七年级数学上册第三章整式及其加减3.3整式练习题(新版)北师大版
- 格式:doc
- 大小:45.00 KB
- 文档页数:5
整式一、选择题1. 下列各整式中,次数为3次的单项式是()A. xy2B. xy3C. x+y2D. x+y32. 单项式4xy2z3的次数是()A. 3B. 4C. 5D. 63. 如果单项式3a n b2c是5次单项式,那么n=()A. 2B. 3C. 4D. 54. 下列代数式中,是4次单项式的为()A. 4abcB. ﹣2πx2yC. xyz2D. x4+y4+z45. 按某种标准把多项式进行分类时,3x3﹣4和a2b+ab2+1属于同一类,则下列哪一个多项式也属于此类()A. abc﹣1B. x2﹣2C. 3x2+2xy4D. m2+2mn+n26. 若关于x,y的多项式x2y﹣7mxyy3+6xy化简后不含二次项,则m=()A. B. C. ﹣ D. 07. 下列四个判断,其中错误的是()A. 数字0也是单项式B. 单项式a的系数与次数都是1C. x2y2是二次单项式D. ﹣的系数是8. 单项式的次数是()A. ﹣23B. ﹣C. 6D. 39. 单项式﹣32xy2z3的次数和系数分别为()A. 6,﹣3B. 6,﹣9C. 5,9D. 7,﹣910. 下列代数式中:①a;②πr2;③x2+1;④﹣3a2b;⑤.单项式的个数是()A. 2B. 3C. 4D. 5二、填空题11. x2y是__次单项式.12. 代数式ab﹣πxy﹣x3的次数是__,其中﹣πxy项的系数是__.13. 多项式x2﹣4x﹣8是__次__项式.14. 若代数式6a m b4是六次单项式.则m=__.15. 多项式(mx+4)(2﹣3x)展开后不含x项,则m=__.16. 一组按规律排列的式子:,,,,…则第n个式子是__(n为正整数).三、解答题17. 观察下列一串单项式的特点:xy,﹣2x2y,4x3y,﹣8x4y,16x5y,…(1)按此规律写出第9个单项式;(2)试猜想第n个单项式为多少?它的系数和次数分别是多少?18. 将多项式按字母X的降幂排列.19. 单项式x2y m与多项式x2y2+x3y4+的次数相同,求m的值.20. (1)已知代数式:4x﹣4xy+y2﹣x2y3.①将代数式按照y的次数降幂排列;②当x=2,y=﹣1时,求该代数式的值.(2)已知:关于xyz的代数式﹣(m+3)x2y|m+1|z+(2m﹣n)x2y+5为五次二项式,求|m﹣n|的值.21. 关于x、y的多项式(m﹣2)+(n+3)xy2+3xy﹣5.(1)若原多项式是五次多项式,求m、n的值;(2)若原多项式是五次四项式,求m、n的值.答案一、选择题1. 【答案】A【解析】本题利用单项式的次数的定义解决,所含字母的指数之和.A选项的次数是3次;B 选项的次数是4次;C选项不是单项式;D选项不是单项式.故选A.2.【答案】D【解析】单项式的次数是指单项式中所有字母指数的和,1+2+3=6,故选D.3. 【答案】A【解析】根据单项式的次数的概念可得,n+2+1=5,解得n=2.故选A.4. 【答案】C【解析】A. 4abc,3次单项式; B. ﹣2πx2y,3次单项式; C. xyz2,4次单项式; D. x4+y4+z4,4次多项式,故符合题意的只有C,故选C.5. 【答案】A【解析】从多项式的次数考虑求解.3x3﹣4和a2b+ab2+1属于同一类,都是3次多项式,A、abc﹣1是3次多项式,故本选项正确;B、x2﹣2是2次多项式,故本选项错误;C、3x2+2xy4是5次多项式,故本选项错误;D、m2+2mn+n2是2次多项式,故本选项错误.故选A.6.【答案】B【解析】先将已知多项式合并同类项,得2y+3+(6-7m)xy,由于不含二次项,由此可以得到关于m方程,解方程即可求出m.2323+(6-7m)xy.∵不含二次项,∴6-7m=0,∴m=67.故选B.7.【答案】C【解析】A. 数字0也是单项式,正确,故不符合题意;B. 单项式a的系数与次数都是1,正确,故不符合题意,C. x2y2是4次单项式,故C错误,符合题意;D. ﹣的系数是,正确,故不符合题意,故选C.8.【答案】D【解析】根据单项式次数的定义,所有字母的指数和是2+1=3,故次数是3.故选D.9. 【答案】B【解析】单项式的次数是指单项式中所有字母指数的和,单项式的系数是指单项式中的数字因数,由此可得单项式﹣32xy2z3的次数是:1+2+3=6,系数是-32=-9,故选B.【点睛】本题主要考查单项式的系数与次数,熟记概念是解题的关键.10. 【答案】B【解析】①a,单项式;②πr2,单项式;③x2+1,多项式;④﹣3a2b单项式;⑤,不是整式,所以单项式有3个,故选B.【点睛】本题主要考查单项式,记住单项式的概念并能正确区分是解题的关键.二、填空题11.【答案】3【解析】根据单项式次数的概念可知x2y是3次单项式,故答案为:3.12.【答案】 (1). 3 (2).【解析】根据单项式和多项式的概念求解.多项式ab-πxy-x3是3次3项式.单项式系数是故答案为:3.点睛:本题考查了多项式和单项式的知识,几个单项式的和叫做多项式;数或字母的积组成的式子叫做单项式,单独的一个数或字母也是单项式.13. 【答案】 (1). 二 (2). 三【解析】多项式x2﹣4x﹣8次数是2,项数是3,所以该多项式是二次三项式,故答案为:二,三.14. 【答案】2【解析】根据题意则有:m+4=6,解得,m=2,故答案为:2.15. 【答案】6【解析】先将多项式展开,再合并同类项,然后根据题意即可解答.∵(mx+4)(2-3x)=2mx-3mx2+8-12x=-3mx2+(2m-12)x+8,∵展开后不含x项,∴2m-12=0,即m=6,故填空答案:6.16.【答案】【解析】分子依次是:a ,a 3,a 5,a 7,a 9,…,a 2n-1;分母依次是:2,4,6,8,10,…,2n;故可得第n个式子为:,故答案为:.【点睛】本题是规律题,解题的关键是根据已知所给的式子正确地分析分子、分母的变化规律.三、解答题17. 【答案】(1)256x9y;(2)(﹣1)n+12n﹣1x n y,它的系数是(﹣1)n+12n﹣1,次数是n+1.【解析】(1)通过观察可得:n为偶数时,单项式的系数为负数,x的指数为n时,系数的绝对值是2n-1,由此即可解答本题;(2)先根据已知确定出第n个单项式,然后再根据单项式的系数是指单项式的数字因数,次数是所有字母指数的和解答即可.解:(1)∵当n=1时,xy,当n=2时,﹣2x2y,当n=3时,4x3y,当n=4时,﹣8x4y,当n=5时,16x5y,∴第9个单项式是29﹣1x9y,即256x9y;(2)∵n为偶数时,单项式的系数为负数,x的指数为n时,系数为2n﹣1,单项式为-2n﹣1x n y,当n为奇数时的单项式为2n﹣1x n y,所以第n个单项式为(﹣1)n+12n﹣1x n y,它的系数是(﹣1)n+12n﹣1,次数是n+1.【点睛】本题考查的是单项式,根据题意找出各式子的规律是解答此题的关键.18.【答案】【解析】先分别求出各单项式里x的次数,再按x的降幂排列,即把x按从高次到低次排列.解:多项式的项为:,所以按字母x的降幂排列为:.19. 【答案】5【解析】根据单项式的次数与多项式的次数分别求出单项式的次数与多项式的次数,根据次数相同列出方程,解方程即可得.解:∵单项式x2y m与多项式x2y2+x3y4+的次数相同,∴2+m=7,解得m=5.故m的值是5.20. 【答案】(1)①﹣x2y3+y2﹣4xy+4x;②21;(2)1.【解析】(1)①按照字母y的次数从高到低进行排列即可;②把x、y的值代入进行求值即可;(2)根据多项式的次数和项数的定义即可求得m、n的值,然后再代入进行求值即可. 解:(1)已知代数式:4x﹣4xy+y2﹣x2y3,①将代数式按照y的次数降幂排列为﹣x2y3+y2﹣4xy+4x;②当x=2,y=﹣1时,4x﹣4xy+y2﹣x2y3=8+8+1+4=21;(2)∵关于xyz的代数式-(m+3)x2y|m+1|z+(2m﹣n)x2y+5为五次二项式,∴,解得,∴|m﹣n|=|1﹣2|=1.21. 【答案】(1)m=﹣2、n为任意实数;(2)m=﹣2,n≠﹣3.【解析】(1)根据多项式的次数的定义求得m、n的值即可;(2)根据多项式的次数和项数的定义求得两个未知数的值或取值X围即可.解:(1)∵关于x、y的多项式(m﹣2)+(n+3)xy2+3xy﹣5是五次多项式,∴,解得:m=﹣2,∴原多项式是五次多项式,m=﹣2、n为任意实数;(2)∵关于x、y的多项式(m﹣2)+(n+3)xy2+3xy﹣5为五次四项式,∴,解得:m=-2,n≠-3,∴原多项式是五次四项式,m=﹣2,n≠﹣3.【点睛】本题考查了多项式的定义,了解多项式的有关定义是解答本题的关键.。
一、选择题1. 小明与小亮在操场上练习跑步,小明的速度是 x m/s ,小亮的速度是 y m/s ,小亮比小明跑得快,两人从同一地点同时起跑 a s 后,小明落后小亮 ( ) A . (ax −ay ) m B . (ay −ax ) m C . (ax +ay ) mD . axy m2. 小明用计算机设计了一个计算程序,输入和输出的数据如下表:那么,当输入数据是 8 时,输出的数据是 ( )输入⋯12345⋯输出⋯3223512310730⋯ A . 839B . 738C . 637D . 5363. 如图,小正方形是按一定规律摆放的,下面四个选项中的图片,适合填补图中空白处的是 ( )A .B .C.D.4.如图,在平面直角坐标系上有个点P(1,0),点P第1次向上跳动1个单位至点P1(1,1),紧接着第2次向左跳动2个单位至点P2(−1,1),第3次向上跳动1个单位,第4次向右跳动3个单位,第5次又向上跳动1个单位,第6次向左跳动4个单位,⋯,依此规律跳动下去,点P第99次跳动至点P99的坐标是( )A.(26,50)B.(−26,50)C.(25,50)D.(−25,50)5.1883年,康托尔构造的这个分形,称做康托尔集,从长度为1的线段开始,康托尔取走其中间三分之一而达到第一阶段;然后从每人个余下的三分之一线段中取走中间三分之一而达到第二阶段,无限地重复这一过程,余下的无穷点就称做康托尔集,如图是康托尔集的最初几个阶段,当达到第5个阶段时,取走的所有线段的长度之和为( )A.13B.242243C.211243D.322436.如图,长方形ABCD中,AB=6,第1次平移将长方形ABCD沿AB的方向向右平移5个单位,得到长方形A1B1C1D1,第2次平移将长方形A1B1C1D1沿A1B1的方向向右平移5个单位,得到长方形A2B2C2D2,⋯以此类推,第n次平移将长方形A n−1B n−1C n−1D n−1沿A n−1B n−1的方向向右平移5个单位,得到长方形A n B n C n D n(n>2),则AB n长为( )A.5n+6B.5n+1C.5n+4D.5n+37.