同济大学高等数学(B)下08-09试卷
- 格式:doc
- 大小:60.50 KB
- 文档页数:3
大学高等数学(下册)考试试卷(一)一、填空题(每小题3分,共计24分)1、z =)0()(log 22>+a y x a 的定义域为D=。
2、二重积分⎰⎰≤++1||||22)ln(y x dxdy y x 的符号为。
3、由曲线x y ln =及直线1+=+e y x ,1=y 所围图形的面积用二重积分表示为,其值为。
4、设曲线L 的参数方程表示为),()()(βαψϕ≤≤⎩⎨⎧==x t y t x 则弧长元素=ds 。
5、设曲面∑为922=+y x 介于0=z及3=z 间的部分的外侧,则=++⎰⎰∑ds y x )122(。
6、微分方程x y x y dx dy tan +=的通解为。
7、方程04)4(=-y y 的通解为。
8、级数∑∞=+1)1(1n n n 的和为。
二、选择题(每小题2分,共计16分)1、二元函数),(y x f z =在),(00y x 处可微的充分条件是()(A )),(y x f 在),(00y x 处连续;(B )),(y x f x ',),(y x f y '在),(00y x 的某邻域内存在;(C )y y x f x y x f z y x ∆'-∆'-∆),(),(0000当0)()(22→∆+∆y x 时,是无穷小; (D )0)()(),(),(lim 2200000=∆+∆∆'-∆'-∆→∆→∆y x yy x f x y x f z y x y x 。
2、设),()(x y xf y x yf u +=其中f 具有二阶连续导数,则2222y u y x u x ∂∂+∂∂等于() (A )y x +;(B )x ;(C)y ;(D)0。
3、设Ω:,0,1222≥≤++z z y x 则三重积分⎰⎰⎰Ω=zdV I等于() (A )4⎰⎰⎰2020103cos sin ππϕϕϕθdr r d d ;(B )⎰⎰⎰200102sin ππϕϕθdr r d d ;(C )⎰⎰⎰ππϕϕϕθ2020103cos sin dr r d d ;(D )⎰⎰⎰ππϕϕϕθ200103cos sin dr r d d 。
同济大学2009-2010学年第一学期高等数学B(上)期终试卷一. 填空题(4'416'⨯=)1. 设函数()f x 具有二阶导数, 且1'0,'dx y dy y ≠=, 则223"'d x y dyy =-.2. 设函数()f u 为可导函数, 且'(0)0f ≠, 由参数方程3(sin 2)(1)tx f t y f e π=-⎧⎨=-⎩所确定的函数的 导数32t dydx ==.3. 极限111lim()ln 212n n n n n→∞+++=+++L .4. 微分方程22"5'6sin xy y y xex -++=+的特解形式为(不需确定系数)2()cos2sin 2x x Ax B e C x D x E-++++.二. 选择题(4'416'⨯=) 5. 设函数sin ()bx xf x a e=+在(,)-∞+∞内连续, 且lim ()0x f x →-∞=, 则常数,a b 满足: [D ]. ()0,0A a b <>; ()0,0B a b ><; ()0,0C a b ≤>; ()0,0D a b ≥<6. 曲线1ln(1)x y e x-=++, [D ] ()A 没有水平渐近线但有铅直渐近线; ()B 没有铅直渐近线但有水平渐近线; ()C 没有水平和铅直渐近线; ()D 有水平和铅直渐近线 7. 将0x +→时的无穷小量2sin ,,(1)xx t tdt tdt e dt αβγ===-⎰⎰排列起来, 使得后面的是前一个的高阶无穷小, 则正确的排列顺序是: [C ] (),,A αβγ; (),,B αγβ; (),,C βαγ; (),,D γβα 8. 设函数()f x 在点0x =的某个邻域内有定义, 且20()(0)0,lim2x f x f x→==-, 则在该点处 ()f x : [C ] ()A 不可导; ()B 可导且'(0)0f ≠; ()C 取得极大值; ()D 取得极小值.三. 解答题(7'428'⨯=) 9. 求极限30sin sin(sin )limx x x x →-, [30sin 1lim 6t t t t →-==]10. 计算定积分24tan sec x x xdx π⎰[224400111(tan )(sec 1)28242xd x x dx ππππ==--=-⎰⎰]11. 计算反常积分221arctan (1)xdx x x +∞+⎰[2212210111113()arctan arctan ()[arctan ]ln 2124232xdx xd x x x x ππ+∞+∞+∞=-=--=+++⎰⎰] 12. 试求微分方程221(1)dy y x y dx x+=-的通解[221111()'()1(ln )2x x x x c y x y y -=-⇒=-+]四. (8')求曲线ln y x =上的点, 使此曲线在该点的曲率半径为最小.[312222221(1)(1)(21)1(0)'(ln 2)22x x x R x R K x x ++-==>⇒=⇒-] 五. (8')设不定积分n n I =,(1)计算01,I I ; (2)利用变换sin x t =, 建立(2,3,4,)n I n =L 的递推公式[(1)01arcsin ,I x c I =+=[(2)211n n n n I I x c n n---=-] 六. (8')设函数(),()f x g x 在[,]a b 上连续, 且在[,]a b 上()0g x >, 证明至少存在一点[,]a b ξ∈, 使()()()()babaf xg x dxf g x dxξ=⎰⎰. [minmax ()()()babaf xg x dxf fg x dx≤≤⎰⎰]七. (8')过坐标原点作曲线21(0)y x x =+≥的切线, 记该切线与此曲线及y 轴所围成的平 面图形为D , 试求:(1)平面图形D 的面积; (2)平面图形D 绕直线1x =旋转一周所成的旋转体的体积, [12,,32y x S V π===] 八. (8')已知22123,,x x x x x x xy xe e y xe e y xe e e --=+=+=+-是某个二阶常系数线性非齐次微分方程的三个解, 试写出该微分方程的通解并建立此微分方程. [212,"'2(12)xx x x y c ec e xe y y y x e -=++--=-]同济大学2010-2011学年第一学期高等数学B(上)期终试卷一. 填空题(4'416'⨯=)1. 已知极限lim ()x e f x →存在, 且函数()f x 满足: ln 1()lim ()()ex e x e x x f x f x x e e-→-=+-, 则 2lim ()1x ee f x e →=-.2. 设函数2()ln(23)f x x x =+-, 则()11(2)(1)(1)!(1)5n n nf n -=--+.3. 不定积分1tan 1(tan ln tan )sin 22x dx x x C x +=++⎰.4. 定积分sin 2sin cos 03334x xx dx ππ=+⎰.二. 选择题(4'416'⨯=)5. 曲线32331(1)31t x t t t y t ⎧=⎪⎪+≠-⎨⎪=⎪+⎩的斜渐近线方程为 [A ] :1A y x =--; :1B y x =-; :1C y x =-+; :1D y x =+. 6. 曲线22162y x x =-上点(2,0)P 处曲率K = [B ] :0A ; :16B ; 1:16C ; :4D . 7. 设()f x 为(,)-∞+∞内连续的偶函数, '()()F x f x =, 则原函数()F x [C ] :A 均为奇函数; :B 均为偶函数;:C 中只一个奇函数; :D 既非奇函数也非偶函数.8. 设1s 为曲线sin y x =上相应于02x π≤≤的一段弧长, 2s 为椭圆2222x y +=的周长, 则 [D ] 12:A s s π-=; 12:B s s >; 12:C s s <; 12:D s s =. 三. 解答题(4'728'⨯=)9. 求极限302cos ()13lim x x x x→+-. [2cos ln 333001(cos 1)1lim lim 36xx x x e x x x x +→→--===-]10. 设()f x 是(,)-∞+∞内的连续的奇函数, 且0()lim 2x f x x +→=, 证明()f x 在0x =处可导,并求'(0)f . [00()(0)()(0)(0)0,lim lim 2'(0)00x x f x f f x f f f x x +-→→--====--] 11. 求定积分21[]max{1,}x x e dx --⎰, 其中[]x 表示不超过x 的最大整数.[0121102x I e dx dx dx e --=-++=-⎰⎰⎰]12. 判定反常积分2ln 1e x dx x +∞-⎰的收敛性, 如果收敛, 求出其值.[21ln 111(ln 1)()[]e e x I x d x x x e+∞+∞-=--=--=⎰] 四. (8')设()f x 是(,)-∞+∞内的连续函数, 且(0)0f ≠, 试求极限00()lim()xxx tf x t dt xf x t dt→--⎰⎰.