江苏省如东高级中学高三数学第二轮复习 第25-29课时 导数应用的题型与方法 备课笔记 苏教版
- 格式:doc
- 大小:1.87 MB
- 文档页数:22
专题4 导数(2)一、考点展示1.若函数()C e x f x +=(C 为常数),且()(),10e f f ='则函数()=x f .变式:设函数)(x f 满足()x x x f ln ln -=,则)0(f '=2.函数133-)(23+-+=x ax x x f 在()+∞∞-,上是单调函数,则实数a 的取值范围为 .3.函数xe xf x=)(的单调递减区间是 . 4.若函数162)(223-++-=a ax x x x f 恰好在区间[]4,2-上单调递减,则实数a = .5.设直线t x =与函数()()x x g x x f ln ,2==的图象分别交于M ,N 两点,则当MN 取最小值时,t 的值为 . 6.若函数921232)(23++--=a ax ax ax x f 的图象经过四个象限,则实数a 的取值范围 为 二、例题分析例1.已知函数()()x a x x f -+=1ln .(1)当1=a 时,求()x f 的极值;(2)讨论)(x f 的单调性.例2.设函数(),1223+-+=x a ax x x f ()122+-=x ax x g ,其中0>a .⑴当函数()x f y =与()x g y =的图象只有一个公共点时,求正整数a 的取值范围; ⑵若()x f y =与()x g y =在区间()2,+a a 内均为增函数,求a 的取值范围.例3.设函数()R b a xb ax x f ∈+=,)(,已知曲线)(x f y =在点())1(,1f 处的切线方程为: 085=--y x .(1)求a 和b 的值;(2)证明;曲线()x f y =上任一点处的切线与直线0=x 和直线x y =所围成的三角形的面积为定值,并求此定值.例4.设函数()()0>-=a ax e x f x .(1)当1=a 时,求()x f 的最小值;(2)若对一切R x ∈,1)(≥x f 恒成立,求a 的取值范围.三、作业1.函数()()0ln 2>-=a ax x x f 的单调增区间为 .2.已知函数23)(bx ax x f +=当1=x 时有极大值3,则b a -=3.已知函数xe x xf =)( ,则)(x f 的极大值为 . 4.若函数)ln()(a x x x f +-=的最小值为0,则正数a =5.已知圆柱形金属钦料罐的表面积为定值S ,则当它的底面半径为 时,其体积最大.6.已知函数3)(x x f =,设曲线)(x f y =在点())(,11x f x P 处的切线与该曲线交于另一点 ())(,22x f x Q ,记)(x f '为函数)(x f 的导数,则)()(21x f x f ''的值为 . 7.若函数()()012ln )(2>+-+=a x a ax x x f 在1=x 处取得极小值,则实数a 的取值范围为 .8.若函数()R a ax x x f ∈+-=12)(23在()+∞,0内有且只有一个零点,则)(x f 在[]1,1-上的最大值与最小值的和为 .9设点P 在曲线xe y =上,点Q 在曲线x y ln =上,则PQ 的最小值为10.已知函数bx x ae x f x -+=2)( ,(1)设1-=a ,若函数)(x f y =在R 上是单调减函数,求实数b 的取值范围;(2)设0=b ,若函数)(x f y =在R 上有且只有一个零点,求实数a 的取值范围.11.已知函数221)(,ln )(x x g x x f ==. (1)求函数)()()(x f x g x F -=的最小值;(2)若函数)()()(x xf x mg x H -=在定义域上是增函数,求实数m 的取值范围.12.已知函数()R b a xb x x a x f ∈++=,ln )(在()2,0上单调递减,在()+∞,2上单调递增,且在点())1(,1f 处的切线与直线035=+-y x 垂直.⑴求b a ,的值;⑵设()()31ln 1)(+---=x x x x g ,当1>x 时,求证:62ln 2)()(+≥x g x f .。
2019-2020年高三数学二轮复习专题15导数的综合应用教案苏教版【高考趋势】利用导数研究函数性质,主要是利用导数求函数的单调区间,求函数的极值和最值,这些内容都是近年来高考的重点和难点,大多数试题以解答题的形式出现,通常是整个试卷的压轴题。
试题主要先判断或证明函数单调区间,其次求函数的极值和最值,有时涉及函数的单调性对不等式进行证明。
【考点展示】1、函数y=x3-3x+1在闭区间[-3,0]上的最大值、最小值分别为2、函数f(x)的定义域为开区间(a,b),导函数f(x)在(a,b)内的图象如图所示,则函数f(x)在开区间(a,b)内有个极小值点。
3、已知f(x)=ax4+2x+1,若f(-1)=6,则a=4、函数f(x)=xlnx(x0)的单调递增区间是5、当x[-1,2]时,若x3-恒成立,则实数m的取值范围是【样题剖析】例1、设函数f(x)=2x3+3ax2+3bx+8c在x=1及x=2时取得极值。
(1)求a,b的值;(2)若对于任意的x[0,3],都有f(x)c2成立,求c的取值范围。
例2、已知函数f(x)=在x=x1处取得极大值,在x=x2处取得极小值,且0x11x22。
(1)证明a0;(2)若z=a+2b,求z的取值范围。
例3、已知aR,讨论关于x的方程|x2-6x+8|=a的实数解的个数。
例4、已知函数f(x)=,x[0,1]。
(1)求f(x)的单调区间和值域。
(2)设a≥1,函数g(x)=x3-3a2x-2a,x[0,1],若对于任意的x1[0,1],总存在x0[0,1],使得g(x0)=f(x1)成立,求a的取值范围。
【总结提炼】要掌握求函数f(x)的极值的基本步骤:先求导数,求出f(x)=0的根,再检查f(x)=0的根左右的符号,如果左正右负,那么f(x)在这个根处取极大值;如果左负右正,那么f(x)在这个根处取极小值。