下列计算正确的是( )A.3a2+a=4a2B.−2(a−b)=−2a+bC.a2b−2a2b=−a2b D.5a−4a=18.下列按照一定规律排列一组图形,其中图形①中共有2个小三角形,图形②中共有6个小“三角形,图形③中共有11个小三角形,图形④中共有17个小三角形,⋯⋯,按此规律,图形⑧中共有n个小三角形,这里的n=( )A.32B.41C.51D.539.为了解决老百姓看病难的问题,卫生部门决定大幅度降低药品价格,某种常用药品降价40%后的价格为a元,则降价前此药品的价格为( )A.52a元B.25a元C.53a元D.35a元10.将图①中的正方形剪开得到图②,图②中共有4个正方形;将图②中一个正方形剪开得到图③,图③中共有7个正方形;将图③中一个正方形剪开得到图④,图④中共有10个正方形,⋯⋯,如此下去,则第2018个图中共有正方形的个数为( )A.2018B.2019C.6052D.6056二、填空题11.如图是一组有规律的图案,第1个图案由4个▲组成,第2个图案由7个▲组成,第3个图案由10个▲组成,第4个图案由13个▲组成,⋯,则第n−1(n为正整数,n⋯2)个图案由个▲组成.12.下图(1)表示1张餐桌和6张椅子(每个小半圆代表1张椅子),若按这种方式摆放20张餐桌需要的椅子张数是.13.有理数a,b,c,d在数轴上的位置如图,则∣a−b∣+∣b−c∣−∣d−a∣=.14.在平面直角坐标系中,正方形ABCD的顶点坐标分别为A(1,1),B(1,−1),C(−1,−1),D(−1,1),y轴上有一点P(0,2).作点P关于点A的对称点P1,作点P1关于点B的对称点P2,作点P2关于点C的对称点P3,作点P3关于点D的对称点P4,作点P4关于点A的对称点P5,作点P5关于点B的对称点P6,⋯⋯,按此操作下去,则P2020的坐标为.15.已知甲、乙为两把不同刻度的直尺,且同一把直尺上的刻度之间距离相等.小明将此两把直尺紧贴,并将两直尺上的刻度0彼此对准后,发现甲尺的刻度36会对准乙尺的刻度48.若将甲尺向右平移且平移过程中两把直尺维持紧贴,使得甲尺的刻度0对准乙尺的刻度m,则此时甲尺的刻度n会对准乙尺的刻度为.(用含m,n的式子表示)16.观察下列图形:它们是按一定规律排列的,依照此规律,第10个图形中共有个点.+(b+c)m−m2的值为.17.若a,b互为倒数,b,c互为相反数,m的绝对值为1.则abm三、解答题18.若在运动会颁奖台上面及两侧铺上地毯(如图阴影部分),长为m,宽为n,高为ℎ(单位为:cm).(1) 用m,n,ℎ表示所需地毯的面积;(2) 若m=160,n=60,ℎ=75,求地毯的面积.19.如图所示,一块正方形纸板剪去四个相同的三角形后留下了阴影部分的图形.已知正方形的边长为a,三角形的高为ℎ.(1) 用式子表示阴影部分的面积;(2) 当a=2,ℎ=1时,求阴影部分的面积.220.阅读下面材料:在数轴上5与−2所对的两点之间的距离:∣5−(−2)∣=7;在数轴上−2与3所对的两点之间的距离:∣−2−3∣=5;在数轴上−8与−5所对的两点之间的距离:∣(−8)−(−5)∣=3.在数轴上点A,B分别表示数a,b,则A,B两点之间的距离AB=∣a−b∣=∣b−a∣.回答下列问题:(1) 数轴上表示−2和−5的两点之间的距离是;数轴上表示数x和3的两点之间的距离表示为;数轴上表示数和的两点之间的距离表示为∣x+2∣;(2) 七年级研究性学习小组在数学老师指导下,对式子∣x+2∣+∣x−3∣进行探究:请你在草稿纸上画出数轴,当表示数x的点在−2与3之间移动时,∣x−3∣+∣x+2∣的值总是一个固定的值为:.21.学校操场上的环形跑道长400米,小胖、小杰的速度分别是a米/分,b米/分(其中a>b).两人从同一地点同时出发,求:(1) 如果两人反向而行,则经过多长时间两人第一次相遇?(2) 如果两人同向而行,则经过多长时间两人第一次相遇?22.归纳.人们通过长期观察发现,如果早晨天空中有棉絮状的高积云,那么午后常有雷雨降临,于是有了“朝有破絮云,午后雷雨临”的谚语.在数学里,我们也常用这样的方法探求规律,例如:三角形有3个顶点,如果在它的内部再画n个点,并以(n+3)个点为顶点画三角形,那么最多以剪得多少个这样的三角形?为了解决这个问题,我们可以从n=1,n=2,n=3等具体的、简单的情形入手,探索最多可以剪得的三角形个数的变化规律.(1) 完成表格信息:,;(2) 通过观察、比较,可以发现:三角形内的点每增加1个,最多可以剪得的三角形增加个.于是,我们可以猜想:当三角形内的点的个数为n时,最多可以剪得个三角形.像这样通过对现象的观察、分析,从特殊到一般地探索这类现象的规律、提出猜想的思想方法称为归纳.在日常生活中,人们互相交谈时,常常有人在列举了一些现象后,说“这(即列举的现象)说明⋯⋯”其实这就是运用了归纳的方法.用归纳的方法得出的结论不一定正确,是否正确需要加以证实.(3) 请你尝试用归纳的方法探索(用表格呈现,并加以证实):1+3+5+7+⋯+(2n−1)的和是多少?23.探索规律,观察下面由⋇组成的图案和算式,解答问题:1+3=4=22;1+3+5=9=32;1+3+5+7=16=42;1+3+5+7+9=25=52.⋯(1) 请猜想1+3+5+7+9+⋯+19=;(2) 请猜想1+3+5+7+9+⋯+(2n−1)+(2n+1)+(2n+3)=;(3) 请计算:101+103+⋯+197+199.24.在3×3的方格中,每行、每列及对角线上的3个代数式的和都相等,我们把这样的方格图叫做“等和格”.如图1的“等和格”中,每行、每列及对角线上的3个代数式的和都等于15.(1) 图2是显示部分代数式的“等和格”,可得a=(用含b的代数式表示);(2) 图3是显示部分代数式的“等和格”,可得a=,b=;(3) 图4是显示部分代数式的“等和格”,求b的值(写出具体求解过程).25.A,B两地果园分别有橘子40吨和60吨,C,D两地分别需要橘子30吨和70吨;已知从A,B到C,D的运价如表: 到C地到D地A果园每吨15元每吨12元B果园每吨10元每吨9元(1) 若从A果园运到C地的橘子为x吨,则从A果园运到D地的橘子为吨,从A果园将橘子运往D地的运输费用为元.(2) 用含x的式子表示出总运输费(要求:列式,化简).(3) 求总运输费用的最大值和最小值.(4) 若这批橘子在C地和D地进行再加工,经测算,全部橘子加工完毕后总成本为w元,且w=−(x−25)2+4360.则当x=时,w有最值(填“大”或“小”).这个值是.答案一、选择题 1. 【答案】B【知识点】简单列代数式2. 【答案】D【解析】 ∵ 第 n 个数据的规律是:n+2n (n+1), 故 n =8 时为:8+28×9=1072=536. 【知识点】用代数式表示规律3. 【答案】C【解析】由题意知,原图形中各行、各列中点数之和为 10,符合此要求的只有C . 【知识点】用代数式表示规律4. 【答案】D【知识点】点的平移、用代数式表示规律5. 【答案】C【解析】根据题意知:第一阶段时,余下的线段的长度之和为 23, 第二阶段时,余下的线段的长度之和为 23×23=(23)2, 第三阶段时,余下的线段的长度之和为 23×23×23=(23)3, ⋯, 以此类推,当达到第五个阶段时,余下的线段的长度之和为 (23)5=32243, 取走的线段的长度之和为 1−32243=211243. 【知识点】用代数式表示规律6. 【答案】A【解析】每次平移 5 个单位,n 次平移 5n 个单位,即 BN 的长为 5n ,加上 AB 的长即为 AB n 的长,AB n =5n +AB =5n +6. 【知识点】用代数式表示规律7. 【答案】C【解析】3a2,a不是同类项,不能合并,故A错误;−2(a−b)=−2a+2b,故B错误;a2b−2a2b=−a2b,故C正确;5a−4a=a,故D错误,故选:C.【知识点】合并同类项、去括号8. 【答案】C【解析】设第m个图形中有a m(m为正整数)个小三角形.观察图形,可知:a1=1+1=2,a2=(1+2)+3=6,a3=(1+2+3)+5=11,a4= (1+2+3+4)+7=17,⋯,∴a m=(1+2+⋯+m)+2m−1=m(m+1)2+2m−1=12m2+52m−1(m为正整数),∴n=a8=12×82+52×8−1=51.【知识点】用代数式表示规律9. 【答案】C【知识点】用字母表示数10. 【答案】C【解析】第1个图形有正方形1个,第2个图形有正方形4个,第3个图形有正方形7个,第4个图形有正方形11个,⋯,第n个图形有正方形(3n−2)个,当n=2018时,3×2018−2=6052个正方形.【知识点】用代数式表示规律二、填空题11. 【答案】(3n−2)【解析】观察发现:第一个图形有3×2−3+1=4个三角形;第二个图形有3×3−3+1=7个三角形;第一个图形有3×4−3+1=10个三角形;⋯第n−1个图形有3n−3+1=3n−2个三角形.【知识点】用代数式表示规律12. 【答案】82【知识点】用代数式表示规律13. 【答案】c+d−2b【解析】根据数轴右侧的数大于左侧的数,则右侧数减去左侧数为正,去掉绝对值,∵a−b>0,b−c<0,d−a<0,∴∣a−b∣=a−b,∣b−c∣=−(b−c),∣d−a∣=−(d−a),故∣a−b∣+∣b−c∣−∣d−a∣=a−b−(b−c)+(d−a)=a−b−b+c+d−a=c+d−2b.【知识点】整式的加减运算、绝对值的几何意义14. 【答案】(0,2)【解析】∵点P坐标为(0,2),点A坐标为(1,1),∴点P关于点A的对称点P1的坐标为(2,0),点P1关于点B(1,−1)的对称点P2的坐标(0,−2),点P2关于点C(−1,−1)的对称点P3的坐标为(−2,0),点P3关于点D(−1,1)的对称点P4的坐标为(0,2),即点P4与点P重合了;∵2020÷4=505,∴点P2020的坐标与点P4的坐标相同,∴点P2020的坐标为(0,2).【知识点】坐标平面内图形轴对称变换n+m15. 【答案】43【知识点】简单列代数式16. 【答案】165【解析】第一个图形有3=3×1=3个点,第二个图形有3+6=3×(1+2)=9个点(在第一个图形的基础上,外面又包了一个三角形,三个顶点,在三边上多了三个点);第三个图形有3+6+9=3×(1+2+3)=18个点;(在第二个图形基础上,外面又包了一个三角形,在三边上多了三个点,即:在第一图形的基础上多了两个三角形,从里向外,依次多6个点,9个点,包括增加的三角形的顶点)⋯第n个图形有3+6+9+⋯+3n=3×(1+2+3+⋯+n)=3n(n+1)个点;2=165个点,当n=10时,3×10×112故答案为:165.