想使得存在椭圆上的一点P ,知足F 1 PF 2 60o ,也就是要求当点 P 在椭圆上运动时, ( F 1PF 2 ) min 60o ,( F 1PF 2 )max 60o 即可。