求函数在一个区间上的最值,要将极值与端点函数值加以比较,进而确定最值。
第21-24课时:立体几何问题的题型与方法一.复习目标:1.在掌握直线与平面的位置关系(包括直线与直线、直线与平面、平面与平面间的位置关系)的基础上,研究有关平行和垂直的的判定依据(定义、公理和定理)、判定方法及有关性质的应用;在有关问题的解决过程中,进一步了解和掌握相关公理、定理的内容和功能,并探索立体几何中论证问题的规律;在有关问题的分析与解决的过程中提高逻辑思维能力、空间想象能力及化归和转化的数学思想的应用.2.在掌握空间角(两条异面直线所成的角,平面的斜线与平面所成的角及二面角)概念的基础上,掌握它们的求法(其基本方法是分别作出这些角,并将它们置于某个三角形内通过计算求出它们的大小);在解决有关空间角的问题的过程中,进一步巩固关于直线和平面的平行垂直的性质与判定的应用,掌握作平行线(面)和垂直线(面)的技能;通过有关空间角的问题的解决,进一步提高学生的空间想象能力、逻辑推理能力及运算能力.3.通过复习,使学生更好地掌握多面体与旋转体的有关概念、性质,并能够灵活运用到解题过程中.通过教学使学生掌握基本的立体几何解题方法和常用解题技巧,发掘不同问题之间的内在联系,提高解题能力.4.在学生解答问题的过程中,注意培养他们的语言表述能力和“说话要有根据”的逻辑思维的习惯、提高思维品质.使学生掌握化归思想,特别是将立体几何问题转化为平面几何问题的思想意识和方法,并提高空间想象能力、推理能力和计算能力.5.使学生更好地理解多面体与旋转体的体积及其计算方法,能够熟练地使用分割与补形求体积,提高空间想象能力、推理能力和计算能力.二.考试要求:(1)掌握平面的基本性质,会用斜二测的画法画水平放置的平面图形的直观图,能够画出空间两条直线、直线和平面的各种位置关系的图形,能够根据图形想象它们的位置关系。
(2)了解空两条直线的位置关系,掌握两条直线平行与垂直的判定定理和性质定理,掌握两条直线所成的角和距离的概念(对于异面直线的距离,只要求会计算已给出公垂线时的距离)。
课时达标训练(十九) 导数的简单应用A 组——抓牢中档小题1.(2020-2021·苏州期末)曲线y =x +2e x在x =0处的切线与两坐标轴围成的三角形面积为________.解析:由函数y =x +2e x ,可得y ′=1+2e x,当x =0时,y =2,y ′=3,所以曲线y =x +2e x 在点(0,2)处的切线方程为y =3x +2,令y =0,可得x =-23,所以曲线y =x +2ex在x =0处的切线与两坐标轴围成的三角形的面积为12×2×23=23.答案:232.(2020-2021·常州期末)若直线kx -y -k =0与曲线y =e x(e 是自然对数的底数)相切,则实数k =________.解析:设切点坐标为(x 0,e x 0),则曲线y =e x在点(x 0,e x 0)处的切线方程为y -e x 0=e x 0(x -x 0),即e x 0x -y +e x 0(1-x 0)=0,易知该切线与直线kx -y -k =0重合,所以e x 0=-e x 0(1-x 0)=k ,得x 0=2,k =e 2.答案:e 23.(2020-2021·安徽师大附中期中)已知函数f (x )=e x +a e -x为偶函数,若曲线y =f (x )的一条切线的斜率为83,则该切点的横坐标为________.解析:∵函数f (x )=e x +a e -x 为偶函数,∴f (-x )=f (x ),即e -x +a e x =e x +a e -x,可得a =1.∴f (x )=e x +e -x ,∴f ′(x )=e x -e -x.设该切点的横坐标为x 0,则e x 0-e -x 0=83.令e x 0=t >0,可得t -1t =83,整理可得3t2-8t -3=0,解得t =3或-13(舍).∴e x 0=3,解得x 0=ln 3.则该切点的横坐标为ln 3.答案:ln 34.(2020-2021·广东广州一模)已知过点A (a ,0)作曲线C :y =x e x的切线有且仅有两条,则实数a 的取值范围是________.解析:设切点坐标为(x 0,y 0),则由(x e x )′=x e x +e x可知切线斜率k =(x 0+1)·e x 0,所以切线方程为y -y 0=(x 0+1)·e x 0(x -x 0).将点A (a ,0)代入切线方程得-y 0=(x 0+1)·e x 0(a -x 0).又y 0=x 0e x 0,所以(x 0+1)·e x 0(a -x 0)=-x 0e x 0,整理得x 20-ax 0-a =0有两个解,所以Δ=a 2+4a >0,解得a <-4或a >0.答案:(-∞,-4)∪(0,+∞)5.设a ∈R ,若函数f (x )=e x+ax (x ∈R )有大于零的极值点,则a 的取值范围是________. 解析:令f ′(x )=e x +a =0,则e x=-a ,x =ln(-a ).因为函数f (x )有大于零的极值点,所以ln(-a )>0,所以-a >1,即a <-1. 答案:(-∞,-1)6.已知函数f (x )=x 3+3x 2-9x +1,若f (x )在区间[k ,2]上的最大值为28,则实数k 的取值范围为________.解析:由题意知f ′(x )=3x 2+6x -9, 令f ′(x )=0,解得x =1或x =-3, 所以f ′(x ),f (x )随x 的变化情况如下表:x (-∞,-3)-3 (-3,1) 1 (1,+∞)f ′(x ) +0 -0 +f (x )极大值极小值又f (-3)=28,f (1)=-4,f (2)=3,f (x )在区间[k ,2]上的最大值为28,所以k ≤-3.答案:(-∞,-3]7.