【知识点】用代数式表示规律17. 【答案】0或−2【解析】ab=1,c+d=0.∣m∣=1.−1=0或−2.原式=1m【知识点】简单的代数式求值三、解答题18. 【答案】(1) 地毯的面积为:(mn+2nℎ)cm2.(2) 地毯总长:60×2+160=280(cm),160×60+2×60×75=18600(cm2),答:地毯的面积为18600cm2.【知识点】简单的代数式求值、简单列代数式19. 【答案】aℎ=a2−2aℎ.(1) 阴影部分的面积为:a2−4×12时,(2) 当a=2,ℎ=12原式=a2−2aℎ=22−2×2×12=2.【知识点】简单列代数式、简单的代数式求值20. 【答案】(1) 3;∣x−3∣;x;−2(2) 5【解析】(1) 数轴上表示−2和−5的两点之间的距离=∣−2−(−5)∣=3;数轴上表示数x和3的两点之间的距离=∣x−3∣;数轴上表示数x和−2的两点之间的距离表示为∣x+2∣.(2) 当−2≤x≤3时,∣x+2∣+∣x−3∣=x+2+3−x=5.【知识点】绝对值的几何意义、整式的加减运算、数轴的概念21. 【答案】(1) 400a+b分钟.(2) 400a−b分钟.【知识点】简单列代数式22. 【答案】(1) 5;7(2) 2;(2n+1)(3)加数的个数和1+3221+3+5321+3+5+742⋯⋯1+3+5+7+⋯+(2n−1)n2证明:∵S=1+3+5+7+⋯+(2n−5)+(2n−3)+(2n−1),∴S=(2n−1)+(2n−3)+(2n−5)+⋯+7+5+3+1,∴S+S=2n⋅n=2n2,2S=2n2,S=n2.【解析】(1) 由图形规律可得,答案为5,7.(2) ∵5−3=7−5=2,∴三角形内的点每增加1个,最多可以剪得的三角形增加2个;∵三角形内点的个数为1时,最多剪出的小三角形个数3=2×1+1,三角形内点的个数为2时,最多剪出的小三角形个数5=2×2+1,三角形内点的个数为3时,最多剪出的小三角形个数7=2×3+1,∴三角形内点的个数为n时,最多剪出的小三角形个数2n+1.【知识点】用代数式表示规律、整式的加减运算23. 【答案】(1) 100(2) (n+2)2(3)101+103+⋯+197+199 =(1+1992)2−(1+992)2=10000−2500=7500.【解析】(1) 1+3+5+7+9+⋯+19=(1+192)2=100.(2)1+3+5+7+9+⋯+(2n−1)+(2n+1)+(2n+3) =(1+2n+32)2=(n+2)2.【知识点】用代数式表示规律24. 【答案】(1) −b(2) −2;2(3) 2a2+a+(a−2a2)=a2+2a+(a+3),a2+a=−3,2a2+a+(a+3)=b+3a2+2a+(a2+2a),b=−2a2−2a+3,b=−2(a2+a)+3=6+3=9.【知识点】整式的加减运算25. 【答案】(1) (40−x),12(40−x).(2) 从A果园运到C地x吨,运费为每吨15元;从A果园运到D地的橘子为(40−x)吨,运费为每吨12元;从B果园运到C地(30−x)吨,运费为每吨10元;从B果园运到D地(30+x)吨,运费为每吨9元;所以总运费为:15x+12(40−x)+10(30−x)+9(30+x)=2x+1050.(3) 因为总运费=2x+1050,当x=30时,有最大值2×30+1050=1110元.当x=0时,有最小值2×0+1050=1050元.(4) 25大4360【解析】(1) 因为从A果园运到C地的橘子是x吨,那么从A果园运到D地的橘子为(40−x)吨,从A运到D地的运费是12元每吨,所以A果园将橘子运往D地的运输费用为12(40−x)吨.(4) w=−(x−25)2+4360,因为二次项系数−1<0,所以抛物线开口向下,当x=25时,w有最大值.最大值时4360.【知识点】二次函数的最值、简单的代数式求值、整式加减的应用、简单列代数式。
北师大版七年级数学上册第3章《整式及其加减》单元练习题(含答案)一、单选题1.关于多项式2231x y xy -+-,下列说法正确的是( ).A .次数是3B .常数项是1C .次数是5D .三次项是22x y2.代数式1x , 2x +y , 13a 2b , x y π-, 54y x , 0.5 中整式的个数( ) A .3个 B .4个 C .5个 D .6个3.小李今年a 岁,小王今年(a -15)岁,过n +1年后,他们相差( )岁A .15B .n +1C .n +16D .164.已知单项式13m a b +与13n b a --可以合并同类项,则m ,n 分别为( )A .2,2B .3,2C .2,0D .3,05.若7,24m n n p +=-=,则3m n p +-=( )A .11-B .3-C .3D .116.设a 是绝对值最小的有理数,b 是最大的负整数,c 是倒数等于自身的有理数,则a b c -+的值为 ( )A .2B .0C .0或2D .0或-27.如果0xy ≠,22103xy axy +=,那么a 的值为( ) A .-3 B .13- C .0 D .38.黑板上有一道题,是一个多项式减去2351x x -+,某同学由于大意,将减号抄成加号,得出结果是2537x x +-,这道题的正确结果是( ).A .2826x x --B .214125x x --C .2288x x +-D .2139x x -+-9.代数式3x 2y-4x 3y 2-5xy 3-1按x 的升幂排列,正确的是( )A .-4x 3y 2+3x 2y-5xy 3-1B .-5xy 3+3x 2y-4x 3y 2-1C .-1+3x 2y-4x 3y 2-5xy 3D .-1-5xy 3+3x 2y-4x 3y 210.两个形状大小完全相同的长方形中放入4个相同的小长方形后,得到图①和图②的阴影部分,如果大长方形的长为m ,则图②与图①的阴影部分周长之差是( )A .2m -B .2mC .3mD .3m -二、填空题11.多项式2333325467a c bc ab a -+--最高次项为__________,常数项为__________. 12.计算42a a a +-的结果等于_____.13.已知2310x x -+=,则2395x x -+=_________.14.张老师带了100元钱去给学生买笔记本和笔,已知一本笔记本3元,一支笔2元,张老师买了a 本笔记本,b 支笔,她还剩___________________元钱(用含a ,b 的代数式表示). 15.若|1||2|0a b -+-=,则3333232a b a b ++-的值为________.16.若实数a ,b 满足2=a ,41b a -=-||,则a b +=________.三、解答题17.计算(1)()()33223410310a b b a b b -+-+; (2)22135322x x x x ⎡⎤⎛⎫---+ ⎪⎢⎥⎝⎭⎣⎦.18.化简:(1)()()193213x x --+ (2)()()222233a b ab ab a b --+19.定义:若a b 2+=,则称a 与b 是关于1 的平衡数.()1 5与_________是关于1的平衡数;()273x -与________是关于1的平衡数;(用含x 的代数式表示)()3若()22a 2x 3x x =-+,()2b 43x 6x x =-++,判断a 与b 是否是关于1的平衡数,并说明理由.20.计算下列各式,将结果写在横线上:1×1=________;11×11=________;111×111=________;1111×1111=_________.(1)你发现了什么?(2)你能直接写出111111111×111111111=的结果吗?21.某教辅书中一道整式运算的参考答案污损看不清了,形式如下:解:原式=█()2232y x +- 118x y =-+.(1)求污损部分的整式;(2)当x =2,y =﹣3时,求污损部分整式的值.22.观察下列各式的计算结果:2113131124422-=-==⨯; 2118241139933-=-==⨯; 2111535114161644-=-==⨯; 2112446115252555-=-==⨯… (1)用你发现的规律填写下列式子的结果:1﹣216= × ;1﹣2110= × . (2)用你发现的规律计算:(1﹣212)×(1﹣213)×(1﹣214)×…×(1﹣212020)×(1﹣212021)×21(1)2022-.23.已知:23231A x xy y =++-,2B x xy =-.(1)计算:A -3B ;(2)若()2120x y ++-=,求A -3B 的值;(3)若A -3B 的值与y 的取值无关,求x 的值.24.如图是一个长为a ,宽为b 的矩形,两个阴影图形都是一对底边长为1,且底边在矩形对边上的平行四边形.(1)用含字母a ,b 的代数式表示矩形中空白部分的面积;(2)当a=3,b=2时,求矩形中空白部分的面积.25.观察算式:213142⨯+==;224193⨯+==;2351164⨯+==;2461255⨯+==,…(1)请根据你发现的规律填空:681⨯+=()2;(2)用含n的等式表示上面的规律:;(n为正整数)(3)利用找到的规律解决下面的问题:计算:11111111132********⎛⎫⎛⎫⎛⎫⎛⎫+⨯+⨯+⨯⨯+⎪ ⎪ ⎪ ⎪⨯⨯⨯⨯⎝⎭⎝⎭⎝⎭⎝⎭.26.如图,甲、乙两人(看成点)分别在数轴上表示-3和5的位置,沿数轴做移动游戏,每次移动游戏规则:裁判先捂住一枚硬币,再让两人猜向上一面是正是反,而后根据所猜结果进行移动.①若都对或都错,则甲向东移动1个单位,同时乙向西移动1个单位;②若甲对乙错,则甲向东移动4个单位,同时乙向东移动2个单位;③若甲错乙对,则甲向西移动2个单位,同时乙向西移动4个单位.(1)若经过第一次移动游戏,甲的位置停在了数轴的正半轴上,则甲、乙猜测的结果是______(填“谁对谁错”)(2)从如图的位置开始,若完成了10次移动游戏,发现甲、乙每次所猜结果均为一对一错,设乙猜对n次,且他最终停留的位置对应的数为m.①试用含n的代数式表示m;②该位置距离原点O最近时n的值为(3)从如图的位置开始,若进行了k次移动游戏后,甲与乙的位置相距2个单位,则k的值是参考答案1.A2.B3.A4.A5.D6.C7.B8.D9.D10.B11.35ab4-12.5a13.214.(100-3a-2b)15.-316.−1或517.(1)32243a b a b-;(2)293 2x x--18.(1)3x-;(2)22ab-19.(1)-3;(2)3x5-;(3)20.(1)n位(各位数字都是1)的数自乘,得到(2n-1)位的数,最中间位的数字为n,它的两边位上的数字依次减1,第一位和最后一位是1(2)1234567898765432121.(1)2687.y y x -+-(2)92.-22.(1)56,76,910,1110; (2)2023404423.(1)5xy +3y -1(2)-5 (3)35x =- 24.(1)S =ab ﹣a ﹣b +1;(2)矩形中空白部分的面积为2; 25.(1)7;(2)n •(n +2)+1=(n +1)2;(3)9950. 26.(1)甲对乙错(2)①-6n +25 ;②4(3)3或5。
