18-19 第2章 2.1 2.1.1 简单随机抽样
- 格式:ppt
- 大小:1.82 MB
- 文档页数:38
2.1.1简单随机抽样(教案)【教学目标】: 1.正确理解随机抽样的概念,会描述抽签法、随机数表法的一般步骤.2.能够根据样本的具体情况选择适当的方法进行抽样.【教学重难点】:教学重点:正确理解简单随机抽样的概念,会描述抽签法及随机数法的步骤,能灵活应用相关知识从总体中抽取样本.教学难点:简单随机抽样的概念,抽签法及随机数法的步骤.【教学过程】:情境导入:1. 总体、个体、样本、样本容量的定义总体 :在统计中所有考察对象的全体叫总体。
个体:每一个考察的对象叫 个体。
样本:从总体中抽取的一部分个体叫总体的一个样本。
样本容量:样本中个体的数目叫样本的容量。
如:从50000多名考生中随机抽取500名考生的成绩,用他们的平均成绩估计所有考生的平均成绩。
总体:50000多名考生的成绩的全体。
个体:每名考生的成绩。
样本:抽取的500名考生的成绩是总体的一个样本。
样本容量:5002.课本55P 阅读你认为在该故事中预测结果出错的原因是什么?(答:用于推断的样本来自少数富人,只能代表富人的观点,不能代表全体选民观点。
)3.假设你作为一名食品卫生工作人员,要对某食品店内的一批小包装饼干进行卫生达标检验,你准备怎样做?显然,你只能从中抽取一定数量的饼干作为检验的样本。
(为什么?)那么,应当怎样获取样本呢?新知探究:一、简单随机抽样的概念:一般地,设一个总体含有N 个个体,从中逐个不放回地抽取n 个个体作为样本(n ≤N ),如果每次抽取时总体内的各个个体被抽到的机会都相等,就把这种抽样方法叫做简单随机抽样。
【说明】简单随机抽样必须具备下列特点:(1)简单随机抽样要求被抽取的样本的总体个数N 是有限的。
(2)简单随机样本数n 小于等于样本总体的个数N 。
(3)简单随机样本是从总体中逐个抽取的。
(4)简单随机抽样是一种不放回的抽样。
(5)简单随机抽样的每个个体入样的可能性均为n/N 。
二、抽签法和随机数法:1、抽签法一般地,抽签法就是把总体中的N个个体编号,把号码写在号签上,将号签放在一个容器中,搅拌均匀后,每次从中抽取一个号签,连续抽取n次,就得到一个容量为n的样本。
2.1 随机抽样2.1.1 简单随机抽样学习目标:1.理解简单随机抽样的定义、特点及适用范围.(重点).2.掌握两种简单随机抽样的步骤,并能用简单随机抽样方法抽取样本.(难点).[自主预习·探新知]1.简单随机抽样的定义一般地,设一个总体含有N个个体,从中逐个不放回地抽取n个个体作为样本(n≤N),如果每次抽取时总体内的各个个体被抽到的机会都相等,就把这种抽样方法叫做简单随机抽样.这样抽取的样本,叫做简单随机样本.2.简单随机抽样的方法(1)抽签法:把总体中的N个个体编号,把号码写在号签上,将号签放在一个容器中,搅拌均匀后,每次从中抽取一个号签,连续抽取n次,就得到一个容量为n的样本.(2)随机数法:随机抽样中,另一个经常被采用的方法是随机数法,即利用随机数表、随机数骰子或计算机产生的随机数进行抽样.3.抽签法和随机数法的特点下是行之有效的方便快捷1.判断下列结论的正误(正确的打“√”,错误的打“×”)(1)抽签时,先抽的比较幸运.( )(2)抽签法中,“搅拌均匀”是没有必要的. ( )(3)随机数表法比抽签法好.( )[答案] (1)× (2)× (3)×2.在简单随机抽样中,某一个个体被抽中的可能性( )A.与第几次抽样有关,第一次抽中的可能性要大些B.与第几次抽样无关,每次抽中的可能性都相等C.与第几次抽样有关,最后一次抽中的可能性要大些D.每个个体被抽中的可能性无法确定B [在简单随机抽样中,每一个个体被抽中的可能性都相等,与第几次抽样无关.]3.新华中学为了了解全校302名高一学生的身高情况,从中抽取30名学生进行测量,下列说法正确的是( )A.