(2020-2021·盐城三模)已知函数f (x )=x +4sin x ,若不等式kx +b 1≤f (x )≤kx +b 2对一切实数x 恒成立,则b 2-b 1的最小值为________.解析:原不等式可化为(k -1)x +b 1≤4sin x ≤(k -1)x +b 2,结合函数图象(图略)知k =1,进一步得b 2≥4,b 1≤-4,所以b 2-b 1≥8,所以b 2-b 1的最小值为8.答案:88.已知函数f (x )=ln x -mx(m ∈R )在区间[1,e]上取得最小值4,则m =________. 解析:因为f (x )在区间[1,e]上取得最小值4,所以至少满足f (1)≥4,f (e )≥4,解得m ≤-3e ,又f ′(x )=x +mx 2,且x ∈[1,e], 所以f ′(x )<0,即f (x )在[1,e]上单调递减, 所以f (x )min =f (e)=1-me =4,解得m =-3e.答案:-3e9.若函数f (x )=mx 2+ln x -2x 在定义域内是增函数,则实数m 的取值范围是________. 解析:因为f (x )的定义域为(0,+∞),所以f ′(x )=2mx +1x -2=2mx 2-2x +1x≥0在(0,+∞)上恒成立,所以二次函数g (x )=2mx 2-2x +1在定义域(0,+∞)上必须大于等于0,所以⎩⎪⎨⎪⎧m >0,g ⎝ ⎛⎭⎪⎫12m ≥0,解得m ≥12.答案:⎣⎢⎡⎭⎪⎫12,+∞ 10.若a >0,b >0,且函数f (x )=4x 3-ax 2-2bx +2在x =1处有极值,若t =ab ,则t 的最大值为________.解析:∵f (x )=4x 3-ax 2-2bx +2, ∴f ′(x )=12x 2-2ax -2b . 又f (x )在x =1处取得极值,∴f ′(1)=12-2a -2b =0,即a +b =6, ∴t =ab =a (6-a )=-(a -3)2+9, 当且仅当a =b =3时,t 取得最大值9. 答案:911.(2020-2021·南京盐城一模)设函数f (x )=x 3-a 2x (a >0,x ≥0),O 为坐标原点,A (3,-1),C (a ,0),对函数图象上的任意一点B ,都满足OA ―→·OB ―→≤OA ―→·OC ―→成立,则a 的值为________.解析:由题意得OA ―→=(3,-1),OC ―→=(a ,0),设B (x ,x 3-a 2x ),则OB ―→=(x ,x 3-a 2x ),由OA ―→·OB ―→≤OA ―→·OC ―→得3x -(x 3-a 2x )≤3a ,整理得(x -a )(x 2+ax -3)≥0.法一:设y 1=x -a ,y 2=x 2+ax -3,则由(x -a )(x 2+ax -3)≥0在[0,+∞)上恒成立知,两函数的图象应交于x 轴上的点(a ,0),将x =a 代入x 2+ax -3=0,得a 2+a 2-3=0,因为a >0,所以得a =62. 法二:设g (x )=(x -a )(x 2+ax -3),则g (a )=0,g ′(x )=x 2+ax -3+(x -a )(2x +a )=3x 2-3-a 2,因为g ′(x )在[0,+∞)上有唯一零点,所以要使g (x )≥0在[0,+∞)上恒成立,需g ′(a )=2a 2-3=0,因为a >0,所以得a =62. 法三:由3x -(x 3-a 2x )≤3a 得x 3-a 2x ≥3x -3a .设p (x )=x 3-a 2x ,q (x )=3x -3a ,易知当x ≥0时,p (x )的图象上的点不在q (x )图象的下方,因为两函数图象有公共点(a ,0),且q (x )的图象是直线,所以p ′(a )=2a 2=3,得a =62. 答案:6212.已知函数f (x )=-12x 2+4x -3ln x 在[t ,t +1]上不单调,则t 的取值范围是________.解析:由题意知x >0,且f ′(x )=-x +4-3x =-x 2+4x -3x =-(x -1)(x -3)x,由f ′(x )=0得函数f (x )的两个极值点为1,3,则只要这两个极值点有一个在区间(t ,t +1)内,函数f (x )在区间[t ,t +1]上就不单调,由t <1<t +1或t <3<t +1,得0<t <1或2<t <3. 答案:(0,1)∪(2,3)13.已知函数f (x )=-x ln x +ax 在(0,e]上是增函数,函数g (x )=|e x-a |+a 22,当x ∈[0,ln 3]时,函数g (x )的最大值M 与最小值m 的差为32,则a 的值为________.解析:由题意可知f ′(x )=-(ln x +1)+a ≥0在(0,e]上恒成立,所以a ≥ln x +1,即a ≥2.当2≤a <3时,g (x )=⎩⎪⎨⎪⎧a -e x+a 22,0≤x <ln a ,e x-a +a22,ln a ≤x ≤ln 3,g (x )在[0,ln a ]上单调递减,在[ln a ,ln 3]上单调递增,因为g (0)-g (ln 3)=a -1+a 22-⎝ ⎛⎭⎪⎫3-a +a 22=2a -4≥0,所以g (0)≥g (ln 3),所以M -m =g (0)-g (ln a )=a -1=32,解得a =52;当a ≥3时,g (x )=a -e x+a 22,g (x )在[0,ln 3]上递减,所以M -m =g (0)-g (ln 3)=2≠32,舍去.故a =52.答案:5214.若函数f (x )=⎪⎪⎪⎪⎪⎪e x2-a e x (a ∈R )在区间[1,2]上单调递增,则实数a 的取值范围是________.解析:设g (x )=e x2-ae x ,因为f (x )=|g (x )|在区间[1,2]上单调递增,所以g (x )有两种情况:①g (x )≤0且g (x )在区间[1,2]上单调递减.