北师大版七年级上册 第三章 整式及其加减 3.3 整式 同步测试题1.在式子-x 2,1x,x -2,-10a 2,0.8中, 单项式有________________.2.-a 2b 的系数是________,次数是________;26x 3y 2的系数是________,次数是________;-3m 2n 5的系数是________,次数是________. 3.-4a 2b 的次数是( )A .3B .2C .4D .-44.下列说法正确的是( )A .单项式m 的次数是0B .-12πa 的系数是-12C .2πr 2的次数是3D.-a 2b 3的系数为-13,次数为3 5.下列说法正确的是( )A .单项式x 的系数和次数都是0B .单项式x 的系数和2的系数一样都是1C .5πR 2的系数为5D .0是单项式6.下列说法正确的是( )A .单项式-xy 25的系数是-5,次数是2 B .单项式a 的系数为1,次数是0C.xy -12是二次单项式 D .单项式-67ab 的系数为-67,次数是2 7.下列式子:2a 2b ,3xy -2y 2,a +b 2,4,-m ,x +yz 2x ,ab -c π,其中多项式有( ) A .2个B .3个C .4个D .5个8.多项式4x 2-3x -2是________次________项式,它的项分别是________.-53a 2b 2+a 3-34ab +1是________次________项式,它的二次项的系数是________. 9.多项式1+2xy -3xy 2的次数及最高次项的系数分别是( )A .3,-3B .2,-3C .5,-3D .2,310.下列各多项式中,是二次三项式的是( )A .a 2+b 2B .x +y +7C .5-x -y 2D .x 2-y 2+x -3x 211.下列说法错误的是( )A.2a+b 是一次二项式 B .x 6-1是六次二项式C .3x 4-5x 2y 2-6y 3+2是四次四项式D.1x 2+2x+1不是多项式 12.下列式子中:①mn +a ;②ax 2+bx +c ;③-6ab ;④x +y 2;⑤a -b x;⑥5+7x.整式有________.(填序号)13.式子m +n 7,-4,-53xy ,b a -2,x n ,1x -3中单项式有,多项式有 . 14.代数式x +yz ,4a ,mn 3+ma +b ,-x ,1,3xy 2,15m ,m +n 4,m +n ab 中( ) A .有5个单项式,4个多项式B .有8个整式C .有9个整式D .有4个单项式,3个多项式15.(1)2x 2-3x -1中,二次项是________,二次项系数是________;一次项是________,一次项系数是________;常数项是________.(2)3a 2b 2-2ab 2+12ab -1是________次多项式, 它有________项,故是________次________项式.16.在代数式x 2+5,-1,-3x +2,π,5x ,x 2+1x +1,5x 中,整式有( ) A .3个 B .4个C .5个D .6个17.下列语句中错误的是( )A .数字0也是单项式B .单项式a 的系数与次数都是1C.12x 2y 2是二次单项式 D .-2ab 3的系数是-2318.(3m -2)x 2y n +1是关于x ,y 的五次单项式,且系数为1,则m ,n 的值分别是( )A .1,4B .1,2C .0,5D .1,119.如果整式x n -2-5x +2是关于x 的三次三项式,那么n 等于( )A .3B .4C .5D .620.一个关于x 的二次三项式,一次项的系数是1,二次项的系数和常数项都是-12, 则这个二次三项式为________________________.21.已知多项式-13x 2y m +1+12xy 2-3x 3+6是六次四项式,单项式3x 2n y 2的次数与这个多项式的次数相同,求m 2+n 2的值.22.如果|a +1|+(b -2)2=0,那么单项式-xa +byb -a 的次数是多少?23.某种商品进价为a 元/件,在销售旺季,商品售价较进价高30%;销售旺季过后,商品又以7折(即原价的70%)的价格开展促销活动,这时一件该商品的售价为多少?此时是盈利销售还是亏本销售?24.有一个多项式为a10-a9b +a8b2-a7b3+…,按这种规律写下去.(1)写出它的第六项和最后一项;(2)这个多项式是几次几项式?答案:1. -x 2,-10a 2,0.82. -1 326 5-35 33. A4. D5. D6. D7. B8. 二 三 4x 2,-3x ,-2四 四 -349. A10. C11. A12. ①②③④⑥13. -4,-53xy m +n 714. D15. (1) 2x 22-3x -3-1(2) 四四 四 四16. C17. C18. B19. C20. -12x 2+x -1221. 根据题意得2+m +1=6解得:m =3,2n +2=6解得n =2,所以m 2+n 2=1322. 因为|a +1|+(b -2)2=0,所以a +1=0,b -2=0,即a =-1,b =2.所以-x a +b y b -a =-xy 3.所以单项式-x a +b y b -a 的次数是423. 根据题意列式得:(1+30%)70%·a =0.91a 元,这时一件该商品的售价为0.91a,此时是亏本销售。
数学北师大版七年级上册整式的加减练习题整式的加减是代数学习的重要基石,对于七年级的学生来说,理解并掌握整式的加减法则是进一步学习更高级数学课程的关键。
下面,我将提供一些由浅入深的练习题,以帮助学生掌握整式的加减法。
一、单项式的加减例1.1: (-2) + (-3) = ?例1.2: (2/3) + (-1/4) = ?例1.3: (-2/3) + (2/3) = ?二、多项式的加减例2.1: (x + y) + (x - y) = ?例2.2: (-2x + 3y) + (3x - 4y) = ?例2.3: (2x - 3y) + (-4x + 5y) = ?三、合并同类项例3.1: (2x + 3y) + (4x + 5y) = ?例3.2: (-2x - 3y) + (4x + 5y) = ?例3.3: (2x - 3y) + (-4x + 5y) = ?四、去括号例4.1: (2x - 3y) - (4x + 5y) = ?例4.2: (-2x - 3y) - (4x + 5y) = ?例4.3: (2x - 3y) - (-4x + 5y) = ?五、整式的加减应用题例5.1:一个长方形的长是6m,宽是4m。
求这个长方形的周长。
例5.2:一个梯形的上底是7m,下底是3m,高是5m。
求这个梯形的面积。
在解答这些练习题时,学生们应先尝试独立完成,然后再对照答案进行自我评估。
这样,他们不仅能加深对整式的加减运算的理解,还能提升解决实际问题的能力。
老师或家长也可以根据这些练习题的解答情况,了解学生对整式加减法的掌握程度,从而调整教学策略或辅导方法。
七年级上册数学整式的加减》测试题七年级上册数学整式的加减测试题一、填空题(每小题3分,共30分)1、已知一杯茶要放25g奶粉,那么10杯茶需要放奶粉________g.2、已知一次劳务费为a元,按每月5%的比例提取,经过n个月后,总共提取________元.3、若n为整数,则用n的代数式表示偶数为________,奇数为________.4、某商店原来平均每天要用去打印纸500张,最近因扩大业务范围,每天需要用去打印纸________张.5、已知x+y=3,xy=2,则x-y=________.6、一个长方形的长为2a+3b,宽为a,则这个长方形的周长为________.7、若代数式3x-4与代数式x+3的和是10,则x的值是________.8、某市出租车收费标准是:起步价为7元,2千米以后每千米为2.6元,则乘坐出租车走x(x为大于起步路程小于9千米的整数)千米的路程时,需要付________元.9、已知单项式2x^{m}y^{n-1}的次数是5,则m、n的值分别为m=,n=.10、在多项式中,每个单项式叫做多项式的________,多项式中各项的________叫做这个多项式的次数.二、选择题(每小题3分,共30分)11、下列各组数中,不是同类项的是()A. -7与-4 BB.与-2C.与D. -1与−1∣111、下列各式的值等于5的是()A. B. C. D.1111、下列各式的计算中,正确的是()A. B. C. D.下列各式的化简结果为不同的是()A.与B.与C.与D.与下列各式的计算中,正确的是()A B C D下列各式的化简结果为不同的是()A B C D下列各式的计算中,正确的是()A B C D下列各式的化简结果为不同的是()A B C D19下列各式的计算中,正确的是()A B C D 20下列各式的化简结果为不同的是()A B C D三、化简下列各式(每小题5分,共30分) 21 (6a+5b)+(4a-3b) 22 -(2x+3y)+(4x-5y) 23 3(2a-b)-2(a+3b) 24x-[4x-(3x-7)]+[2x-(x+5)] 25 3(-ab+2a)-(3a-b) 26 (6a-7b)-(4a+b) 27 2x-[5x-(3x-1)]+[4x-(x+5)] 28 x+(3x+6)-(4x+2)四、解方程(每小题5分,共10分) 29 x+2=5 30 x-4=6五、应用题(每小题10分,共20分) 31在一块长为40m、宽为22m的矩形地面上要建造一个长为18m、宽为10m的长方形花坛,请你求出这快地面上还剩下的空地面积。