[0()()()()1limlimlim[()()]2()()()x xxxx x x x x f u du uf u duf u duxf x f x f x f u duxf x f u duξξ→→→∞-====++⎰⎰⎰⎰⎰]五. (8')设可积函数()f x 在(,)-∞+∞内满足关系式: ()()sin f x f x x π=-+, 且当 [0,)x π∈时()f x x =, 试求3()f x dx ππ⎰.[2322(sin )(2)2I x x dx x dx πππππππ=-++-=-⎰⎰]六. (8')设n 为正整数, 函数2lim,0()100nx n x x f x e x x -→∞⎧≠⎪=--⎨⎪=⎩, 求曲线()y f x =与直线2xy =-所围平面图形绕x 轴旋转一周所成的旋转体的体积. [122202001()[()()]()1283,01x x x f x V dx x x x x πππ<⎧⎪=⇒=---=-⎨+-≥⎪+⎩⎰] 七. (8')求微分方程223(1)20dyx y xy dx-+=的通解. [22231111()'()()x x x C y y y y +=⇒=-]八. (8')令sin x t =, 化简微分方程22arcsin 2(1)x d y dyx xy e dx dx ---=, 并求其通解. [22222311sin ,cos cos cos dy dy d y d y dy t dx dt t dx dt t dt t ==+2arcsin arcsin arcsin 122arcsin 2t x xx d y x y e y C e C e e dt -⇒-=⇒=++]同济大学2011-2012学年第一学期高等数学B(上)期终试卷一. 填空选择题(3'824'⨯=) 1. 极限31lim()2xx x e x →∞+=-.2. 若极限000(2)()lim3h f x h f x h→--=, 则03'()2f x =-.3.积分22216(3x x dx -+=⎰.4. 积分2cos 2cos 1sin 2xx xedx e C =-+⎰.5. 微分方程4"4'0y y y -+=的通解为1212()x y c x c e=+.6. 记41sin I xdx ππ-=⎰, 22sin I xdx ππ-=⎰, 23I x dx ππ-=⎰, 21sin I x xdx ππ-=⎰. 则这4项积分的大小关系为 [ B ] ()A 2134I I I I >>>;()B 3214I I I I >>>;()C 4132I I I I >>>;()D 1243I I I I >>>.7. 下列反常积分中收敛的反常积分是 [ A ] 211()2A dx x +∞+⎰;()e B +∞⎰; ()sin C xdx +∞-∞⎰; 101()1D dx x -⎰ 8. 若函数23ln(1)ln 2,1()11x x f x x a x ⎧+-≠⎪=-⎨⎪=⎩在1x =连续, 则常数 [ D ] ()A 23a =; ()B 23a =-; ()C 13a =-; ()D 13a =.二. 解答题(6'530'⨯=) 1.计算由曲线y =340x y -+=所围平面图形的面积.[21141)336A x dx -=-=⎰] 2. 若函数()u x 与()v x 具有n 阶导数, 试写出()()u x v x ⋅计算n 阶导数的莱布尼茨公式, 计算2xx e ⋅的10阶导数. [()()()2(10)1020[()()];()2(5)nn k k n k x x n k u x v x C u v xe e x -===+∑]3. 求函数2()(5)xf x x x e =+-的单调区间以及函数的极大与极小值.[4max min '(4)(1)(,4],[1,);[4,1];(4)7;(1)3x f x x e f e f e -=+-⇒-∞-+∞--==-Z ]]4. 计算反常积分221ln(1)x dx x +∞+⎰. [ln 22I π=+] 5. 求微分方程2"2'31,(0),'(0)73y y y y y +-===-的解. [331211233xx x x y c e c e e e --=+-=--]三. (8')在长度单位为米的坐标中, 由方程21x y =-与直线220x y --=围成的薄片铅直 的浸入水中, 其中x 轴平行于水面且在水下1米深处, 试求该薄片的一侧所受的水压力. [121(1)(221)4P g y y y dy g ρρ-=-+-+=⎰]四. (10')求积分1)x dx +⎰, [28ln 2393I π=+-]五. (10')1. 试求常数,a b , 使得函数在=201,12x x y x ax b ≤≤⎧=⎨<≤+⎩在区间[0,2]上可导; 2. 若由该曲线段绕y 轴旋转形成一个容器, 如果每单位时间以常量0v 向容器均匀 的注水, 试求该容器在水溢出前水深为h 时水面的上升速度.[2,1a b ==-;0220002,01()()'()''4,13(1)h v h h V h x y dy v V x h h h v h h ππππ⎧≤≤⎪⎪=⇒==⇒=⎨⎪<≤+⎪⎩⎰]六. (10')要建一个容积为14, 侧面为圆柱形, 顶部接着一个半球形的仓库(不含底部), 已知顶部每平方单位的造价是其侧面圆柱部分单位造价的3倍, 试求该仓库的底圆半径, 使得该仓库的造价最省.[2223f rh r ππ=+,2322281414(),'()033r h r f r r f r r r πππ+=⇒=+=⇒=L ] 七. (8')函数()f x 在0[,)x +∞上具有二阶导数, 并且"()0f x <, 对于任意0x x >, 由拉格 朗日中值定理, 存在0x x ξ<<, 使得00()()'()()f x f x f x x ξ-=-. 证明ξ定义了 0(,)x +∞上的一个单调增加函数.['()f x 递减()x ξξ=唯一确定(函数); 又可证00()()f x f x x x --], 可得()x ξ递增]同济大学2012-2013学年第一学期高等数学B(上)期终试卷一. 填空选择题(3'8⨯)1. 函数()xf x xe -=的四阶带佩亚诺余项的麦克劳林公式为234411()()26f x x x x x o x =-+-+2. 2(1)x y ex -=+在1x =所对应点的曲率1025K =3. 极限lim(1ln )x aa x a a x a a a x→-=--4. 由方程222y y x x ++=所确定的函数()y y x =在(1,0)点的导数(1,0)32dydx =5. 函数()f x 在[0,)+∞上连续, 则数列极限lim ()n f n →∞存在是函数极限lim ()x f x →+∞存在的什么条件? [ B ] ()A 充分条件; ()B 必要条件; ()C 充分必要条件; ()D 无关条件. 6. 在区间[,]a b 上, 函数()f x 连续的充分条件是: [ B ] ()()baA f x dx ⎰存在; ()()B f x 可导; ()()C f x 具有原函数; ()()D f x 有界.7. 如果作换元2sin x t =, 则定积分222(4)f x dx -⎰等于 [ C ]40()(2cos )2cos A f t tdt π⋅⎰; 24()(2cos )2cos B f t tdt ππ⋅⎰;42()(2cos )2cos C f t tdt ππ⋅⎰; 04()(2cos )D f t dt π⎰.8. 可导函数()f x 在区间[0,1]上单调增加的充分条件是在该区间上 [ D ] 2()()(1)()x A f x e x o x ∆=-∆+∆; 1()()0B f x dx >⎰;()"()0C f x >; 4()()[1()]()D f x f x x o x ∆=+∆+∆. 二. (4'3⨯)1. 如图是函数()y f x =的图像, 试在下列空格中填入恰当的符 号: 0<; 0=或0>.44()0f x dx -<⎰;44'()0f x dx -=⎰;44"()0f x dx ->⎰;44"'()0f x dx -<⎰.2. 求极限12001lim (12)x t x t dt x →+⎰ [1220lim 2(14)2xx x e →=+=]3. 计算不定积分(1)ln(1)x x dx ++⎰[2211(1)ln(1)(1)24x x x c ++-++] 三. (6'3⨯) 1. 求曲线21x x y e-=的凹凸区间与拐点的坐标. [22'(32),"4(2):(,2];:[2,)xx y ex y e x --=-=-⇒⋂-∞⋃+∞; 拐点:4(2,)e -]2. 计算反常积分21(2ln ln )edx x x x +∞+⎰. [1ln 1ln ln 322ln 2e x x +∞==+]3. 一个由曲线段24(01)y x x =≤≤绕y 轴旋转形成的容器内装满了比重为γ的均匀液体, 如果要将该容器内的液体全部排空至少需要做多少功. [48(4)43y W y dy πγπγ=-=⎰] 四. (8')试用适当的换元法求微分方程22222()2()1dy x y x dx y x -=-+的通解. [2222222arctan 21du xu y x u x u u x c dx u -=⇒+=⇒-=-+⇒+L ] 五. (8')试说明闭区间上连续函数的像集是闭区间, 并举例说明在闭区间上, 像集是闭区间的函数未必连续. [最值定理; 介值定理; 反例略]六. (10')计算由曲线2xy e =, 该曲线经过坐标原点的切线以及y 轴所围成图形的面积, 并 求该图形绕x 轴旋转所得旋转体的体积.