又g ′(x )=(e x)2+2a 2·e x ,所以g ′(x )=(e x )2+2a2·ex≤0在区间[1,2]上恒成立,且g (1)≤0.所以⎩⎪⎨⎪⎧2a ≤-(e x )2,e 2-a e≤0无解.②g (x )≥0且g (x )在区间[1,2]上单调递增, 即g ′(x )=(e x )2+2a 2·e x≥0在区间[1,2]上恒成立, 且g (1)≥0,所以⎩⎪⎨⎪⎧2a ≥-(e x)2,e 2-a e≥0,解得a ∈⎣⎢⎡⎦⎥⎤-e 22,e 22.综上,实数a 的取值范围为⎣⎢⎡⎦⎥⎤-e 22,e 22. 答案:⎣⎢⎡⎦⎥⎤-e 22,e 22 B 组——力争难度小题1.设函数f (x )=ln x -12ax 2-bx ,若x =1是f (x )的极大值点,则a 的取值范围为________.解析:f (x )的定义域为(0,+∞),f ′(x )=1x-ax -b ,由f ′(1)=0,得b =1-a .∴f ′(x )=1x -ax +a -1=-ax 2+1+ax -xx=-(ax +1)(x -1)x.①若a ≥0,当0<x <1时,f ′(x )>0,f (x )单调递增; 当x >1时,f ′(x )<0,f (x )单调递减; 所以x =1是f (x )的极大值点.②若a <0,由f ′(x )=0,得x =1或x =-1a.因为x =1是f (x )的极大值点,所以-1a>1,解得-1<a <0.综合①②,得a 的取值范围是(-1,+∞).答案:(-1,+∞)2.(2020-2021·南京四校联考)已知f (x )=e x+x 2-ax ,g (x )=ln x +x ,若对任意的x >0,不等式f (x )≥g (x )恒成立,则实数a 的取值范围是________.解析:不等式f (x )≥g (x )可化为e x +x 2-ax ≥ln x +x ,由题意知,当x >0时,e x +x 2-ax ≥ln x +x ,即a +1≤e x +x 2-ln xx恒成立.令F (x )=e x +x 2-ln xx,则F ′(x )=e x(x -1)+x 2-1+ln x x2,显然有F ′(1)=0,且当x >0时,[e x (x -1)+x 2-1+ln x ]′=x e x +2x +1x>0,所以当x >1时,F ′(x )>0,F (x )单调递增,当0<x <1时,F ′(x )<0,F (x )单调递减,所以F (x )min =F (1)=e +1.因此有a +1≤e +1.故a ≤e.答案:(-∞,e]3.设函数f (x )=⎩⎪⎨⎪⎧x -1e x ,x ≥a ,-x -1,x <a ,g (x )=f (x )-b .若存在实数b ,使得函数g (x )恰有3个零点,则实数a 的取值范围为________.解析:对于函数y =x -1ex,y ′=2-xex ,由y ′>0,得x <2;由y ′<0,得x >2, 所以y =x -1e x在(-∞,2]上单调递增,在[2,+∞)上单调递减,极大值为1e2,当x →+∞时,y →0.先不考虑a ,作出y =x -1ex和y =-x -1的图象如图所示.只有当b ∈⎝⎛⎭⎪⎫0,1e2时,直线y =b 与曲线y =x -1ex和直线y =-x -1共有三个公共点.因为直线y =1e 2与直线y =-x -1的交点为⎝⎛⎭⎪⎫-1-1e 2,1e 2. 所以当a ∈⎝ ⎛⎭⎪⎫-1-1e 2,2时,存在直线y =b 与曲线y =f (x )恰有三个公共点.答案: ⎝ ⎛⎭⎪⎫-1-1e 2,2 4.(2020-2021·苏锡常镇四市一模)已知函数f (x )=x 2+|x -a |,g (x )=(2a -1)x +a lnx ,若函数y =f (x )与函数y =g (x )的图象恰好有两个不同的交点,则实数a 的取值范围为________.解析:令h (x )=f (x )-g (x )=x 2+|x -a |-(2a -1)x -a ln x ,则h (x )有且仅有两个零点.a ≤0时,h (x )=x 2-2(a -1)x -a ln x -a ,h ′(x )=2x -2(a -1)-ax>0,所以h (x )在(0,+∞)上单调递增,不合题意.a >0时,h (x )=⎩⎪⎨⎪⎧x 2-2ax -a ln x +a ,0<x <a ,x 2-2(a -1)x -a ln x -a ,x ≥a ,0<x <a 时,h ′(x )=2(x -a )-a x <0,所以h (x )在(0,a )上单调递减;x ≥a 时,h ′(x )=2x -2(a -1)-a x =2(x -a )+2x -ax>0,所以h (x )在(a ,+∞)上单调递增.所以h (x )min =h (a )=-a 2+a -a ln a <0,即a -1+ln a >0.令φ(a )=a +ln a -1,则φ′(a )=1+1a>0,所以φ(a )在(0,+∞)上单调递增,又φ(1)=0,所以φ(a )>0的解集为a ∈(1,+∞).此时易知h ⎝ ⎛⎭⎪⎫1a =1a2-2+a ln a +a >0,h (a 3)=a (a 5-2a 3+2a 2-3ln a -1)>0,所以h (x )在⎝⎛⎭⎪⎫1a,a 和(a ,a 3)上各有一个零点,满足题意.综上,a ∈(1,+∞).答案:(1,+∞)5.已知函数f (x )=⎩⎪⎨⎪⎧-|x 3-2x 2+x |,x <1,ln x ,x ≥1,若对于∀t ∈R ,f (t )≤kt 恒成立,则实数k 的取值范围是________.解析:x <1时,f (x )=-|x 3-2x 2+x |=-|x (x -1)2|=⎩⎪⎨⎪⎧x (x -1)2,x <0,-x (x -1)2,0≤x <1, 当x <0时,f ′(x )=(x -1)(3x -1)>0 ∴f (x )是增函数;当0≤x <1,f ′(x )=-(x -1)(3x -1),所以f (x )的增区间是⎝ ⎛⎭⎪⎫13,1,减区间是⎝ ⎛⎭⎪⎫0,13,根据图象变换可作出函数y =f (x )在R 上的图象如图所示.