2022-2023学年七年级数学上册第三章《整式及其加减》测试卷一、单选题1.填在下面各正方形中的四个数之间都有一定的规律,按此规律可得到+++a b c d 的值为()A .355B .356C .435D .4362.若单项式25m x y +-与单项式2136n y x -的和仍为单项式,则2m n -的值为()A .6B .1C .3D .1-3.已知一个多项式与239x x +的和等于2341x x +-,则这个多项式是()A .51x --B .51x +C .131x --D .131x +4.下列结论正确的个数是()①2-不是单项式②多项式3527x y xy --是三次三项式③232π3a b c的系数是23,次数是6④233m n -的次数为4A .0个B .1个C .2个D .3个5.多项式23211332x y xy -+的次数为()A .5B .3C .7D .86.已知53x y -=-,则55x y -+的值为()A .0B .2C .5D .87.一本笔记本的原价为a 元,降价后每本比原来便宜了b 元,小明买了4本这样的笔记本,则他一共花费了()A .()44a b -元B .()4a b -元C .()4a b -元D .4b 元8.按如图所示的运算程序,当输入3x =,6y =时,输出的结果为()A .1B .6C .45D .819.若()22m -与3n +互为相反数,则m n 的值是()A .8-B .8C .9-D .910.当=1x -时,3238ax bx -+的值为18,则1282b a -+的值为()A .40B .42C .46D .56二、填空题11.在式子1x,1x y ++,2022,a -,23x y -,13x +中,整式的个数是______个.12.已知520a b ++-=,则27a b -+的值为___________13.a ,b 两数平方的和除以3的商可以表示为______.14.已知有理数a 、b 、c 满足1,2,3a b c ===,且a b c a b c +-=+-,则a b c ++=__________.15.如关于x ,y 的多项式2347514x y mxy y xy +-+化简后不含二次项,则m =______.16.已知关于x 的多项式||2(4)31m m x x ---+是二次三项式,则m =________,当=1x -时,该多项式的值为________.17.对于任何有理数,我们规定符号a b cd的意义是a b ad bc c d =-,如121423234=⨯-⨯=-,当23(1)0x y -++=时,2221x y x --值为______.18.规定:()3f x x =-,()2g y y =+,例如()2235f -=--=,()2220g -=-+=.则式子()()11f x g x -++的最小值是__________.三、解答题19.已知()2230a b -++=,求代数式2222332232a b ab ab a b ab ab ⎡⎤⎛⎫---++ ⎪⎢⎥⎝⎭⎣⎦的值.20.已知代数式2=2+3+21A x xy y -,22B x xy x -=++.(1)当=1x -,2y =时,求2A B -的值;(2)若2A B -的值与x 的取值无关,求y 的值.21.某超市销售茶壶、茶杯,每只茶壶定价20元,每只茶杯定价4元.今年“双十一”期间开展促销活动,向顾客提供两种优惠方案:方案一:每买一只茶壶就赠一只茶杯;方案二:茶壶和茶杯都按定价的90%付款.某顾客计划到这家超市购买6只茶壶和x 只茶杯茶(杯数多于6只).(1)用含x 的代数式分别表示方案一与方案二各需付款多少元?(2)当25x =时,若规定每位顾客只能在以上两种方案中任选一种,请通过计算说明该顾客选择上面两种购买方案中哪一种更省钱?22.某超市新进了一批百香果,进价为每斤8元,为了合理定价,在前五天试行机动价格,售出时每斤以10元为标准,超出10元的部分记为正,不足10元的部分记为负,超市记录的前五天百香果的销售单价和销售数量如下表所示,第1天第2天第3天第4天第5天销售单价(元)1+2-3+1-2+销售数量(斤)2035103015(1)前5天售卖中,单价最高的是第___________天;单价最高的一天比单价最低的一天多___________元;(2)求前5天售出百香果的总利润;(3)该超市为了促销这种百香果,决定推出一种优惠方案:购买不超过6斤百香果,每斤12元,超出6斤的部分,每斤9.6元.若嘉嘉在该超市买(6)x x >斤百香果,用含x 的式子表示嘉嘉的付款金额.23.为了节约用水,某自来水公司采取以下收费方法:若每户每月用水不超过10吨,则每吨水收费2.6元;若每户每月用水超过10吨,则超过的部分按每吨3元收费.8月份李老师家里用水a 吨(10a >).(1)请用含a 的代数式表示李老师8月份应交的水费.(2)当13a =时,求李老师8月份应交水费多少元?24.已知若a b 、互为相反数,、c d 互为倒数,m 的绝对值为2022.(1)直接写出a b +,cd ,m 的值;(2)求a bm cd m+++的值.25.已知多项式2134331m x y x y x +-+--是五次四项式,单项式333n m x y z -与该多项式的次数相同.(1)求m 、n 的值.(2)若2|1|(2)0x y -+-=,求这个多项式的值.26.阅读下面的材料,完成相关的问题.在学习绝对值时,我们已经知道绝对值的几何含义,如|5-1|表示5,1在数轴上对应的两点之间的距离;|5+1|=|5-(-1)|,所以|5+1|表示5,-1在数轴上对应的两点之间的距离;|5|=|5-0|,所以|5|表示5在数轴上对应的点到原点的距离.一般地,点A 、B 在数轴上分别表示数m ,n ,那么点m ,n 之间的距离等于|m -n |.(1)利用数轴探究:①若点P 表示数2,则在同一数轴上到点P 的距离为5个单位长度的点表示的数是;②|x +3|+|x -2|有最值(填“大”或“小”),此时整数x 的值为;(2)若点M 、N 、P 是数轴上的三点,点M 表示的数为4,点N 表示的数为-2,动点P 表示的数为x .若12PM PN +=,则x 的值为;(3)已知多项式32235x y xy --的常数项是a ,次数是b ,a 、b 两数在数轴上所对应的点分别为A 、B ,若点A ,点B 同时沿数轴正方向运动,点A 的速度是点B 的3倍,且2秒后,使点B 到原点的距离是点A 到原点的距离的2倍,求点B 的速度.27.为了加强公民的节水意识,合理利用水资源,某市采用价格调控的手段达到节水的目的,该市自来水收费的价目表如表(注:水费按一个月结算一次):请根据价目表的内容解答下列问题:每月用水量(m 3)单价(元/m 3)不超出26m 3的部分3超出26m 3不超出34m 3的部分4超出34m 3的部分7(1)填空:若该户居民1月份用水20立方米,则应收水费元;若该户2月份用水30立方米,则应收水费元;(2)若该户居民3月份用水x 立方米(其中2634x £<),则应收水费多少元?(结果用含x 的代数式表示)(3)若该户居民3月份用水a 立方米(其中34a >),则应收水费多少元?(结果用含a 的代数式表示)28.在解决数学问题的过程中,我们常用到“分类讨论”的数学思想,下面是运用分类讨论的数学思想解决问题的过程,请仔细阅读,并解答题目后提出的【探究】.【提出问题】两个不为0的有理数a ,b 满足a ,b 同号,求a a b b+的值.【解决问题】解:由a 、b 同号且都不为0可知a 、b 有两种可能:①a 、b 都是正数:②a 、b 都是负数.①若a 、b 都是正数,即0a >,0b >,有a a =及b b =,则112aa bba b++==+=;②若a 、b 都是负数,即0a <,0b <,有a a =-及b b =-,()()()()112a b a b a b a b--+=+=-+-=-;所以a a bb+的值为2或2-.【探究】请根据上面的解题思路解答下面的问题:(1)已知3a =且7b =,且a b <,求a b +的值.(2)两个不为0的有理数a ,b 满足a ,b 异号,求a a b b+的值.(3)若0abc >,则||||||a b c a b c++的值可能是多少?参考答案:1.D2.D3.A4.B5.A6.D7.A8.A9.D10.B11.512.-513.223a b +14.4-或0或615.2-16.4-4-17.28-18.719.解:2222332232a b ab ab a b ab ab⎡⎤⎛⎫---++ ⎪⎢⎥⎝⎭⎣⎦()222232233a b ab ab a b ab ab =--+++222232233a b ab ab a b ab ab =-+--+2ab ab =+,∵()2230a b -++=,()22030a b -≥+≥,,∴()22030a b -=+=,,∴2030a b -=+=,,∴23a b ==-,,∴原式()()2232318612=⨯-+⨯-=-=.20.(1)解:由题意可得,22223212(2)A B x xy y x xy x -=++---++2223212224x xy y x xy x =++--+--5225xy x y =-+-,当=1x -,2y =时,252255(1)22(1)225102459A B xy x y -=-+-=⨯-⨯-⨯-+⨯-=-++-=-;(2)解:由题意可得,2(52)25A B x y y -=-+-,∵2A B -的值与x 的取值无关,∴520y -=,解得:25y =;21.(1)解:某顾客计划到这家超市购买6只茶壶和x 只茶杯(茶杯数多于6只),根据题意可得:方案一:()()62046496x x ⨯+-=+元;方案二:()()620490% 3.6108x x ⨯+⨯=+元;(2)当25x =时,方案一需付款42596196⨯+=(元),方案二需付款3.625108198⨯+=(元),∵196198<,∴选择方案一更省钱.22.、(1)解:∵+3+2+1>1>2>>--,∴前5天售卖中,单价最高的是第3天;∵+3(2)=5--∴价最高的一天比单价最低的一天多5元,故答案为:3,5;(2)解:以10元为标准每斤百香果所获的利润为108=2-(元),前5天售出百香果的总利润为:20(12)35(22)10(32)30(12)15(22)⨯++⨯-++⨯++⨯-++⨯+=203350105301154⨯+⨯+⨯+⨯+⨯=200(元),答:前5天售出百香果的总利润为200元;(3)解:根据题意得,()()1269.669.614.4x x ⨯+-=+元,即嘉嘉在该超市买(6)x x >斤百香果,付款金额为()9.614.4x +元.23.、(1)()26310a +-(2)当13a =时())26310(35a +-=元24.(1)解: a b 、互为相反数,、c d 互为倒数,m 的绝对值为2022,012022a b cd m ∴+===±,,;(2)解:当2022m =时,02022120232022a b m cd m +++=++=,当2022m =-时,02022120212022a b m cd m +++=-++=--,∴a bm cd m+++的值为2023或2021-.25.