[切线:2y ex =;切点:12x =; 1122222220023(2);[()(2)]412x x x e e A e ex dx V e ex dx ππ--=-==-=⎰⎰] 七. (10')试求微分方程22"cos y y x x +=+的通解.[221231;*cos 2sin 2;cos sin cos 226i y Ax Bx C D x E x y C x C x x x λ=±=++++=++--] 八. (10')()f x 是以T 为周期的连续函数, 若()Tf t dt A =⎰, 求极限01lim()xx f t dt x →+∞⎰.[0(0)(0)(0)1()()()()()()limlimlimTnTnT TnTn n n T T T f t dt f t dtf t dt f t dtn f t dt f t dtA n nT nT T T nθθθθθθθθθ+→∞→∞→∞≤<≤<≤<+++====+++⎰⎰⎰⎰⎰⎰]同济大学2013-2014学年第一学期高等数学B(上)期终试卷一. 选择与填空题(3'824'⨯=) 1. 极限262lim()1nn n e n -→∞-=+2. 利用定积分的几何意义,积分4-=⎰92π3. 微分方程"'120y y y +-=的通解为4312x xy C e C e -=+4. 已知敌方的导弹阵地位于坐标原点处,发射的导弹飞行轨迹为光滑曲线()y f x =,我方 拦截导弹的阵地位于x 轴正向2000公里处,发射的拦截导弹飞行速度是敌方导弹速度的 两倍,如果由计算机控制,在敌方导弹发射时我方的拦截导弹同时发射,并且我方导弹的 运行轨迹是直线,如果两导弹的相撞点为00(,)x y ,则该点满足的方程为2x =⎰5. 0{}x 是有界数列, 则该数列单调是数列极限存在的什么条件 【A 】 ()A 充分条件; ()B 必要条件; ()C 充分必要条件; ()D 无关条件.6. ()f x 是连续函数, 曲线段()()xaf t dt a x b ≤≤⎰的弧长s 的计算公式为 【C 】()a A s =⎰; ()a B s =⎰;()aC s =⎰; ()aD s =⎰无关条件.7. 函数()f x 具有三阶连续导数,如果"()0,[,]f x x a b >∈,则下列四项积分中,积分值 确定为正数的积分为 【A 】 ()['()'()]ba A I fb f x dx =-⎰; ()'()baB I f x dx =⎰;()[()()]baC I f x f a dx =-⎰; ()'"()baD I f x dx =⎰.8. 利用换元ln(1)x t =+, 积分2()x f e dx ⎰等于 【D 】20(1)()1f t A dt t ++⎰; 210()(1)e B f t dt -+⎰; 20(1)()1e f t C dt t ++⎰; 210(1)()1e f t D dt t -++⎰. 二. 计算下列各题(6'636'⨯=)1. 试计算由23ln 3x x y y +++=所确定的曲线在(1,1)点的切线方程.[22213'3470(31)4x y x y y x +=-=-⇒+-=+]2. 求由参数方程t tx e y e t-⎧=⎨=+⎩所确定函数()y y x =的导数22;dy d ydx dx . [22322();22t t t t dy d y e e e e dx dx =-+=+] 3. 求不定积分⎰[322(1)3x x c +-+] 4. 曲线段3:()L y x a x a =-≤≤的弧长为s , n D 是xoy 平面上与L 距离不超过n 的点集,即222{(,)(')('),(',')}n D x y x x y y n x y L =-+-≤∈,n D 的面积为n A ,求极限2lim nn A n →∞.[222()lim n n n A n A n s nπππ→∞≤≤+⇒=]三. (8')计算反常积分31arctan x dx x +∞⎰. [121arctan 11[arctan ]22x x x x +∞=-++=]四. (8')()f x 具有二阶导数, 如果极限201()(2)lim1x f x xf x x→++=-, 求(0),'(0),"(0)f f f . [(01,'(0)1,"(0)6f f f =-==-] 五. (8')可导函数()f x 满足方程40()2()1xf x tf t dt x -=--++⎰, 求函数()f x .[232(0)1,'()2()4()2(1)3x f f x xf x x f x x e -==-+⇒=-+] 六. (10')求函数231xx y xe ++=的单调区间与极值, 并求出该函数在区间[2,2]-上的最值.[23111'(21)(1)(,1],[1,],[,);22x x y x x e ++=++⇒-∞-↑--↓-+∞↑极小1()2y -=,极大1(1)y e -=-; 11min max 2(2),(2)2y y e e-=-=] 七. (10')计算由曲线21xy e=-, 直线41y e =-以及y 轴所围图形的面积; 并求出由该图形绕y 轴旋转所得旋转体的体积. [224244240031[(1(1)];2()(51)222x x A e e dx e V x e e dx πππ=---=+=-=-⎰⎰] 八. (8')计算极限12ln(1)0(12)limtxx x t dt t +→-⎰.[11222ln(1)(12)(12)1(ln(1)),ln(1)2txx t dt x x x x x L t eξξξξξ+--=-++<<⇒⇒=⎰:]同济大学2014-2015学年第一学期高等数学B(上)期终试卷一. 填空选择题(3'824'⨯=)1. 极限23232lim()1nn n n e n -→∞-+=+2. xy xe =在1x =对应点的曲率k =3223(14)e e +3.反常积分1111dx xα-+⎰⎰收敛, 则常数α的取值区间是3(,2)2α∈4.1'(32)(32)2x x x e f e dx f e c -=--+⎰5. ()f x 在[,]a b (其中1b a =+)上具有二阶导数,且"()0f x <,下列不等式正确的是 【B 】 ()'()'()()()A f b f a f b f a <<-; ()'()()()'()B f b f b f a f a <-<; ()()()'()'()C f b f a f b f a -<<; ()'()()()'()D f a f b f a f b <-<.6. ()f x 是连续函数, 极限121lim()nn k k n f n n→∞=-⋅∑等于下面的定积分 【D 】 11()(21)A f x dx --⎰; 2()(21)B f x dx -⎰; 11()2()C f x dx -⎰; 1()(21)D f x dx -⎰.7. 如果数列{}n x 在任意区间[,]a b 上只含有有限项, 则下面判断中正确的判断是 【D 】 (){}n A x 是收敛数列; (){}n B x 是有界数列但不收敛;(){}n C x 是无界数列但是当n →∞时不是无穷大量; ()D 极限lim n n x →∞=∞.8. 223()(1)(2)(3)4f x x x x x =---+, 则'()0f x =在区间(1,1)-内有几个实根 【C 】 ()0A 个; ()1B 个; ()2C 个; ()D 至少3个.二. 计算下列各题(6'424'⨯=) 1. 求函数21232x x y e-++=的单调区间与凹凸区间.[2211232322'(2),"(1)(3)x x x x y x e y x x e-++-++=-=--]2. 求曲线2132y x ey -+=在(1,1)点的切线方程. [230x y +-=]3. 计算反常积分311arctan xdx x +∞⎰ [12] 4. 求微分方程"3'441y y y x --=+的通解. [41212x xy C e C e x -=+-+]三. (8')分析曲线1(1)ln()(0)y x e x x=++>是否有铅直、水平与斜渐近线, 如果有则求出 相应的渐近线. [铅直渐近线0x =; 斜渐近线11y x e=++]四. (8')已知(),()f x g x 都是非负的连续函数, 曲线()y f x =与()y g x =关于直线y c =对 称,由曲线(),()y f x y g x ==以及直线,()x a x b a b ==<所围成的平面图形的面积为A . (1)证明该图形绕x 轴旋转所得旋转体的体积为2V cA π=; [22()()()2()bb baaaV f g dx f g f g dx c f g dx πππ=-=+-=-⎰⎰⎰](2)计算椭圆2214x y +≤绕直线2y =旋转所得旋转体的体积. [28V π=] 五. (8')设()f x 是可导函数, 并且满足方程220()()12xt f x tf dt x =++⎰, 求函数()f x .