又设函数y =ln x (x ≥1)的图象经过原点的切线斜率为k 1,切点(x 1,ln x 1),因为y ′=1x ,所以k 1=1x 1=ln x 1-0x 1-0,解得x 1=e ,所以k 1=1e.函数y =x 3-2x 2+x 在原点处的切线斜率k 2=y ′|x =0=1.因为∀t ∈R ,f (t )≤kt ,所以根据f (x )的图象,数形结合可得1e≤k ≤1.答案:⎣⎢⎡⎦⎥⎤1e ,1 6.已知函数f (x )=ln x +(e -a )x -b ,其中e 为自然对数的底数.若不等式f (x )≤0恒成立,则ba的最小值为________.解析:f ′(x )=1x +(e -a )=(e -a )x +1x(x >0),当e -a ≥0,即a ≤e 时,f (e b )=(e -a )e b>0,显然f (x )≤0不恒成立. 当e -a <0,即a >e 时,当x ∈⎝⎛⎭⎪⎫0,1a -e 时,f ′(x )>0,f (x )为增函数;当x ∈⎝⎛⎭⎪⎫1a -e ,+∞时,f ′(x )<0,f (x )为减函数,所以f (x )max =f ⎝⎛⎭⎪⎫1a -e =-ln(a -e)-b -1.由f (x )≤0恒成立,得f (x )max ≤0,所以b ≥-ln(a -e)-1,所以得b a≥-ln (a -e )-1a.设g (x )=-ln (x -e )-1x(x >e),g ′(x )=xe -x +ln (x -e )+1x 2=ee -x+ln (x -e )x2. 由于y =e e -x+ln(x -e)为增函数,且当x =2e 时,g ′(x )=0,所以当x ∈(e ,2e)时,g ′(x )<0,g (x )为减函数;当x ∈(2e ,+∞)时,g ′(x )>0,g (x )为增函数,所以g (x )min=g (2e)=-1e ,所以b a ≥-1e ,当a =2e ,b =-2时,b a 取得最小值-1e.答案:-1e。
高考数学二轮复习导数及其应用多选题知识归纳总结含答案一、导数及其应用多选题1.已知函数1(),()122x x f x e g x n ==+的图象与直线y =m 分别交于A 、B 两点,则( )A .f (x )图像上任一点与曲线g (x )上任一点连线线段的最小值为2+ln 2B .∃m 使得曲线g (x )在B 处的切线平行于曲线f (x )在A 处的切线C .函数f (x )-g (x )+m 不存在零点D .∃m 使得曲线g (x )在点B 处的切线也是曲线f (x )的切线 【答案】BCD 【分析】利用特值法,在f (x )与g (x )取两点求距离,即可判断出A 选项的正误;解方程12()(2)m f lnm g e-''=,可判断出B 选项的正误;利用导数判断函数()()y f x g x m =-+的单调性,结合极值的符号可判断出C 选项的正误;设切线与曲线()y g x =相切于点(C n ,())g n ,求出两切线的方程,得出方程组,判断方程组是否有公共解,即可判断出D 选项的正误.进而得出结论. 【详解】在函数1(),()122xx f x e g x n ==+上分别取点1(0,1),(2,)2P Q,则||2PQ =,而2ln 2<+(注ln 20.7≈),故A 选项不正确; ()x f x e =,1()22x g x ln =+,则()x f x e '=,1()g x x'=,曲线()y f x =在点A 处的切线斜率为()f lnm m '=, 曲线()y g x =在点B 处的切线斜率为12121(2)2m m g ee--'=,令12()(2)m f lnm g e-''=,即1212m m e-=,即1221m me -=,则12m =满足方程1221m me -=,m ∴∃使得曲线()y f x =在A 处的切线平行于曲线()y g x =在B 处的切线,B 选项正确;构造函数1()()()22xx F x f x g x m e ln m =-+=-+-,可得1()x F x e x'=-,函数1()xF x e x'=-在(0,)+∞上为增函数,由于1()20F e '<,F '(1)10e =->,则存在1(,1)2t ∈,使得1()0tF t e t'=-=,可得t lnt =-,当0x t <<时,()0F x '<;当x t >时,()0F x '>.∴11()()2222t t min t F x F t e ln m e lnt m ln ==-+-=-++-11132220222t m ln m ln ln m t =+++->+-=++>, ∴函数()()()F x f x g x m =-+没有零点,C 选项正确;设曲线()y f x =在点A 处的切线与曲线()y g x =相切于点(C n ,())g n ,则曲线()y f x =在点A 处的切线方程为()lnm y m e x lnm -=-,即(1)y mx m lnm =+-, 同理可得曲线()y g x =在点C 处的切线方程为1122n y x ln n =+-, ∴11(1)22m n n m lnm ln ⎧=⎪⎪⎨⎪-=-⎪⎩,消去n 得1(1)202m m lnm ln --++=,令1()(1)22G x x x lnx ln =--++,则11()1x G x lnx lnx x x-'=--=-, 函数()y G x '=在(0,)+∞上为减函数,G '(1)10=>,1(2)202G ln '=-<, 则存在(1,2)s ∈,使得1()0G s lns s'=-=,且1s s e =.当0x s <<时,()0G x '>,当x s >时,()0G x '<.