、解:(1)∵多项式2134331m x y x y x +-+--是五次四项式,∴13m +=,解得2m =,∵单项式333n m x y z -与该多项式的次数相同,∴3315n m +-+=,即33215n +-+=,解得1n =,∴2m =,1n =;(2)∵2|1|(2)0x y -+-=,∴10x -=,20y -=,∴1x =,2y =,由(1)得这个多项式为:2334331x y x y x -+--,∴2334331x y x y x -+--=233431212311-⨯⨯+⨯-⨯-=24231-+--=26-,所以这个多项式的值为26-.26.、解:(1)①设在同一数轴上到点P 的距离为5个单位长度的点表示的数是x ,由题意得:25x -=,∴25x -=±,∴3x =-或7x =,故答案为:-3或7;②当2x >时,3232215x x x x x ++-=++-=+>;当3x <-时,()()3232215x x x x x ++-=-+--=-->;当32x -≤≤时,()32325x x x x ++-=+--=;∴32x x ++-有最小值,此时32x -≤≤;故答案为:小,32x -≤≤;(2)∵点M 、N 、P 是数轴上的三点,点M 表示的数为4,点N 表示的数为-2,动点P 表示的数为x ,∴4PM x =-,2PN x =+,∵12PM PN +=,∴4212x x -++=,当>4x 时,42422212x x x x x -++=-++=-=,解得7x =;当<2x -时,()()42422212x x x x x -++=---+=-+=,解得5x =-;当24x -≤≤时,()()4242612x x x x -++=--++=≠;∴综上所述,5x =-或7x =,故答案为:-5或7;(3)∵多项式32235x y xy --的常数项是a ,次数是b ,∴53a b =-⎧⎨=⎩,设B 的运动速度为v ,则A 的运动速度为3v ,则2s 后A 表示的数为56v -+,B 表示的数为32v +,∴B 到原点的距离32v =+,A 到原点的距离为56v -+,∵2秒后,使点B 到原点的距离是点A 到原点的距离的2倍,∴32=256v v +-+,解得12v =或1310v =.27.(1)∵2026<∴用水20立方米,则应收水费为20360⨯=元;∵263034<<∴用水30立方米,则应收水费为()2633026494⨯+-⨯=元;故答案为:60;94.(2)依题意得:应收水费为326426x ´+´-()426x -=()元.故应收水费426x -()元;(3)依题意得:应收水费为32643426734a ´+´-+-()()7128a -=()元.故应收水费7128a -()元.28.(1)解:∵3a =,7b =,∴3a =或3-,7b =或7-,∵a b <,∴3a =,7b =或3a =-,7b =,当3a =,7b =时3710a b +=+=,当3a =-,7b =时374a b +=-+=,综上,a b +的值10或4;(2)解:由a 、b 异号,可知:①0a >,0b <;②a<0,0b >,当0a >,0b <时,110a ba b +=-=;当a<0,0b >时,110a ba b+=-+=,综上,a ab b+的值为0;(3)解:由题意得:a ,b ,c 三个有理数都为正数或其中一个为正数,另两个为负数.①当a ,b ,c 都是正数,即0a >,0b >,0c >时,则:||||||1113a b c a b ca b c a b c++=+=++=;②当a ,b ,c 有一个为正数,另两个为负数时,设0a >,0b <,0c <,则:||||||1111a b c a b c a b c a b c --++=++=--=-所以:||||||a b c a b c++的值为3或1-.。
3.1 字母表示数 1.填空:(1)小明比小红大3岁,当小红m 岁时,小明________岁. 2)三角形的底边是a ,对应该边上的高是h ,则该三角形的面积是_____ . (3)拿100元钱去买钢笔和笔记本,买了单价为2元的钢笔n 支,买了单价为3元的笔记本m 个,则一共花钱_________ 元.2.把长和宽分别是a 、b 的长方形纸片的四个角都剪去一个边长为x 的正方形.则纸片剩余部分的面积为________. 1.甲乙两人岁数的年龄和等于甲乙两人年龄差的3倍,甲x 岁,乙y 岁,则他们的年龄和如何用年龄差表示(). A.(x+y) B.(x -y) C.3(x -y) D.3(x+y)公路全长P 米,骑车n 小时可到,如想提前一小时到,则需每小时走_______米.3.2 代数式用运算符号(加、减、乘、除、乘方、开方等)把数或表示数的字母连接而成的式子叫做代数式。
单独的一个数或一个字母也是代数式。
注意:①代数式中不含有“=、>、<、≥、≤、≠”等符号。
②代数式中的字母所表示的数必须要使这个代数式有意义,是实际问题的要符合实际问题的意义。
※代数式的书写格式:①代数式中出现乘号,通常省略不写,如vt ;②数字与字母相乘时,数字应写在字母前面,如4a ;③带分数与字母相乘时,应先把带分数化成假分数,如a ⨯312应写作a 37;④在代数式中出现除法运算时,一般写成分数的形式,如4÷(a-4)应写作44-a ;注意:分数线具有“÷”号和括号的双重作用。
⑤在表示和(或)差的代数式后有单位名称的,则必须把代数式括起来,再将单位名称写在式子的后面,如)(22b a -平方米。
1.下列代数式中,符合代数式书写要求的有().(1)2113x y ;(2)3ab c ÷;(3)2m n ;(4)225a b -;(5)()2m n ⨯+;(6)4mb ⋅A.1个B.2个C.3个D.4个2.下列各式中哪些是代数式?哪些不是代数式? (1)12-x (2)1=a (3)2R s =(4)27(5)21>31 3.一个分数,分子是x ,分母比分子的5倍小3,则这个数是(). A .53x x - B .53x x + C .5(3)x x - D .53xx - 5.a b 、和的2倍乘以x 与y 的2倍的和的积,用代数式可表示为_______.1.小宁买了20个练习本,店主给他打八折(即标价的80%)优惠,结果便宜1.60元,则每个练习本的标价是()元.A.0.20元B.0.40元C.0.60元D.0.80元2.当4,8==b a 时,代数式ab ab 22-的值是().A.63B.62C.1022D.1263.如果012=-+x x ,那么代数式7223-+x x 的值为(). A.6 B.8 C.-6 D.-84.按照下图所示的操作步骤,若输入x 的值为-2,则给出的值为.5.现规定一种运算*a b ab a b =+-,其中a ,b 为有理数,则3*5的值为.☆能力提升11.代数式a 2+b 2的意义是().A.a 与b 的和的平方B.a+b 的平方C.a 与b 的平方和D.以上都不对 12.一个两位数,个位是a ,十位比个位大1,这个两位数是(). A.a(a+1) B.(a+1)a C.10(a+1)a D.10(a+1)+a 14.下列说法中错误的是( ).A.x 与y 平方的差是x 2-y 2B.x 加上y 除以x 的商是xyx +C.x 减去y 的2倍所得的差是x-2yD.x 与y 和的平方的2倍是2(x+y)2 15.若23(2)0m n -++=,则2m n +的值为(). A .4- B .1- C .0D .419.下面选项中符合代数式书写要求的是 ( ).A.123cb 2a B.ay ·3 C.24ab D .a ×b+c22.已知3a b ==-,x 、y 互为倒数,则()132a b xy +-的值是().A .12B .0C .-6D .-9 3.3 整式:单项式和多项式统称为整式。
七(上)第三章整式及其加减整式3.3 整式:1、单项式:(1)单项式的定义:数与字母的乘积组成的代数式为单项式,单独一个数或一个字母也是单项式,如 6,a都是单项式.因此,单项式只能含有乘法以及以数字为除数的除法运算,不能含有加减运算,更不能含有以字母为除式的除法运算.(2)单项式的系数:单项式中的数字因数叫单项式的系数,如-2xy2的系数为-2.单项式的系数为1或-1时,通常省略不写,但“-”号不能省略.如1ab写成ab,-1ab写成-ab.(3)单项式的次数一个单项式,所有字母的指数的和叫做这个单项式的次数.如5x2y4的次数为6(2+4=6).一个单项式的次数是几,习惯上又称作这个单项式是几次单项式.如5x2y4是六次单项式.单项式中字母的指数为1时,1省略不写,但计算单项式次数时不能丢掉,或误认为是0.如5xy2的次数是1+2=3,而不是2.练习:1、下列代数式是否都是单项式?13r2h ,2πr,0,a+b,xy,abc ,-m ,6,a 。
2、13r2h的系数是____,次数是___; abc的系数是___ , 次数是___;-m的系数是___, 次数是___;54x2yz的系数是___, 次数是___。
3、指出下列多项式的项和次数:(1) a3-a2b+ab2-b3 (2) 3n4-2n2+14、x3-x+1是一个次项式;x3-2x2y2+3y2是一个次项式。
注意:(1)单项式只能含有乘法运算以及以数字为除数的除法运算,不能含有加减运算,更不能含有以字母为除式的除法运算。
(2)多项式中含有加减运算,也可以含有乘方、乘除运算,但不能含有以字母为除式的除法运算。
如,2a+b-1不是多项式。
(3)单项式只含有字母的,它的系数是1或-1,1可以不写;单项式的系数包括它前面的符号;单项式的系数是带分数时,通常写成假分数.单项式中的某个字母没有写指数,则次数是1;单独一个非零数的次数是0;单项式的次数仅与字母有关,而与系数指数无关。