[2231(0)1,'()4()2()22x f f x xf x x f x e ==+⇒=-]六. (8')(1)写出ln(1)x +的带有佩亚诺余项的n 阶迈克劳林公式;(2)计算极限2lim 1(1)xx x e x→+∞+.[(1)12311(1)()23n n n x x x x o x n ---++++L;(2)221ln(1)lim lim 1(1)x x x xx x x e e x-+→+∞→+∞==+七. (10')由方程22,4y x y ==所确定的抛物型薄片铅直地浸入水中, 顶端与水面持平(长度 单位为米). (1)试求薄片一侧所受到的水压力; (2)如果此后水面以每分钟0.5米的速度开 始上涨, 试计算薄片一侧所受到的水压力的变化率.[(1)4(4P g y g ρ=-⎰; (2)40(,dP P g h y g dt ρ=-=⎰]八. (10')设222(0)nn n xy a a +=>所围图形在第一象限部分的面积为n A . (1)利用定积分写出n A 的计算公式(无需计算n A 的值); (2)证明极限lim n n A →∞存在; (3)计算极限lim n n A →∞.[(1)0an A =⎰;(2)1122220(1)n n a t dt A a a -≤=≤⎰⎰;(3)2lim n n A a →∞=]同济大学2015-2016学年第一学期高等数学B(上)期终试卷一. 填空选择题(3'824'⨯=)1. 极限1202lim()23h h h e h-→-=+.2. 积分(12sin )cos '(12sin )2f x x f x dx C--⋅-=+⎰.3. 函数220()sin(1)x F x t dt =+⎰的导函数4'()2sin(1)F x x x =+.4. 曲线322(1)1(12)3y x x =++-≤≤的弧长143s =.5. 极限0lim ()x x f x -→=+∞的定义是 【D 】()0,0A εδ∀>∃>, 当00x x δ<-<时, 有()f x A ε-<; ()0,0B εδ∀>∃>, 当x δ>时, 有()f x ε>; ()0,0C M X ∀>∃>, 当x X >时, 有()f x M >; ()0,0D M δ∀>∃>, 当00x x x δ-≤<时, 有()f x M >.6. 若123(),(),()y x y x y x 是二阶微分方程"()'()()y a x y b x y c x =++的三个线性无关的解, 则该方程的通解为 【D 】 112233()()()()A C y x C y x C y x ++, 其中123,,C C C 是任意常数; 11223()()()()B C y x C y x y x ++, 其中12,C C 是任意常数; 11223()()[()()]C C y x C y x y x ++, 其中12,C C 是任意常数; 112233()()()()D C y x C y x C y x ++, 其中任意常数1231C C C ++=.7. 若()f x 是连续函数, 则极限121lim()2nn k n k f n n→∞=+∑等于 【A 】 3212()()A f x dx ⎰; 2()()B f x dx ⎰; ()C 12()f x dx ⎰; 10()()2xD f dx ⎰.8. 若对于积分0(2)af a x dx -⎰作换元2a x u -=, 则该定积分化为 【C 】()()aaA f u du -⎰; 0()2()a B f u du ⎰; ()C 1()2aa f u du -⎰; 0()()a D f u du ⎰.二. 计算下列各题(6'424'⨯=)1. 试求曲线2sin y x y x ++=在点(1,0)处的切线方程. [21x y +=] 2. 求不定积分2ln(1)x dx +⎰. [2ln(1)22arctan x x x x c +-++]3. 求微分方程3'xy x y =-的通解. [411()4y x c x =+] 4. 求微分方程"2'15153y y y x --=-的通解. [531213x xy C e C e x -=+-+]三. (8')计算由22y x x =+与直线2y x =+所围图形的面积. [1229(2)2x x dx ---=⎰]四. (8')计算反常积分31arctan x dx x +∞⎰. [211111arctan arctan 2222I x x x x +∞=---=]五. (8')已知'()y f x =的函数图像如图,(1)求函数()y f x =的单调区间、极大值与极小值; (2)求曲线()y f x =的凹凸区间与拐点.[35353(,],[,);[,];()x x x x f x -∞+∞]Z 极大,5()f x 极小124124[,],[,);(,],[,];x x x x x x +∞⋃-∞⋂拐点112244(,()),(,()),(,())x f x x f x x f x ] 六. (10')在半径为R 的半球内内接一圆锥体, 使得该锥体的锥顶位于半球的球心上, 锥体的 底面平行于半球的底面, 求这样的内接圆锥体体积的最大值.[322max 1(3),()3393V R h h V π=-=]七. (10')一椭球形容器由长半轴为2m , 短半轴为1m 的半支椭圆曲线绕其短半轴旋转而成,若容器内盛满了水, 试求要把该容器内的水全部吸出需作的功.[2221(10),4(1)(),4x y y dW y dy g y W g πρπ+=-≤≤=--=] 八. (8')已知()f x 具有二阶导数, 且221"()12x f x x +≥+, 判断lim ()x f x →∞的情况, 并给出判断的理由. [21"(),()(0)'(0)"()22f x f x f f x f x ξ≥=++→+∞]同济大学2016-2017学年第一学期高等数学B(上)期终试卷一. 选择填空题(3'824'⨯=)1. ()y f x =具有二阶导数, 且'()0f x ≠. 若曲线()y f x =在00(,)x y 的曲率为0k ≠, 其 反函数1()x fy -=所表示的曲线在对应点的曲率为'k , 则有 【A 】()'A k k =; 1()'B k k=; ()C 'k k >; ()'D k k <. 2. 已知函数()y f x =满足(0)1f =, 如果在任意点x 处, 当x ∆充分小时都有 2()1xy x o x x ∆=∆+∆+, 则有 【C 】 2221()()(1)x A f x x -=+; 2()()11xB f x x=++; ()C ()1f x =; ()D 题中所给的条件无法得到确定的函数()f x . 3. 下面的极限式中哪项等于连续函数()f x 的定积分2()f x dx ⎰. 【D 】12()lim()nn k k A f n n →∞=∑; 121()lim ()n n k k B f n n →∞=∑; 11()lim ()n n k k C f n n →∞=∑; 11()lim 2()nn k k D f n n →∞=∑.4.要使反常积分+∞⎰收敛, 则实数p 的取值范围是 【C 】 ()1A p >; ()1B p <; ()2C p >; ()2D p <.5. 如果作换元sin x t =,则积分30(sin )f x dx π=⎰.6. 微分方程231x y dye dx -+=的通解2113ln()32x y e C +=+.7. 已知2()x f x dx eC =+⎰, 则222(21)1(21)4x xf x dx e C --=+⎰.8.定积分3421[ln(1)2R Rx x dx R π-++=⎰.二. 计算题(8'324'⨯=) 1.求极坐标所表示的曲线4θρ=在04πθ=所对应点处的切线方程. [532x y e π-=]2.计算定积分211π+⎰. [2π]3. 可导函数()f x 满足等式20()()22xttf dt f x =-⎰, 求函数()f x . [22()2x f x e =]三. (10')已知函数()()f x x R ∈在点1x =左连续, 同时该点是函数()f x 的跳跃间断点, 如 果该函数只有1x =一个间断点, 试分析函数32(39)f x x x C +-+间断点的个数. [266C -<<三个; 6C =两个; 26C ≤-或6C >一个]四. (10')求微分方程00"2'31414,'93x x y y y x y y ==+-=+⎧⎪⎨==⎪⎩的解. [315239x xy e e x -=---] 五. (10')曲线21(0)y x x =+≥. (1)求该曲线在点(2,5)处的切线方程L ; (2)求该曲线与切线L 以及y 轴所围图形的面积;(3)求题(2)所叙述的图形绕y 轴旋转所得旋转体的体积. [8843;;33y x A V π=-==] 六. (10')一只容器由2(02)y x x =≤≤绕y 轴旋转而成. (1)如果容器内的水量是容器容量的14, 求容器内水面的高度; (2)如果要将题(1)中这部分水吸尽, 求外力需要作的功. [162;3h W g ρπ==]七. (12')(1)如果周期函数()()f x x R ∈有最小正周期0T , 证明对于()f x 的任意一个周期 T , 都有0T nT =, 其中n 是正整数; [记周期00[0,)T nT T -∈] (2)如果()()f x x R ∈以1T π=以及21T =为周期,证明存在一列{}n T (若i j ≠,则i j T T ≠) 使得n T 都是函数()f x 的周期, 并且数列{}n T 有极限; [1T 2T 非最小正周期, 存在321,n n T T T T -<⋅⋅⋅<为更小正周期] (3)如果满足题(2)条件的函数()f x 在点0x =连续, 证明()f x 是常数.[0,0εδ∀>∃>,当x δ<时,()(0)f x f ε-<;10,,0n n T T T x nT δδ--→∃<<-<]。