∴函数()y G x =在(2,)+∞上为减函数,5(2)02G =>,17(8)20202G ln =-<, 由零点存 定理知,函数()y G x =在(2,)+∞上有零点, 即方程1(1)202m m lnm ln --++=有解. m ∴∃使得曲线()y f x =在点A 处的切线也是曲线()y g x =的切线.故选:BCD . 【点睛】本题考查导数的综合应用,涉及函数的最值、零点以及切线问题,计算量较大,考查了转化思想和数形结合思想,属难题.2.若直线l 与曲线C 满足下列两个条件: (i )直线l 在点()00,P x y 处与曲线C 相切;(ii )曲线C 在P 附近位于直线l 的两侧,则称直线l 在点P 处“切过”曲线C . 下列命题正确的是( )A .直线:0l y =在点()0,0P 处“切过”曲线3:C y x =B .直线:1l x =-在点()1,0P -处“切过”曲线()2:1C y x =+C .直线:l y x =在点()0,0P 处“切过”曲线:sin C y x =D .直线:l y x =在点()0,0P 处“切过”曲线:tan C y x =【答案】ACD 【分析】分别求出每个选项中命题中曲线C 对应函数的导数,求出曲线C 在点P 处的切线方程,再由曲线C 在点P 处两侧的函数值对应直线上的点的值的大小关系是否满足(ii ),由此可得出合适的选项. 【详解】对于A 选项,由3y x =,可得23y x '=,则00x y ='=,所以,曲线C 在点()0,0P 处的切线方程为0y =,当0x >时,0y >;当0x <时,0y <,满足曲线C 在点()0,0P 附近位于直线0y =两侧, A 选项正确;对于B 选项,由()21y x =+,可得()21y x '=+,则10x y =-'=,而直线:1l x =-的斜率不存在,所以,直线l 在点()1,0P -处不与曲线C 相切,B 选项错误;对于C 选项,由sin y x =,可得cos y x '=,则01x y ='=,所以,曲线C 在点()0,0P 处的切线方程为y x =,设()sin x x x f -=,则()1cos 0f x x '=-≥,所以,函数()f x 为R 上的增函数, 当0x <时,()()00f x f <=,即sin x x <; 当0x >时,()()00f x f >=,即sin x x >.满足曲线C 在点()0,0P 附近位于直线y x =两侧,C 选项正确; 对于D 选项,由sin tan cos xy x x ==,可得21cos y x'=,01x y ='=,所以,曲线C 在点()0,0P 处的切线方程为y x =,当,22x ππ⎛⎫∈- ⎪⎝⎭时,设()tan g x x x =-,则()2221sin 10cos cos xg x x x=-=-≤', 所以,函数()g x 在,22ππ⎛⎫- ⎪⎝⎭上单调递减.当02x π-<<时,()()00g x g >=,即tan x x >;当02x π<<时,()()00g x g <=,即tan x x <.满足曲线C 在点()0,0P 附近位于直线y x =两侧,D 选项正确. 故选:ACD. 【点睛】关键点点睛:本题考查导数新定义,解题的关键就是理解新定义,并把新定义进行转化,一是求切线方程,二是判断在切点两侧函数值与切线对应的函数值的大小关系,从而得出结论.3.对于定义域为R 的函数()f x ,()'f x 为()f x 的导函数,若同时满足:①()00f =;②当x ∈R 且0x ≠时,都有()0xf x '>;③当120x x <<且12x x =时,都有()()12f x f x <,则称()f x 为“偏对称函数”.下列函数是“偏对称函数”的是( )A .21()xx f x ee x =--B .2()1xf x e x =+-C .31,0(),0x e x f x x x ⎧-≥=⎨-<⎩D .42,0()ln(1),0x x f x x x >⎧=⎨-≤⎩【答案】ACD 【分析】结合“偏对称函数”的性质,利用导数的方法,分别讨论四个函数是否满足三个条件,即可得到所求结论. 【详解】条件①()00f =;由选项可得:001(0)00f e e =--=,02(0)010f e =+-=,03(0)10f e =-=,4()ln(10)0f x =-=,即ABCD 都符合;条件②0()0()0x xf x f x >⎧'>⇔⎨'>⎩,或0()0x f x <⎧⎨'<⎩;即条件②等价于函数()f x 在区间(,0)-∞上单调递减,在区间(0,)+∞上单调递增;对于21()xx f x ee x =--,则()()21()11212x x x xf x e e e e =-+-=-',由0x >可得,()()120(1)1x xf x e e '-=+>,即函数1()f x 单调递增;由0x <可得,()()120(1)1xxf x ee '-=+<,即函数1()f x 单调递减;满足条件②;对于2()1xf x e x =+-,则2()10x f x e =+>'显然恒成立,所以2()1xf x e x =+-在定义域上单调递增,不满足条件②;对于31,0(),0x e x f x x x ⎧-≥=⎨-<⎩,当0x <时,3()f x x =-显然单调递减;当0x ≥时,3()1x f x e =-显然单调递增;满足条件②;对于42,0()ln(1),0x x f x x x >⎧=⎨-≤⎩,当0x ≤时,4()ln(1)f x x =-显然单调递减;当0x >时,4()2f x x =显然单调递增,满足条件②; 因此ACD 满足条件②;条件③当120x x <<且12x x =时,12x x -=,都有()()12f x f x <,即()()()()21220f x f x f x f x -=-->,对于21()xx f x ee x =--,()()212122211211x x x x f x f x e e e e x x -=-+--+()()()()22222222222222x x x x x x x x x e