整式班级:___________姓名:___________得分:__________一、选择题(每小题8分,共40分)1. 在下列代数式:21ab ,2b a ,ab 2+b+1,x 3+y2,x 3+ x 2-3中,多项式有( ) A .2个 B .3个 C .4个 D5个2. 单项式的系数是()A 、B 、-C 、D 、-3. 下列式子-xyz ;2n ;-x 2y ; ; a 2+b 2;πr 2h 中,是三次单项式的有( )A 、3个B 、 4个C 、 5个D 、6个4. 下列整式中,次数是二次的是( )A .aB .-x ²yC .2x-1D .x ²+xy+y ²5. 对于多项式-3x+2xy ²-1,下列说法正确的是( ) A .一次项系数是3 B .最高次项是2xy ²C .常数项是1D .是四次三项式二、填空题(每小题8分,共40分) 6. 多项式x 2y +xy -xy 2-53中的三次项是____________.7. 观察一列单项式:a ,-4a 2,9a 3,-16a 4,25a 5…,根据你的方向规律,第10个单项式为______.8. 单项式-的系数是______,次数是______;多项式2x³y - +x-1的次数是______.9. 代数式-x ²yz 是______次______项式.10. 代数式ab-mn- πn ²是______、______、______三项的和,每一项的系数分别是______、______、______.三、解答题(共20分)11. 多项式 4x 2m+1y-5x 2y 2-πx 5y .(1)填写多项式各项及其系数和次数;(2)若多项式是八次多项式,求m的值.12若多项式2x2+5x-3与-x2-nx+5的一次项相同,求n2-的值.参考答案一、选择题1.C 【解析】2b a ,ab 2+b+1,x 3+y2,x 3+ x 2-3是多项式,所以有4个 故选C 2.D【解析】的系数是故选D 3.A【解析】-xy z 的次数是3,属于三次单项式;2n 的次数是1,属于一次单项式;-x 2y 的次数是3,属于三次单项式;不是单项式,它不属于三次单项式;a 2+b 2不是单项式,它不属于三次单项式;πr 2h 的次数是3,属于三次单项式;综上所述,是三次单项式的一共有3个. 4.D【解析】A 、a 的次数是1;故本选项错误;B 、-x ²y 的次数是3;故本选项错误;C 、2x-1的次数是1;故本选项错误;D 、x ²+xy+y ²的次数是2;故本选项正确;故选D .5.B【解析】多项式-3x+2xy²-1,A、一次项系数是-3,故此选项错误;B、最高次项是2xy²,此选项正确;C、常数项是-1,故此选项错误;D、是三次三项式,故此选项错误.故选:B.二、填空题6.x2y, -xy2【解析】多项式x2y+xy-xy2-53中的三次项是x2y, -xy2,-537.- 100a10【解析】从单项式:a,-4a2,9a3,-16a4,25a5…,可得第n个式子为:(-1)n+1n2a n,故第10个单项式为-100a10.故答案为:-100a10.8. - ,3,4【解析】单项式-的系数是- ,次数是3;多项式2x³y- +x-1的次数是4.9.四,单【解析】代数式-x²yz是四次单项式.故答案为:四;单.10. ab、-mn、-πn²,1、-1、- π.【解析】代数式ab-mn- πn²是ab、-mn、- πn²三项的和,每一项的系数分别是 1、-1、- π.三、解答题11.解:(1)2003次2004项式;(2)-x1004y999,系数是-1,次数是2003。
一、选择题1.若x=−1,则代数式x2−3x−4的值是( )A.1B.0C.−1D.−22.已知2x6y2和−13x3m y n是同类项,则2m+n的值是( )A.6B.5C.4D.23.如果代数式4y2−2y+5的值为9,那么2y2−y+3的值等于( )A.5B.3C.−3D.−54.如图,矩形ABCD的面积为28,对角线交于点O;以AB,AO为邻边作平行四边形AOC1B,对角线交于点O1;以AB,AO1为邻边作平行四边形AO1C2B;⋯,依此类推,则平行四边形AO6C7B的面积为( )A.78B.716C.732D.7645.平面上10条直线最多能把平面分成几个部分;平面上10个圆最多能把平面分成几个区域( )A.5590B.5591C.5692D.56936.观察下列图形,第一个图2条直线相交最多有1个交点,第二个图3条直线相交最多有3个交点,第三个图4条直线相交最多有6个交点,⋯,像这样,则20条直线相交最多交点的个数是( )A.171B.190C.210D.3807.如图是用黑色棋子摆成的美丽图案,按照这样的规律摆下去,第10个这样的图案需要黑色棋子的个数为( )A.148B.152C.174D.2028.观察图中正方形四个顶点所标的数字规律可知,有理数2016应标在( )A.第506个正方形的左下角B.第506个正方形的右下角C.第505个正方形的左上角D.第505个正方形的右下角9.已知整数a1,a2,a3,a4,⋯⋯满足下列条件:a1=0,a2=−∣∣a1+1∣∣,a3=−∣∣a2+2∣∣,a4=−∣a3+3∣,⋯⋯,a n+1=−∣a n+n∣(n为正整数)依此类推,则a2020值为( )A.−1008B.−1009C.−1010D.−101110.按下面的程序计算:当输入x=100时,输出结果是299;当输入x=50时,输出结果是446;如果输入x的值是正整数,输出结果是257,那么满足条件的x的值最多有( )A.1个B.2个C.3个D.4个二、填空题11.下列图中有大小不同的菱形,第1幅图中有1个,第2幅图中有3个,第3幅图中有5个,则第n幅图中共有个.12.如图,在Rt△ABC中,∠C=90∘,AC=2,BC=4.点M1,N1,P1分别在AC,BC,AB上,且四边形M1CN1P1是正方形,点M2,N2,P2分别在P1N1,BN1,BP1上,且四边形M 2N 1N 2P 2 是正方形,⋯,点 M n ,N n ,P n 分别在 P n−1N n−1,BN n−1,BP n−1 上,且四边形 M n N n−1N n P n 是正方形,则 BN 2019 的长度是 .13. 如图,是由形状相同的正六边形和正三角形镶嵌而成的一组有规律的图案,则第 n 个图案中阴影小三角形的个数是 .14. 设 11,12,21,13,22,31,⋯⋯,1k ,2k−1,3k−2,⋯⋯,k1,⋯⋯,在这列数中,第 50 个数是 .15. 观察下列各式,你发现什么规律:1×3=22−1; 3×5=42−1; 5×7=62−1; 7×9=82−1; ⋯13×15=195=142−1.将你猜想到的规律用只含有一个字母的等式表示出来 .16. 已知 a −b =2,那么 2a −2b +5= .17. 已知 a 2+a −1=0,则 a 3+2a 2+2019= .三、解答题18. 已知 A ,B ,C 三点在数轴上的位置如图所示,它们表示的数分别是 a ,b ,c .(1) 填空:abc 0,a +b 0,ab −ac 0;(填“>”、“=”或“<”) (2) 若 ∣a ∣=2 且点 B 到点 C 的距离为点 B 到点 A 的距离的 2 倍,①当 b 2=9 时,求 c 的值;② P是数轴上B,C两点之间的一个动点,设点P表示的数为x,当P点在运动过程中,bx+cx+∣x−c∣−15∣x+a∣−c的值为定值,求b的值.19.先化简,再求值:若x=2,y=−1,求2(x2y−xy2−1)−(2x2y−3xy2−3)的值.20.“囧(jiong)”是近时期网络流行语,像一个人脸郁闷的神情,如图所示,一张边长为20的正方形的纸片,剪去两个一样的小直角三角形和一个长方形得到一个“囧”字图案(阴影部分).设剪去的小长方形长和宽分别为x,y,剪去的两个小直角三角形的两直角边长也分别为x,y.(1) 用含有x,y的代数式表示图中“囧”的面积.x=4时,求此时“囧”的面积.(2) 当y=1221.(1)化简x2−(2x2−4y)+2(x2−y);(2)先化简,再求值:(3x2−xy+y)−2(5xy−4x2+y),其中x=−2,y=1.322.表二,表三,表四分别是从表一中截取的一部分.表一1234⋯2468⋯36912⋯481216⋯⋯⋯⋯⋯⋯表二1215a表三202524b表四1824cd(1) a,b,c,d的值分别为.(2) 表一中第10行,第10列中的数是.23.节约是中华民族的传统美德.为倡导市民节约用水的意识,某市对市民用水实行“阶梯收费”,制定了如下用水收费标准:每户每月的用水不超过10立方米时,水价为每立方米 1.5元,超过10立方米时,超过的部分按每立方米2.5元收费.(1) 该市某户居民9月份用水x立方米(x>10),应交水费y元,请你用含x的代数式表示y;(2) 如果某户居民12月份交水费25元,那么这个月该户居民用了多少立方米水?24.已知a+b=−2,ab=3,求2[ab+(−3a)]−3(2b−ab)的值.25.根据下列条件,求多项式x2−6x+9的值.(1) x=−3.(2) x=3..(3) x=−12(4) x=1.3答案一、选择题1. 【答案】B【解析】当x=−1时,原式=1+3−4=0,故选:B.【知识点】简单的代数式求值2. 【答案】A【解析】∵2x6y2和−13x3m y n是同类项,∴3m=6,n=2,∴m=2,n=2,∴2m+n=2×2+2=6.【知识点】同类项3. 【答案】A【解析】∵4y2−2y+5=9,∴4y2−2y=4,则2y2−y=2,∴2y2−y+3=2+3=5.【知识点】简单的代数式求值4. 【答案】C【解析】设矩形ABCD的面积为S,根据题意得:平行四边形AOC1B的面积=12矩形ABCD的面积=12S,平行四边形AO1C2B的面积=12平行四边形AOC1B的面积=14S=S22,⋯,平行四边形AO n−1C n B的面积=S2n,∴平行四边形AO n C n+1B的面积=S2n+1,∴平行四边形AO6C7B的面积为S27=2827=732.【知识点】用代数式表示规律5. 【答案】C【解析】① 1条直线最多将平面分成2个部分;2条直线最多将平面分成4个部分;3条直线最多将平面分成7个部分;现在添上第4条直线.它与前面的3条直线最多有3个交,这3个交点将第4条直线分成4段,其中每一段将原来所在平面部分分为二,所以4条直线最多将平面分成了7+4=11个部分.完全类似地,5条直线最多将平面分成11+5=16个部分;6条直线最多将平面分成16+6= 22个部分;7条直线最多将平面分成22+7=29个部分;8条直线最多将平面分成29+8= 37个部分.题目的实际意义就是说平面内10条直线,两两直线相交,会有多少个区域,1条直线分平面2个区域,2条直线分平面4个区域,3条直线分平面7个区域,4条直线分平面11个区域,以此类推,10条直线分平面56个区域.② 1个圆把平面分成部分=2,2个圆把平面最多分成的部分=2+2=4,3个圆把平面最多分成的部分=2+2+4=2+2(1+2)=8,4个圆把平面最多分成的部分=2+2(1+2+3)= 14,∵10个圆把平面最多分成的部分=2+2(1+2+3+4+5+6+7+8+9)=92.【知识点】用代数式表示规律6. 【答案】B【解析】∵第一个图,2条直线相交,最多有1个交点,第二个图,3条直线相交最多有1+2=3个交点,第三个图,4条直线相交最多有1+2+3=6个交点,∴第四个图,5条直线相交,交点最多有1+2+3+4=10个,=190.∴20条直线相交,最多交点的个数是1+2+3+⋯+19=(1+19)×192【知识点】用代数式表示规律7. 【答案】C【知识点】用代数式表示规律8. 【答案】D【解析】由图可知,每个正方形的数字有4个,∵(2016+2)÷4=2018÷4=504⋯2,∴有理数2016应标在第505个正方形的右下角.