总体是302名学生 B.个体是每1名学生C.样本是30名学生 D.样本容量是30D [本题是研究学生的身高,故总体、个体、样本数据均为学生身高,而不是学生.]4.用抽签法进行抽样有以下几个步骤:①制签;②抽签;③将签摇匀;④编号;⑤将抽取的号码对应的个体取出,组成样本.这些步骤的正确顺序为________.【导学号:49672143】④①③②⑤ [抽签法的步骤:编号、制签、摇匀、抽签、取样.][合作探究·攻重难]简单随机抽样的概念 下面的抽样方法是简单随机抽样吗?为什么?(1)从无数个个体中抽取50个个体作为样本;(2)仓库中有1万支奥运火炬,从中一次性抽取100支火炬进行质量检查;(3)小乐从玩具箱中的10件玩具中随意拿出一件玩,玩后放回,再拿出一件,连续拿出四件;(4)某连队从200名党员官兵中,挑选出50名最优秀的官兵赶赴灾区参加救灾工作;(5)一福彩彩民买30选7彩票时,从装有30个大小、形状都相同的乒乓球的盒子(不透明)中逐个无放回地摸出7个有标号的乒乓球,作为购买彩票的号码;[解] (1)总体数目不确定、不是简单随机抽样.(2)简单随机抽样要求的是“逐个抽取”本题是一次性抽取,不是简单随机抽样.(3)简单随机抽样是不放回抽样,这里的玩具玩以后又放回,再抽下一件,不是简单随机抽样.(4)从中挑出的50名官兵,是200名中最优秀的,每个个体被抽的可能性不同,不是简单随机抽样.(5)符合简单随机抽样的特点,是简单随机抽样.1.判断下面的抽样方法是否为简单随机抽样,并说明理由.(1)某班45名同学,指定个子最矮的5名同学参加学校组织的某项活动.(2)从20个零件中一次性抽出3个进行质量检查.【导学号:49672144】[解](1)不是简单随机抽样.因为指定个子最矮的5名同学,是在45名同学中特指的,不存在随机性,不是等可能抽样.(2)不是简单随机抽样.因为一次性抽取3个不是逐个抽取,不符合简单随机抽样的特征.抽签法及应用 某单位对于支援西部开发,现从报名的18名志愿者中选取6人组成志愿小组到西藏工作3年,请用抽签法设计抽样方案.[思路探究] 抽签法的步骤流程:―→―→―→―→[解] 方案如下:第一步,将18名志愿者编号,号码为:01,02,03, (18)第二步,将号码分别写在相同的纸条上,揉成团,制成号签.第三步,将得到的号签放到一个不透明的盒子中,充分搅匀.第四步,从盒子中依次取出6个号签,并记录上面的编号.第五步,与所得号码对应的志愿者就是医疗小组成员.[规律方法] 1.一个抽样试验能否用抽签法,关键看两点:一是制签是否方便;二是个体之间差异不明显.一般地,当样本容量和总体容量较小时,可用抽签法.2.应用抽签法时应注意以下几点:(1)编号时,如果已有编号可不必重新编号;(2)签要求大小、形状完全相同;(3)号签要均匀搅拌;(4)要逐一不放回的抽取.2.上海某中学从40名学生中选1人作为上海男篮啦啦队的成员,采用下面两种选法,则是抽签法的序号为________.【导学号:49672145】(1)将这40名学生从1~40进行编号,相应地制作1~40的40个号签,把这40个号签放在一个暗箱中搅匀,最后随机地从中抽取1个号签,与这个号签编号一致的学生幸运入选;(2)将39个白球与1个红球(球除颜色外,其他完全相同)混合放在一个暗箱中搅匀,让40名学生逐一从中摸取一球,摸到红球的学生成为啦啦队成员.(1) [(1)满足抽签法的特征,是抽签法;(2)不是抽签法,因为抽签法中所有的号签编号是互不相同的,而其中39个白球无法相互区分.][1.什么情况下使用随机数表法抽样?它比抽签法的优势体现在哪里?提示:当总体中个体数较多时适合用随机数表法,与抽签法相比,可以节约大量的人力和制号签的成本.2.随机数表法和抽签法都要对个体进行编号,它们的编号方法有何不同点?