e e e e e e x e ----=----=-+-,因为222x x e e -+≥=,当且仅当22x x e e -=,即20x =时,等号成立, 又20x >,所以222x x e e -+>, 则()()()()2222122211222xx x x f x f x e ee e xx ----=--->令()xxg x e ex -=--,0x >,所以()1110x x e e g x -'=+->=>在0x >上显然恒成立, 因此()xxg x e ex -=--在0x >上单调递增,所以()()00g x g >=,即()()()222121120xx f x f x e ex -->-->,所以()()1211f x f x >满足条件③;对于31,0(),0x e x f x x x ⎧-≥=⎨-<⎩,()()2232311211x xf x f x e x x e -=--=-+,令()1xh x e x =--,0x >,则()10xh x e '=->在0x >上显然恒成立,所以()()00h x h >=,则()()23231210xf x f x e x --=>-,即()()3231f x f x >满足条件③; 对于42,0()ln(1),0x x f x x x >⎧=⎨-≤⎩,()()()()212122442ln 12ln 1f x f x x x x x -=--=-+,令()()2ln 1u x x x =-+,0x >, 则()1221101u x x'=->-=>+在0x >上显然恒成立,所以()()00u x u >=, 则()()()1422422ln 10f x f x x x -=-+>,即()()1442f x f x >满足条件③; 综上,ACD 选项是“偏对称函数”, 故选:ACD. 【点睛】 思路点睛:求解此类函数新定义问题时,需要结合函数新定义的概念及性质,结合函数基本性质,利用导数的方法,通过研究函数单调性,值域等,逐项判断,即可求解.(有时也需要构造新的函数,进行求解.)4.(多选)已知函数()ln ()f x ax x a =-∈R ,则下列说法正确的是( )A .若0a ≤,则函数()f x 没有极值B .若0a >,则函数()f x 有极值C .若函数()f x 有且只有两个零点,则实数a 的取值范围是1,e ⎛⎫-∞ ⎪⎝⎭D .若函数()f x 有且只有一个零点,则实数a 的取值范围是1(,0]e ⎧⎫-∞⋃⎨⎬⎩⎭【答案】ABD 【分析】先对()f x 进行求导,再对a 进行分类讨论,根据极值的定义以及零点的定义即可判断. 【详解】解:由题意得,函数()f x 的定义域为(0,)+∞,且11()ax f x a x x'-=-=, 当0a ≤时,()0f x '<恒成立,此时()f x 单调递减,没有极值, 又当x 趋近于0时,()f x 趋近于+∞,当x 趋近于+∞时,()f x 趋近于-∞, ∴()f x 有且只有一个零点,当0a >时,在10,a ⎛⎫⎪⎝⎭上,()0f x '<,()f x 单调递减,在1,a ⎛⎫+∞⎪⎝⎭上,()0f x '>,()f x 单调递增, ∴当1x a=时,()f x 取得极小值,同时也是最小值, ∴min 1()1ln f x f a a ⎛⎫==+⎪⎝⎭, 当x 趋近于0时,ln x 趋近于-∞,()f x 趋近于+∞,当x 趋近于+∞时,()f x 趋近于+∞, 当1ln 0a +=,即1a e=时,()f x 有且只有一个零点; 当1ln 0a +<,即10a e<<时,()f x 有且仅有两个零点, 综上可知ABD 正确,C 错误. 故选:ABD . 【点睛】方法点睛:函数零点的求解与判断方法:(1)直接求零点:令()0f x =,如果能求出解,则有几个解就有几个零点; (2)零点存在性定理:利用定理不仅要函数在区间[]a b ,上是连续不断的曲线,且()()·0f a f b <,还必须结合函数的图象与性质(如单调性、奇偶性)才能确定函数有多少个零点;(3)利用图象交点的个数:将函数变形为两个函数的差,画两个函数的图象,看其交点的横坐标有几个不同的值,就有几个不同的零点.5.已知函数()21,0log ,0kx x f x x x +≤⎧=⎨>⎩,下列是关于函数()1y f f x =+⎡⎤⎣⎦的零点个数的判断,其中正确的是( ) A .当0k >时,有3个零点 B .当0k <时,有2个零点 C .当0k >时,有4个零点 D .当0k <时,有1个零点【答案】CD 【分析】令y =0得()1f f x =-⎡⎤⎣⎦,利用换元法将函数分解为f (x )=t 和f (t )=﹣1,作出函数f (x )的图象,利用数形结合即可得到结论. 【详解】令()10y f f x =+=⎡⎤⎣⎦,得()1f f x =-⎡⎤⎣⎦,设f (x )=t ,则方程()1f f x =-⎡⎤⎣⎦等价为f (t )=﹣1,①若k >0,作出函数f (x )的图象如图:∵f (t )=﹣1,∴此时方程f (t )=﹣1有两个根其中t 2<0,0<t 1<1,由f (x )=t 2<0,此时x 有两解,由f (x )=t 1∈(0,1)知此时x 有两解,此时共有4个解, 即函数y =f [f (x )]+1有4个零点.②若k <0,作出函数f (x )的图象如图:∵f (t )=﹣1,∴此时方程f (t )=﹣1有一个根t 1,其中0<t 1<1,由f (x )=t 1∈(0,1),此时x 只有1个解,即函数y =f [f (x )]+1有1个零点. 故选:CD .【点睛】本题考查分段函数的应用,考查复合函数的零点的判断,利用换元法和数形结合是解决本题的关键,属于难题.6.已知0a >,0b >,下列说法错误的是( )A .若1a b a b ⋅=,则2a b +≥B .若23a b e a e b +=+,则a b >C .