【知识点】用代数式表示规律9. 【答案】C【解析】a1=0,a2=−∣∣a1+1∣∣=−∣0+1∣=−1,a3=−∣∣a2+2∣∣=−∣−1+2∣=−1,a4=−∣a3+3∣=−∣−1+3∣=−2,a5=−∣∣a4+4∣∣=−∣−2+4∣=−2,⋯⋯,所以 n 是奇数时,结果等于 −n−12;n 是偶数时,结果等于 −n2;a 2020=−20202=−1010.【知识点】用代数式表示规律10. 【答案】C【解析】第一个数就是直接输出其结果的:3x −1=257,解得:x =86, 第二个数是 (3x −1)×3−1=257 解得:x =29;第三个数是:3[3(3x −1)−1]−1=257,解得:x =10, 第四个数是 3{3[3(3x −1)−1]−1}−1=257,解得:x =113(不合题意舍去);第五个数是 3(81x −40)−1=257,解得:x =149(不合题意舍去);故满足条件所有 x 的值是 86,29 或 10. 故选:C .【知识点】简单的代数式求值二、填空题11. 【答案】 2n −1【知识点】用代数式表示规律12. 【答案】2202132019【解析】 ∵N 1P 1∥AC , ∴△B 1N 1P 1∽△BCA , ∴BN 1BC=N 1P 1AC ,设 N 1P 1=x ,则4−x 4=x 2,解得:x =43,∴BN 1=BC −CN 1=4−43=83, 同理, ∵N 2P 2∥AC , ∴△P 1N 1B ∽△P 2N 2B , 设 P 2N 2=y , ∴y43=83−y 83,解得:y =89,∴BN 2=83−89=169=2432.同理,BN 3=3227=2533,∴BN 2019 的长度是 2202132019.【知识点】基本定理、用代数式表示规律13. 【答案】 4n −2(或 2+4(n −1))个【解析】由图可知:第一个图案有阴影小三角形 2 个. 第二图案有阴影小三角形 2+4=6 个. 第三个图案有阴影小三角形 2+8=10 个,那么第 n 个就有阴影小三角形 2+4(n −1)=4n −2 个. 【知识点】用代数式表示规律14. 【答案】 56【解析】当 k =1 时,有一个数,这个数是 11, 当 k =2 时,有两个数,这两个数是 12,21, 当 k =3 时,有三个数,这三个数是 13,22,31,∵50=(1+2+3+4+5+6+7+8+9)+5, ∴ 第 50 个数是:510−4=56. 【知识点】用代数式表示规律15. 【答案】 (2n −1)(2n +1)=(2n)2−1【解析】 ∵(2×1−1)×(2×1+1)=(2×1)2−1; (2×2−1)×(2×2+1)=(2×2)2−1; (2×3−1)×(2×3+1)=(2×3)2−1; ∴ 第 n 个等式为 (2n −1)(2n +1)=(2n )2−1. 【知识点】用代数式表示规律16. 【答案】 9【解析】因为 a −b =2,所以 原式=2(a −b )+5=4+5=9. 【知识点】添括号17. 【答案】 2020【解析】∵a2+a−1=0,∴a2+a=1,∴a3+a2=a,又∵ a3+2a2+2019=a3+a2+a2+2019=a+a2+2019=1+2019=2020,∴a3+2a2+2019=2020.【知识点】合并同类项三、解答题18. 【答案】(1) <;>;>(2) ① ∵∣a∣=2且a<0,∴a=−2,∵b2=9且b>0,∴b=3,∵点B到点C的距离为点B到点A的距离的2倍,∴c−b=2(b−a),∴c−3=2[3−(−2)],∴c=13;②依题意,得x−c<0,x+a>0,∴∣x−c∣=c−x,∣x+a∣=x+a,∴原式=bx+cx+(c−x)−15(x+a)−c=bx+cx+c−x−15x−15a−c=(b+c−16)x−15a,∵点B到点C的距离为点B到点A的距离的2倍,∴c−b=2(b−a),∴c=3b−2a,∴原式=(b+c−16)x−15a=(4b−2a−16)x−15a=(4b−12)x+30,bx+cx+∣x−c∣−15∣x+a∣−c的值为定值,∴4b−12=0,b=3.【解析】(1) ∵a<0<b<c,∣a∣<∣b∣<∣c∣,∴abc<0,a+b>0,ab−ac>0,故答案为:<,>,>;【知识点】绝对值的化简、整式的加减运算、利用数轴比较大小19. 【答案】 原式=2x 2y −2xy 2−2−2x 2y +3xy 2+3=xy 2+1.当 x =2,y =−1 时,原式=3.【知识点】整式的加减运算20. 【答案】(1) 由已知得“囧”的面积为:20×20−12xy ×2−xy =400−2xy .(2) 当 y =12x =4 时,x =8,y =4,S =400−2×8×4=336,所以此时“囧”的面积为 336.【知识点】简单列代数式、简单的代数式求值21. 【答案】(1)原式=x 2−2x 2+4y +2x 2−2y =x 2+2y; (2)原式=3x 2−xy +y −10xy +8x 2−2y =11x 2−11xy −y, 当 x =−2,y =13 时,原式=44+223−13=51. 【知识点】整式的加减运算22. 【答案】(1) 18,30,28,35(2) 100【解析】(1) 在表一中,第一行和第一列中,前一个数加 1 的和就是后一个数, 第二行和第二列中,前一个数加 2 的和就是后一个数,第三行和第三列中,前一个数加 3 的和就是后一个数,第四行和第四列中,前一个数加 4 的和就是后一个数,⋯⋯,照这样的规律排列,表二中,前一个数加 3 的和就是后一个数, 所以,a 的值是:15+3=18,表三中,左边的两个数是上面的数加 4 就是下面的数,所以,右面的两个数应是上面的数加 5 就是下面的数,b 的值是:25+5=30,表四中,左边的两个数是上面的数加 6 就是下面的数,所以,c 的值应该是第 4 行,第 7 列的数,c的值是:(24÷6)×7=28,表四中,左边的两个数是上面的数加6就是下面的数,所以,d的值应该是第5行,第8列的数,d的值是:5×7=35.(2) 由(1)可知,表一中第10行,第10列中的数是100.【知识点】用代数式表示规律23. 【答案】(1) 根据题意得:y=10×1.5+2.5(x−10),即:y=2.5x−10(x>10);(2) ∵25>10×1.5,∴某户居民12月份的用水量超过10立方米,当y=25时,25=2.5x−10,解得:x=14,答:这个月该户居民用了14立方米水.【知识点】简单列代数式、一元一次方程的应用24. 【答案】原式=5ab−6a−6b=5ab−6(a+b).将a+b=−2,ab=3代入得:5ab−6a−6b=5ab−6(a+b)=27.【知识点】整式的加减运算25. 【答案】(1) 36.(2) 0.(3) 494.(4) 649.【知识点】多项式。
整式
班级:___________姓名:___________得分:__________
一、选择题(每小题8分,共40分)
1. 在下列代数式:21ab ,2b a ,ab 2+b+1,x 3+y
2,x 3+ x 2-3中,多项式有( ) A .2个 B .3个 C .4个 D5个
2. 单项式的系数是()
A 、
B 、-
C 、
D 、-
3. 下列式子-xyz ;2n ;-x 2y ; ; a 2+b 2;πr 2h 中,是三次单项式的有( )
A 、3个
B 、 4个
C 、 5个
D 、6个
4. 下列整式中,次数是二次的是( )
A .a
B .-x ²y
C .2x-1
D .x ²+xy+y ²
5. 对于多项式-3x+2xy ²-1,下列说法正确的是( ) A .一次项系数是3 B .最高次项是2xy ²
C .常数项是1
D .是四次三项式
二、填空题(每小题8分,共40分) 6. 多项式x 2y +xy -xy 2-53中的三次项是____________.
7. 观察一列单项式:a ,-4a 2,9a 3,-16a 4,25a 5…,根据你的方向规律,第10个单项式为______.
8. 单项式-的系数是______,次数是______;多项式2x³y - +x-1的次数是______.
9. 代数式-x ²yz 是______次______项式.
10. 代数式ab-mn- πn ²是______、______、______三项的和,每一项的系数分别是______、______、______.
三、解答题(共20分)
11. 多项式 4x 2m+1y-5x 2y 2-πx 5y .(1)填写多项式各项及其系数和次数;(2)若多项式是
八次多项式,求m的值.
12若多项式2x2+5x-3与-x2-nx+5的一次项相同,求n2-的值.
参考答案
一、选择题
1.C 【解析】2b a ,ab 2+b+1,x 3+y
2,x 3+ x 2-3是多项式,所以有4个 故选C 2.D
【解析】的系数是
故选D 3.A
【解析】-xy z 的次数是3,属于三次单项式;2n 的次数是1,属于一次单项式;-x 2
y 的次数是3,属于三次单项式;不是单项式,它不属于三次单项式;a 2+b 2不是单项式,它不属于三次单项式;πr 2h 的次数是3,属于三次单项式;
综上所述,是三次单项式的一共有3个. 4.D
【解析】A 、a 的次数是1;故本选项错误;
B 、-x ²y 的次数是3;故本选项错误;
C 、2x-1的次数是1;故本选项错误;
D 、x ²+xy+y ²的次数是2;故本选项正确;
故选D .
5.B
【解析】多项式-3x+2xy²-1,
A、一次项系数是-3,故此选项错误;
B、最高次项是2xy²,此选项正确;
C、常数项是-1,故此选项错误;
D、是三次三项式,故此选项错误.
故选:B.
二、填空题
6.x2y, -xy2
【解析】多项式x2y+xy-xy2-53中的三次项是x2y, -xy2,-53
7.- 100a10
【解析】从单项式:a,-4a2,9a3,-16a4,25a5…,
可得第n个式子为:(-1)n+1n2a n,
故第10个单项式为-100a10.
故答案为:-100a10.
8. - ,3,4
【解析】单项式-的系数是- ,次数是3;多项式2x³y- +x-1的次数是4.
9.四,单
【解析】代数式-x²yz是四次单项式.
故答案为:四;单.
10. ab、-mn、-πn²,1、-1、- π.
【解析】代数式ab-mn- πn²是ab、-mn、- πn²三项的和,每一项的系数分别是 1、-1、- π.
三、解答题
11.解:(1)2003次2004项式;
(2)-x1004y999,系数是-1,次数是2003。
12.解:
∵多项式2x2+5x-3与-x2-nx+5的一次项相同,∴n=-5,
原式=(-5)2- =25- =24。