高等数学(下册)考试试卷(一)一、填空题(每小题3分,共计24分)1、 z =)0()(log 22>+a y x a 的定义域为D= 。
2、二重积分⎰⎰≤++1||||22)ln(y x dxdy y x 的符号为 。
3、由曲线x y ln =及直线1+=+e y x ,1=y 所围图形的面积用二重积分表示为 ,其值为 。
4、设曲线L 的参数方程表示为),()()(βαψϕ≤≤⎩⎨⎧==x t y t x 则弧长元素=ds 。
5、设曲面∑为922=+y x 介于0=z 及3=z 间的部分的外侧,则=++⎰⎰∑ds y x )122( 。
6、微分方程xyx y dx dy tan +=的通解为 。
7、方程04)4(=-y y 的通解为 。
8、级数∑∞=+1)1(1n n n 的和为 。
二、选择题(每小题2分,共计16分)1、二元函数),(y x f z =在),(00y x 处可微的充分条件是( ) (A )),(y x f 在),(00y x 处连续;(B )),(y x f x ',),(y x f y '在),(00y x 的某邻域内存在;(C ) y y x f x y x f z y x ∆'-∆'-∆),(),(0000当0)()(22→∆+∆y x 时,是无穷小;(D )0)()(),(),(lim2200000=∆+∆∆'-∆'-∆→∆→∆y x yy x f x y x f z y x y x 。
2、设),()(x y xf y x yf u +=其中f 具有二阶连续导数,则2222yuy x u x ∂∂+∂∂等于( )(A )y x +; (B )x ; (C)y ; (D)0 。
3、设Ω:,0,1222≥≤++z z y x 则三重积分⎰⎰⎰Ω=zdV I 等于( )(A )4⎰⎰⎰22013cos sin ππϕϕϕθdr r d d ;(B )⎰⎰⎰2012sin ππϕϕθdr r d d ;(C )⎰⎰⎰ππϕϕϕθ2020103cos sin dr r d d ;(D )⎰⎰⎰ππϕϕϕθ2013cos sin dr r d d 。
初等数学(下册)考试试卷(一)之五兆芳芳创作一、填空题(每小题3分,合计24分) 1、 z =)0()(log 22>+a y x a 的定义域为D=.2、二重积分⎰⎰≤++1||||22)ln(y x dxdy y x 的符号为.3、由曲线x y ln =及直线1+=+e y x ,1=y 所围图形的面积用二重积分暗示为,其值为.4、设曲线L 的参数方程暗示为),()()(βαψϕ≤≤⎩⎨⎧==x t y t x 则弧长元素=ds .5、设曲面∑为922=+y x 介于0=z 及3=z 间的部分的外侧,则=++⎰⎰∑ds y x )122( . 6、微分方程xyx y dxdytan +=的通解为. 7、方程04)4(=-y y 的通解为. 8、级数∑∞=+1)1(1n n n 的和为.二、选择题(每小题2分,合计16分) 1、二元函数),(y x f z =在),(00y x 处可微的充分条件是( )(A )),(y x f 在),(00y x 处连续;(B )),(y x f x ',),(y x f y '在),(00y x 的某邻域内存在; (C )y y x f x y x f z y x ∆'-∆'-∆),(),(0000当0)()(22→∆+∆y x 时,是无穷小;(D )0)()(),(),(lim 2200000=∆+∆∆'-∆'-∆→∆→∆y x yy x f x y x f z y x y x .2、设),()(xy xf y x yf u +=其中f具有二阶连续导数,则2222yuy x u x ∂∂+∂∂等于( )(A )y x +;(B )x ; (C)y ; (D)0 .3、设Ω:,0,1222≥≤++z z y x 则三重积分⎰⎰⎰Ω=zdV I 等于( )(A )4⎰⎰⎰20213cos sin ππϕϕϕθdr r d d ;(B )⎰⎰⎰2012sin ππϕϕθdr r d d ;(C )⎰⎰⎰ππϕϕϕθ2020103cos sin dr r d d ;(D )⎰⎰⎰ππϕϕϕθ2013cos sin dr r d d .4、球面22224a z y x =++与柱面ax y x 222=+所围成的立体体积V=( ) (A )⎰⎰-2cos 202244πθθa dr r a d ; (B )⎰⎰-20cos 202244πθθa dr r a r d ;(C )⎰⎰-20cos 202248πθθa dr r a r d ; (D )⎰⎰--22cos 20224ππθθa dr r a r d .5、设有界闭区域D 由分段滑腻曲线L 所围成,L 取正向,函数),(),,(y x Q y x P 在D 上具有一阶连续偏导数,则⎰=+L Qdy Pdx )((A )⎰⎰∂∂-∂∂Ddxdy xQ yP )(; (B )⎰⎰∂∂-∂∂Ddxdy xP y Q )(;(C )⎰⎰∂∂-∂∂Ddxdy yQ x P )(; (D )⎰⎰∂∂-∂∂Ddxdy yP x Q )(.6、下列说法中错误的是( )(A ) 方程022=+''+'''y x y y x 是三阶微分方程; (B ) 方程x y dxdyx dxdy y sin =+是一阶微分方程;(C ) 方程0)3()2(22232=+++dy y x y dx xy x 是全微分方程; (D )方程xy x dxdy 221=+是伯努利方程.7、已知曲线)(x y y =经过原点,且在原点处的切线与直线062=++y x 平行,而)(x y 满足微分方程052=+'-''y y y ,则曲线的方程为=y ( ) (A )x e x 2sin -; (B ))2cos 2(sin x x e x -; (C ))2sin 2(cos x x e x -; (D )x e x 2sin .8、设0lim =∞→n n nu , 则∑∞=1n nu ( )(A )收敛; (B )发散; (C )不一定; (D )绝对收敛. 三、求解下列问题(合计15分) 1、(7分)设g f ,均为连续可微函数.)(),,(xy x g v xy x f u +==,求yu x u ∂∂∂∂,.2、(8分)设⎰+-=tx t x dz z f t x u )(),(,求tu x u ∂∂∂∂,.四、求解下列问题(合计15分). 1、计较=I ⎰⎰-2022x ydy e dx .(7分)2、计较⎰⎰⎰Ω+=dV y x I )(22,其中Ω是由x 21,222===+z z z y 及所围成的空间闭区域(8分)五、(13分)计较⎰++-=Ly x ydxxdy I 22,其中L 是xoy 面上的任一条无重点且分段滑腻不经过原点)0,0(O 的封锁曲线的逆时针标的目的. 六、(9分)设对任意)(,,x f y x 满足方程)()(1)()()(y f x f y f x f y x f -+=+,且)0(f '存在,求)(x f .七、(8分)求级数∑∞=++--11212)2()1(n n nn x 的收敛区间.初等数学(下册)考试试卷(二)1、设z y x z y x 32)32sin(2-+=-+,则=∂∂+∂∂yz xz .2、=+-→→xyxyy x 93lim.3、设⎰⎰=202),(xxdy y x f dx I ,互换积分次序后,=I .4、设)(u f 为可微函数,且,0)0(=f 则⎰⎰≤+→=++222)(1lim2230t y x t d y x f t σπ.5、设L 为取正向的圆周422=+y x ,则曲线积分⎰=-++Lx x dy x ye dx ye y )2()1(.6、设→→→+++++=kxy z j xz y i yz xA )()()(222,则=A div .7、通解为x x e c e c y 221-+=的微分方程是. 8、设⎩⎨⎧<<<≤--=ππx x x f 0,10,1)(,则它的Fourier 展开式中的=n a .二、选择题(每小题2分,合计16分). 1、设函数⎪⎩⎪⎨⎧=+≠++=0,00,),(2222422y x y x yx xy y x f ,则在点(0,0)处( )(A )连续且偏导数存在; (B )连续但偏导数不存在; (C )不连续但偏导数存在; (D )不连续且偏导数不存在. 2、设),(y x u 在平面有界区域D 上具有二阶连续偏导数,且满足02≠∂∂∂y x u及 +∂∂22x u 022=∂∂yu ,则( )(A )最大值点和最小值点肯定都在D 的内部; (B )最大值点和最小值点肯定都在D 的鸿沟上; (C )最大值点在D 的内部,最小值点在D 的鸿沟上; (D )最小值点在D 的内部,最大值点在D 的鸿沟上.3、设平面区域D :1)1()2(22≤-+-y x ,若⎰⎰+=Dd y x I σ21)(,⎰⎰+=Dd y x I σ32)(则有( )(A )21I I <; (B ) 21I I =; (C )21I I >; (D )不克不及比较.4、设Ω是由曲面1,,===x x y xy z 及0=z 所围成的空间区域,则⎰⎰⎰Ωdxdydz z xy 32=( ) (A )3611; (B )3621; (C )3631 ; (D )3641. 