提示:抽签法和随机数法对个体的编号是不同的,抽签法可以利用个体已有的编号,如学生的学籍号、产品的记数编号等,也可以重新编号,例如总体个数为100,编号可以为1,2,3,…,100.随机数表法编号要看总体的个数,且所编号码数位必须相同,如总体数为100,通常为00,01,…,99.总体数大于100小于1 000,从000开始编起,然后是001,002,…. 为了检验某种药品的副作用,从编号为1,2,3,…,120的服药者中用随机数表法抽取10人作为样本,写出抽样过程.[思路探究] (1)使用药品服用者的已有编号还是再重新编号?(2)使用随机数表时,第一个数字怎样确定?[解] 第一步,将120名服药者重新进行编号,分别为001,002,003,…,120;第二步,在随机数表(教材P103)中任选一数作为初始数,如选第9行第7列的数3;第三步,从选定的数3开始向右读,每次读取三位,凡不在001~120中的数跳过去不读,前面已经读过的也跳过去不读,依次可得到074,100,094,052,080,003,105,107,083,092;第四步,以上这10个号码所对应的服药者即是要抽取的对象.母题探究:1.(变条件)如果本例改为“从编号1,2,3,…,100的服药者中用随机数表法抽取10人作为样本”.请写出抽样过程.[解] 第一步,将100名服药者重新编号,分别为00,01,02, (99)第二步,在随机数表(教材P103)中任选一数作为初始数,如选第9行第7列的数3.第三步,从选定的数3开始向右读,每次读取两位数,凡在00~99中的读取出来,前面已读数字跳过不读,依次可得,34,29,78,64,56,07,82,52,42,44.第四步,以上10个号码对应的服药者即是要抽取的对象.2.(设问)本题其他条件不变,若要用抽签法取样,则:(1)要不要对服药者进行重新编号?(2)所选出的10人是不是相同的?[解] (1)若运用抽签法取样,对已有编号的个体不用再重新进行编号.(2)用抽签法选出的10人与用随机数表法选出的10人不一定相同,其实既使用相同的方法抽样,不同两次的抽取结果也不一定完全相同.1.抽签法中确保样本代表性的关键是( )【导学号:49672146】A.抽签 B.搅拌均匀C.逐一抽取 D.抽取后不放回B [逐一抽取,抽取不放回是简单随机抽样的特点,但不是确保样本代表性的关键,一次抽取与有放回抽取(个体被重复取出可不算再放回)也不影响样本的代表性,抽签也一样.]2.某班50名学生中有30名男生,20名女生,用简单随机抽样抽取1名学生参加某项活动,则抽到女生的可能性为( )A.0.4 B.0.5C.0.6 D.A [在简单随机抽样中,每个个体被抽到机会相等,即=0.4.]3.用随机数表法进行抽样有以下几个步骤:①将总体中的个体编号;②获取样本号码;③选定开始的数字;④选定读数的方向.这些步骤的先后顺序应为( )【导学号:49672147】A.①②③④ B.①③④②C.③②①④ D.④③①②B [由随机数表法的步骤知选B.]4.在“世界读书日”前夕,为了了解某地5 000名居民某天的阅读时间,从中抽取了200名居民的阅读时间进行统计分析.在这个问题中,5 000名居民的阅读时间的全体是( )A.总体B.个体C.样本的容量D.从总体中抽取的一个样本A [5 000名居民的阅读时间的全体是总体,每位居民的阅读时间是个体,200是样本容量.]5.某校高一年级有43名足球运动员,要从中抽出5人抽查学习负担情况.用抽签法设计一个抽样方案.【导学号:49672148】[解] 第一步:编号,把43名运动员编号为1~43;第二步:制签,做好大小、形状相同的号签,分别写上这43个数;第三步:搅拌,将这些号签放在暗箱中,进行均匀搅拌;第四步:抽签入样,每次从中抽取一个,连续抽取5次(不放回抽取),从而得到容量为5的入选样本.。