5、设),(y x f 在曲线弧L 上有定义且连续,L 的参数方程为⎩⎨⎧==)()(t y t x ψϕ)(βα≤≤t ,其中)(),(t t ψϕ在],[βα上具有一阶连续导数,且0)()(22≠'+'t t ψϕ, 则曲线积分⎰=Lds y x f ),(( )(A) ⎰βαψϕdt t t f ))(),((; (B)⎰'+'αβψϕψϕdt t t t t f )()())(),((22 ;(C) ⎰'+'βαψϕψϕdt t t t t f )()())(),((22; (D)⎰αβψϕdt t t f ))(),((.6、设∑是取外侧的单位球面1222=++z y x , 则曲面积分⎰⎰∑++zdxdy ydzdx xdydz =( )(A) 0 ; (B) π2 ; (C)π ; (D)π4.7、下列方程中,设21,y y 是它的解,可以推知21y y +也是它的解的方程是( ) (A)0)()(=++'x q y x p y ; (B) 0)()(=+'+''y x q y x p y ;(C))()()(x f y x q y x p y =+'+''; (D)0)()(=+'+''x q y x p y .8、设级数∑∞=1n n a 为一交织级数,则( )(A)该级数必收敛; (B)该级数必发散; (C)该级数可能收敛也可能发散; (D)若)0(0→→n a n ,则必收敛.三、求解下列问题(合计15分)1、(8分)求函数)ln(22z y x u ++=在点A (0,1,0)沿A 指向点B (3,-2,2)的标的目的的标的目的导数.2、(7分)求函数)4(),(2y x y x y x f --=在由直线0,0,6===+x y y x 所围成的闭区域D 上的最大值和最小值. 四、求解下列问题(合计15分) 1、(7分)计较⎰⎰⎰Ω+++=3)1(z y x dvI ,其中Ω是由0,0,0===z y x 及1=++z y x所围成的立体域.2、(8分)设)(x f 为连续函数,定义⎰⎰⎰Ω++=dv y x f z t F )]([)(222,其中{}222,0|),,(t y x h z z y x ≤+≤≤=Ω,求dtdF .五、求解下列问题(15分)1、(8分)求⎰-+-=L x x dy m y e dx my y e I )cos ()sin (,其中L 是从A (a ,0)经2x ax y -=到O (0,0)的弧.2、(7分)计较⎰⎰∑++=dxdy z dzdx y dydz x I 222,其中∑是)0(222a z z y x ≤≤=+ 的外侧.六、(15分)设函数)(x ϕ具有连续的二阶导数,并使曲线积分⎰'++-'Lx dy x ydx xe x x )(])(2)(3[2ϕϕϕ与路径无关,求函数)(x ϕ.初等数学(下册)考试试卷(三)一、填空题(每小题3分,合计24分) 1、设⎰=yzxz tdt e u 2, 则=∂∂zu. 2、函数)2sin(),(y x xy y x f ++=在点(0,0)处沿)2,1(=l 的标的目的导数)0,0(lf ∂∂=.3、设Ω为曲面0,122=--=z y x z 所围成的立体,如果将三重积分⎰⎰⎰Ω=dv z y x f I ),,(化为先对z 再对y 最后对x 三次积分,则I=.4、设),(y x f 为连续函数,则=I⎰⎰=+→Dt d y x f t σπ),(1lim 2,其中222:t y x D ≤+.5、⎰=+L ds y x )(22,其中222:a y x L =+.6、设Ω是一空间有界区域,其鸿沟曲面Ω∂是由有限块分片滑腻的曲面所组成,如果函数),,(z y x P ,),,(z y x Q ,),,(z y x R 在Ω上具有一阶连续偏导数,则三重积分与第二型曲面积分之间有关系式:, 该关系式称为公式.7、微分方程96962+-=+'-''x x y y y 的特解可设为=*y .8、若级数∑∞=--11)1(n pn n 发散,则p .二、选择题(每小题2分,合计16分)1、设),(b a f x '存在,则xb x a f b a x f x ),(),(lim 0--+→=( )(A )),(b a f x ';(B )0;(C )2),(b a f x ';(D )21),(b a f x '.2、设2y x z =,结论正确的是( )(A )022>∂∂∂-∂∂∂x y z y x z ; (B )022=∂∂∂-∂∂∂x y z y x z ;(C )022<∂∂∂-∂∂∂x y z y x z ; (D )022≠∂∂∂-∂∂∂xy zy x z .3、若),(y x f 为关于x 的奇函数,积分域D 关于y 轴对称,对称部分记为21,D D ,),(y x f 在D 上连续,则⎰⎰=Dd y x f σ),(( )(A )0;(B )2⎰⎰1),(D d y x f σ;(C )4⎰⎰1),(D d y x f σ; (D)2⎰⎰2),(D d y x f σ.4、设Ω:2222R z y x ≤++,则⎰⎰⎰Ω+dxdydz y x )(22=( )(A )538R π; (B )534R π; (C )5158R π; (D )51516R π. 5、设在xoy 面内有一散布着质量的曲线L ,在点),(y x 处的线密度为),(y x ρ,则曲线弧L的重心的x 坐标x 为( ) (A)x =⎰Lds y x x M),(1ρ; (B )x =⎰Ldx y x x M),(1ρ;(C )x =⎰L ds y x x ),(ρ; (D )x =⎰Lxds M1, 其中M 为曲线弧L的质量.6、设∑为柱面122=+y x 和1,0,0===z y x 在第一卦限所围成部分的外侧,则 曲面积分⎰⎰∑++ydxdz x xzdydz zdxdy y 22=( )(A )0; (B )4π-; (C )245π; (D )4π.7、方程)(2x f y y ='-''的特解可设为( )(A )A ,若1)(=x f ; (B )x Ae ,若x e x f =)(; (C )E Dx Cx Bx Ax ++++234,若x x x f 2)(2-=; (D ))5cos 5sin (x B x A x +,若x x f 5sin )(=. 8、设⎩⎨⎧≤<<≤--=ππx x x f 01,1)(,则它的Fourier 展开式中的n a 等于( )(A )])1(1[2n n --π; (B )0; (C )πn 1; (D )πn 4. 三、(12分)设t t x f y ),,(=为由方程 0),,(=t y x F 确定的y x ,的函数,其中F f ,具有一阶连续偏导数,求dxdy.四、(8分)在椭圆4422=+y x 上求一点,使其到直线0632=-+y x 的距离最短.五、(8分)求圆柱面y y x 222=+被锥面22y x z +=战争面0=z 割下部分的面积A.六、(12分)计较⎰⎰∑=xyzdxdy I ,其中∑为球面 1222=++z y x 的0,0≥≥y x 部分 的外侧.七、(10分)设x x d x df 2sin 1)(cos )(cos +=,求)(x f .八、(10分)将函数)1ln()(32x x x x f +++=展开成x 的幂级数.初等数学(下册)考试试卷(一)参考答案一、1、当10<<a 时,1022≤+<y x ;当1>a 时,122≥+y x ; 2、负号; 3、23;110⎰⎰⎰⎰-+=Dye eydx dy d σ; 4、dt t t )()(22ψϕ'+';5、180π;6、Cx xy =sin ;7、xxe C eC x C x C y 2423212sin 2cos-+++=; 8、1;二、1、D ; 2、D ; 3、C ; 4、B ; 5、D ; 6、B ; 7、A ; 8、C ; 三、1、21f y f xu '+'=∂∂;)(xy x g x yu+'=∂∂; 2、)()(t x f t x f x u --+=∂∂;)()(t x f t x f tu-++=∂∂;四、1、)1(21420200220222-----===⎰⎰⎰⎰⎰e dy ye dx e dy dy e dx y y y x y ;2、⎰⎰⎰⎰⎰⎰=+=πππθθ2020212022132233142rdz r dr d dz r dr d I柱面坐标;五、令2222,yx x Q y x y P +=+-=则xQ y x x y y P ∂∂=+-=∂∂22222)(,)0,0(),(≠y x ;于是①当L 所围成的区域D 中不含O (0,0)时,xQ y P ∂∂∂∂,在D 内连续.所以由Green 公式得:I=0;②当L 所围成的区域D 中含O (0,0)时,xQy P ∂∂∂∂,在D 内除O (0,0)外都连续,此时作曲线+l 为)10(222<<=+εεy x ,逆时针标的目的,并假定*D 为+L 及-l 所围成区域,则 六、由所给条件易得: 又xx f x x f x f x ∆-∆+='→∆)()(lim )(0 =x x f x f x f x f x f x ∆-∆-∆+→∆)()()(1)()(lim 0即)0()(1)(2f x f x f '=+'c x f x f +⋅'=∴)0()(arctan 即 ])0(tan[)(c x f x f +'=又 0)0(=f 即Z k k c ∈=,π))0(tan()(x f x f '=∴七、令t x =-2,考虑级数∑∞=++-11212)1(n n nn t∴当12<t 即1<t 时,亦即31<<x 时所给级数绝对收敛;当1<t 即3>x 或1<x 时,原级数发散;当1-=t 即1=x 时,级数∑∞=++-11121)1(n n n 收敛; 当1=t 即3=x 时,级数∑∞=+-1121)1(n nn 收敛; ∴级数的半径为R=1,收敛区间为[1,3].初等数学(下册)考试试卷(二)参考答案一、1、1; 2、-1/6; 3、⎰⎰⎰⎰+202/4222/),(),(yy y dx y x f dy dx y x f dy ; 4、)0(32f ';5、π8-;6、)(2z y x ++;7、02=-'+''y y y ;8、0;二、1、C ; 2、B ; 3、A ; 4、D ; 5、C ; 6、D ; 7、B ; 8、C ;三、1、函数)ln(22z y x u ++=在点A (1,0,1)处可微,且)1,0,1(221zy x x u A ++=∂∂2/1=;01)1,0,1(2222=+⋅++=∂∂zy y zy x yu A ;而),1,2,2(-==AB l 所以)31,32,32(-=l,故在A 点沿AB l =标的目的导数为:=∂∂Alu Axu ∂∂αcos ⋅+Ayu ∂∂βcos ⋅+Azu ∂∂γcos ⋅2、由⎪⎩⎪⎨⎧=--==-+--='0)24(0)1()4(22y x x f xy y x xy f yx 得D 内的驻点为),1,2(0M 且4)1,2(=f ,又0)0,(,0),0(==x f y f而当0,0,6≥≥=+y x y x 时,)60(122),(23≤≤-=x x x y x f令0)122(23='-x x 得4,021==x x于是相应2,621==y y 且.64)2,4(,0)6,0(-==f f),(y x f ∴在D 上的最大值为4)1,2(=f ,最小值为.64)2,4(-=f四、1、Ω的联立不等式组为⎪⎩⎪⎨⎧--≤≤-≤≤≤≤Ωy x z x y x 101010: 所以⎰⎰⎰---++++=1010103)1(xy x z y x dzdy dx I2、在柱面坐标系中 所以五、1、连接→OA ,由Green 公式得:2、作帮助曲面⎩⎨⎧≤+=∑2221:ay x az ,上侧,则由Gauss 公式得:⎰⎰∑=I +⎰⎰∑1⎰⎰∑-1=⎰⎰⎰⎰∑∑+∑-11=⎰⎰⎰⎰⎰≤≤≤+≤+-++az z y x a y x dxdy adxdydz z y x 0,2222222)(2=⎰⎰⎰≤+-az y x a zdxdy dz 042222π六、由题意得:)()(2)(32x xe x x x ϕϕϕ''=+-' 即x xe x x x 2)(2)(3)(=+'-''ϕϕϕ特征方程0232=+-r r ,特征根2,121==r r对应齐次方程的通解为:x x e c e c y 221+=又因为2=λ是特征根.故其特解可设为:x e B Ax x y 2*)(+= 代入方程并整理得:1,21-==B A即x e x x y 2*)2(21-=故所求函数为:x x x e x x e c e c x 2221)2(21)(-++=ϕ初等数学(下册)考试试卷(三)参考答案一、1、2222z x z y xeye -; 2、5; 3、⎰⎰⎰------1111102222),,(x x y x dz z y x f dy dx ;4、325);0,0(a f π、; 6、⎰⎰⎰⎰⎰+Ω∂Ω++=∂∂+∂∂+∂∂Rdxdy Qdzdx Pdydz dv z Ry Q x P )(, Gauss公式; 7、C Bx Ax ++2 8、0≤P .二、1、C ; 2、B ; 3、A ; 4、C ; 5、A ; 6、D ; 7、B ; 8、B三、由于dt t x f dx t x f dy t x ),(),('+'=,0='+'+'dt F dy F dx F t y x由上两式消去dt ,即得:y t t x t t x F f F F f F f dx dy ''+'''-'⋅'=四、设),(y x 为椭圆4422=+y x 上任一点,则该点到直线0632=-+y x 的距离为13326yx d --=;令)44()326(222-++--=y x y x L λ,于是由:得条件驻点:)53,58(),53,58(),53,58(),53,38(4321----M M M M 依题意,椭圆到直线一定有最短距离存在,其中1313133261min =--=M yx d 即为所求.五、曲线⎪⎩⎪⎨⎧=++=yy x y x z 22222在yoz 面上的投影为⎩⎨⎧=≤≤=0)0(22x z y yz于是所割下部分在yoz⎪⎩⎪⎨⎧≤≤≤≤y z y D yz 2020:, 六、将∑分为上半部分2211:y x z --=∑和下半部分2221:y x z ---=∑,21,∑∑在面xoy 上的投影域都为:,0,0,1:22≥≥≤+y x y x D xy于是: ⎰⎰⎰⎰∑--=1221dxdy y x xyzdxdy xyD1511cos sin 2122=⋅-⋅=⎰⎰ρρρθθρθπd d 极坐标; ⎰⎰⎰⎰∑=----=2151))(1(22dxdy y x xy xyzdxdy xyD , ⎰⎰⎰⎰∑∑+=∴21I =152 七、因为x x d x df 2sin 1)(cos )(cos ==,即x x f 2sin 1)(cos +='所以22)(x x f -='c x x x f +-=∴3312)(八、)1ln()1ln()]1)(1ln[()(22x x x x x f +++=++=)1()1ln(11-∈-=+∑∞=-uununn n又]1,1(,。
本资料仅供参考复习练手之用,无论是重修只求及格,还是为了拿优保研,复习课本上的基础知识点和例题、课后习题才是重中之重,作为一个重修过高数的学长,望大家不要舍本求末,记住这样一句话,只有当你付出了,你才可能有收获。
2008—2009学年第二学期考核试卷(A )2009/6/29《高等数学B 》(下)(下)一. 选择填空题(满分30分)分)()()()()..C 1543.1222双曲面;单叶双曲面;椭圆面;圆锥面表示元二次方程在空间解析几何中,三D C B A z y x =-+()()()().D C .1123121.2交于一点但不垂直;垂直相交;不相交;直线包含在平面内的位置关系为与平面直线B A B z y x z y x =+--=-=- ()().143142141|,32ln .33,2,1dz dy dx du z y x u ++=++=则设 ()().43-229110122.422îíì±=+++=,,处的一个单位切向量为,,在点曲线z y x y x z ()()()()()()()()既非充分也非必要;充分必要;充分非必要;必要非充分条件的和偏导数处可微是它在该点处在在点函数D C B A B yx f y x f y x y x f yx.,,,,.500000()()()().,,,,.604240204òòòòòò--=+20xxyy dx y x f dy dy y x f dx dy y x f dx y x f 交换积分次序连续,设函数,5曲线积分pò.D1az1314¶¶lòòòò()()()-+n n a a 111(÷öçæ+22n u y x ,p p p 222++()()()().9333max 3,3,3,0,1.332122222212abc abc W c w b v a u L L L L c w b v a u uvw L uvw dt uvwt w xydz zxdy yzdx w wtz vt y ut x L w v u L=====Þ====÷øöçèæ-+++===++=ïîïíì===òòl l 令;;:解:。
2011学年高数B 第二学期期末考试试卷一、单选题(共15分,每小题3分)1.设函数(,)f x y 在00(,)P x y 的两个偏导00(,)x f x y ,00(,)y f x y 都存在,则 ( )A .(,)f x y 在P 连续B .(,)f x y 在P 可微C . 00lim (,)x x f x y →及 00lim (,)y y f x y →都存在 D .00(,)(,)lim (,)x y x y f x y →存在2.若xyz ln =,则dz 等于( ).ln ln ln ln .x x y y y y A x y + ln ln .x y yB xln ln ln .ln x xy yC yydx dy x+ ln ln ln ln .x x y y y x D dx dy x y + 3.设Ω是圆柱面222x y x +=及平面01,z z ==所围成的区域,则(),,(=⎰⎰⎰Ωdxdydz z y x f ). 212cos .(cos ,sin ,)A d dr f r r z dz πθθθθ⎰⎰⎰ 212cos .(cos ,sin ,)B d rdr f r r z dz πθθθθ⎰⎰⎰21202cos .(cos ,sin ,)C d rdr f r r z dz πθπθθθ-⎰⎰⎰ 21cos .(cos ,sin ,)xD d rdr f r r z dzπθθθ⎰⎰⎰4.若1(1)nn n a x ∞=-∑在1x =-处收敛,则此级数在2x =处( ).A . 条件收敛B . 绝对收敛C . 发散D . 敛散性不能确定5.曲线222x y z z x y -+=⎧⎨=+⎩在点(1,1,2)处的一个切线方向向量为( ). A. (-1,3,4) B.(3,-1,4) C. (-1,0,3) D. (3,0,-1)二、填空题(共15分,每小题3分)1.设220x y xyz +-=,则'(1,1)x z = . 2.交 换ln 1(,)e xI dx f x y dy =⎰⎰的积分次序后,I =_____________________.3.设22z xy u -=,则u 在点)1,1,2(-M 处的梯度为 .4. 已知0!n xn x e n ∞==∑,则xxe -= .5. 函数332233z x y x y =+--的极小值点是 .三、解答题(共54分,每小题6--7分)1. (本小题满分6分)设arctany z y x =, 求z x ∂∂,z y∂∂. 2. (本小题满分6分)求椭球面222239x y z ++=的平行于平面23210x y z -++=的切平面方程,并求切点处的法线方程.3. (本小题满分7分)求函数22z x y =+在点(1,2)处沿向量1322l i j =+方向的方向导数。
一.选择题(将答案代号填入括号内,每题3分,共30分)。
1.下列各组函数中,是相同的函数的是().(A)(B) 和(C)和(D)和12.函数在处连续,则().(A)0 (B)(C)1 (D)23.曲线的平行于直线的切线方程为( )。
(A) (B)(C)(D)4.设函数,则函数在点处()。
(A)连续且可导(B)连续且可微(C)连续不可导(D)不连续不可微5.点是函数的( ).(A)驻点但非极值点(B)拐点(C)驻点且是拐点(D)驻点且是极值点6.曲线的渐近线情况是( ).(A)只有水平渐近线(B)只有垂直渐近线(C)既有水平渐近线又有垂直渐近线(D)既无水平渐近线又无垂直渐近线7.的结果是( ).(A) (B)(C)(D)8.的结果是( ).(A)(B)(C)(D)9.下列定积分为零的是().(A) (B)(C)(D)10.设为连续函数,则等于()。
(A)(B)(C)(D)二.填空题(每题4分,共20分)1.设函数在处连续,则。
2.已知曲线在处的切线的倾斜角为,则.3.的垂直渐近线有条。
4..5.。
三.计算(每小题5分,共30分)1.求极限①②2.求曲线所确定的隐函数的导数。
3.求不定积分①②③四.应用题(每题10分,共20分)一.选择题1.B 2.B 3.A 4.C 5.D 6.C 7.D 8.A 9.A 10.C 二.填空题1.2.3.24.5.2三.计算题1①② 2.3。
①②③四.应用题1.略2.。
本资料仅供参考复习练手之用,无论是重修只求及格,还是为了拿优保研,复习课本上的根底知识点和例题、课后习题才是重中之重,作为一个重修过高数的学长,望大家不要舍本求末,记住这样一句话,只有当你付出了,你才可能有收获。
课程名称:?高等数学?一、单项选择题〔共15分,每题3分〕1.设函数(,)f x y 在00(,)P x y 的两个偏导00(,)x f x y ,00(,)y f x y 都存在,那么 ( )A .(,)f x y 在P 连续B .(,)f x y 在P 可微C . 00lim (,)x x f x y →及 00lim (,)y y f x y →都存在 D .00(,)(,)lim (,)x y x y f x y →存在2.假设xyz ln =,那么dz 等于〔 〕.ln ln ln ln .x x y y y y A x y + ln ln .x y yB xln ln ln .ln x xy yC y ydx dy x+ ln ln ln ln .x x y y y x D dx dy x y + 3.设Ω是圆柱面222x y x +=及平面01,z z ==所围成的区域,那么(),,(=⎰⎰⎰Ωdxdydz z y x f 〕. 2120cos .(cos ,sin ,)A d dr f r r z dz πθθθθ⎰⎰⎰ 21200cos .(cos ,sin ,)B d rdr f r r z dz πθθθθ⎰⎰⎰21202cos .(cos ,sin ,)C d rdr f r r z dz πθπθθθ-⎰⎰⎰ 21cos .(cos ,sin ,)xD d rdr f r r z dz πθθθ⎰⎰⎰4. 4.假设1(1)nn n a x ∞=-∑在1x =-处收敛,那么此级数在2x =处〔 〕.A . 条件收敛B . 绝对收敛C . 发散D . 敛散性不能确定5.曲线222x y z z x y -+=⎧⎨=+⎩在点〔1,1,2〕处的一个切线方向向量为〔 〕. A. 〔-1,3,4〕 B.〔3,-1,4〕 C. 〔-1,0,3〕 D. 〔3,0,-1〕二、填空题〔共15分,每题3分〕1.设220x y xyz +-=,那么'(1,1)x z = .2.交 换ln 1(,)exI dx f x y dy =⎰⎰的积分次序后,I =_____________________.3.设22z xy u -=,那么u 在点)1,1,2(-M 处的梯度为 .4. 0!n xn x e n ∞==∑,那么xxe -= .5. 函数332233z x y x y =+--的极小值点是 . 三、解答题〔共54分,每题6--7分〕1.〔本小题总分值6分〕设arctany z y x=, 求z x ∂∂,z y ∂∂.2.〔本小题总分值6分〕求椭球面222239x y z ++=的平行于平面23210x y z -++=的切平面方程,并求切点处的法线方程.3. 〔本小题总分值7分〕求函数22z x y =+在点(1,2)处沿向量1322l i j =+方向的方向导数。
2008—2009学年第二学期考核试卷(B 卷)
《高等数学B 》(重考下)2009-9-20
一. 选择填空题(满分30分)
().__________,,,.1232122=⋅+⨯==b a b a b a b a 则已知和设有向量
.
______0162322121.2的夹角余弦为与平面直线=+-++=-=-z y x z y x ()()()()()()()()()()().
,,,,,,.____________,.上述三个结论都不正确处可微;在点处可偏导;
在点处连续;在点,则其他函数设D y x f C y x f B y x f A D x y y x f 0000000
0132
⎩⎨⎧<<=()()()()()()..___________005232,.422不能判断是否取极值;
不取极值;取得极小值;
取得极大值处,在点函数D C B A y x xy y x f +--=
()()()()()⎰⎰⎰⎰+=+-=1
.sin 2;0;2;)sin (2.
___________sin 1.62323
2312L L L L yds D C ds x B ds y x
A ds y x L L x y 线积分
在第一象限的部分,曲为,设为半圆周 ()⎰⎰∑=+-=+=+∑.________________
.dS z y x y x z y 3213722截下的部分,则
被柱面为平面设
()()()().
_____________________________________,,,,,.⎰⎰⎰⎰⎰⎰----+=+101110100110225y y x x dx
y x f dy dy y x f dx dy y x f dx y x f 交换积分次序连续,设函数
()()()().._________________1sin .812有关收敛性与绝对收敛;条件收敛;发散;的收敛性为为常级数设αααD C B A n n n n ∑∞
=⎪⎭
⎫ ⎝⎛-_.
的收敛区间为____幂级数n n x n n ∑∞=⎪⎭
⎫ ⎝⎛+12129. ()()()()()()()
().D;C;B;则其中设88161621110041--=-≥=
=⎰∑∞=A C s n nxdx x b nx b x s n n n .______________
,
sin ,sin .π
π()()()()dz
xy z z y x z z 求所确定的隐函数,
是方程设分二sin 2ln ,12.++==
()()().
2,1,00,2,1012.两点距离的平方和最小
和,使得它到上求一点在平面分三B A M z y x =+-
()(){}.0,10,10:,,,
12.22xy z y x z y x dxdydz e
I y x ≤≤≤≤≤≤=Ω=⎰⎰∑+其中求分四
()()()().
11110012.332
构成三角的逆时针边界
,和,,,,为由点其中,求分本题五-+=⎰L dy y x dx ye I L
x
()()()().
1:32112.22333为半球的上侧其中求分六y x z dxdy
z z dzdx y y dydz x x I --=∑+++++=⎰⎰∑
()()()().1ln 110.的幂级数展开为将函数分七x x x x f ++=。