()ln ln a a b a b -≥-恒成立D .2ln a a bb e e-<恒成立 【答案】AD 【分析】对A 式化简,通过构造函数的方法,结合函数图象,说明A 错误;对B 不等式放缩22a b e a e b +>+,通过构造函数的方法,由函数的单调性,即可证明B 正确;对C 不等式等价变型()ln ln ln1-≥-⇔≥-a b a a b a b b a ,通过10,ln 1∀>>-x x x恒成立,可得C 正确;D 求出ln -a a b b e 的最大值,当且仅当11a b e =⎧⎪⎨=⎪⎩时取等号,故D 错误.【详解】A. 1ln ln 0⋅=⇔+=a b a b a a b b 设()ln f x x x =,()()0∴+=f a f b由图可知,当1+→b 时,存在0+→a ,使()()0f a f b += 此时1+→a b ,故A 错误. B. 232+=+>+a b b e a e b e b设()2xf x e x =+单调递增,a b ∴>,B 正确C. ()ln ln ln 1-≥-⇔≥-a ba ab a b b a又10,ln 1∀>>-x x x ,ln 1∴≥-a bb a,C 正确D. max 1=⇒=x x y y e e当且仅当1x =; min 1ln =⇒=-y x x y e 当且仅当1=x e;所以2ln -≤a a b b e e ,当且仅当11a b e =⎧⎪⎨=⎪⎩时取等号,D 错误.故选:AD 【点睛】本题考查了导数的综合应用,考查了运算求解能力和逻辑推理能力,转化的数学思想和数形结合的数学思想,属于难题.7.设函数()ln xf x x=,()ln g x x x =,下列命题,正确的是( ) A .函数()f x 在()0,e 上单调递增,在(),e +∞单调递减 B .不等关系33e e ππππ<<<成立C .若120x x <<时,总有()()()22212122a x x g x g x ->-恒成立,则1a ≥D .若函数()()2h x g x mx =-有两个极值点,则实数()0,1m ∈【答案】AC 【分析】利用函数的单调性与导数的关系可判断A 选项的正误;由函数()f x 在区间(),e +∞上的单调性比较3π、e π的大小关系,可判断B 选项的正误;分析得出函数()()22s x g x ax=-在()0,∞+上为减函数,利用导数与函数单调性的关系求出a 的取值范围,可判断C 选项的正误;分析出方程1ln 2xm x+=在()0,∞+上有两个根,数形结合求出m 的取值范围,可判断D 选项的正误. 【详解】对于A 选项,函数()ln x f x x =的定义域为()0,∞+,则()21ln xf x x-'=. 由()0f x '>,可得0x e <<,由()0f x '>,可得x e >.所以,函数()f x 在()0,e 上单调递增,在(),e +∞单调递减,A 选项正确; 对于B 选项,由于函数()ln xf x x=在区间(),e +∞上单调递减,且4e π>>, 所以,()()4f f π>,即ln ln 44ππ>,又ln 41ln 213ln 22043236--=-=>, 所以,ln ln 4143ππ>>,整理可得3e ππ>,B 选项错误; 对于C 选项,若120x x <<时,总有()()()22212122a x x g x g x ->-恒成立,可得()()22112222g x ax g x ax ->-,构造函数()()2222ln s x g x ax x x ax =-=-,则()()12s x s x >,即函数()s x 为()0,∞+上的减函数,()()21ln 20s x x ax '=+-≤对任意的()0,x ∈+∞恒成立,即1ln xa x+≥对任意的()0,x ∈+∞恒成立, 令()1ln x t x x +=,其中0x >,()2ln xt x x'=-. 当01x <<时,()0t x '>,此时函数()t x 单调递增; 当1x >时,()0t x '<,此时函数()t x 单调递减.所以,()()max 11t x t ==,1a ∴≥,C 选项正确;对于D 选项,()()22ln h x g x mx x x mx =-=-,则()1ln 2h x x mx '=+-,由于函数()h x 有两个极值点,令()0h x '=,可得1ln 2xm x+=, 则函数2y m =与函数()t x 在区间()0,∞+上的图象有两个交点, 当1x e>时,()0t x >,如下图所示:当021m <<时,即当102m <<时,函数2y m =与函数()t x 在区间()0,∞+上的图象有两个交点.所以,实数m 的取值范围是10,2⎛⎫ ⎪⎝⎭,D 选项错误. 故选:AC. 【点睛】方法点睛:利用导数解决函数零点问题的方法:(1)直接法:先对函数求导,根据导数的方法求出函数的单调区间与极值,根据函数的基本性质作出图象,然后将问题转化为函数图象与x 轴的交点问题,突出导数的工具作用,体现了转化与化归思想、数形结合思想和分类讨论思想的应用; (2)构造新函数法:将问题转化为研究两函数图象的交点问题;(3)参变量分离法:由()0f x =分离变量得出()a g x =,将问题等价转化为直线y a =与函数()y g x =的图象的交点问题.8.下列命题正确的有( )A .已知0,0a b >>且1a b +=,则1222a b -<<B .34a b ==a b ab+= C .323y x x x =--的极大值和极小值的和为6-D .过(1,0)A -的直线与函数3y x x =-有三个交点,则该直线斜率的取值范围是1(,2)(2,)4-+∞ 【答案】ACD【分析】由等式关系、指数函数的性质可求2a b -的范围;利用指对数互化,结合对数的运算法求a b ab+;利用导数确定零点关系,结合原函数式计算极值之和即可;由直线与3y x x =-有三个交点,即可知2()h x x x k =--有两个零点且1x =-不是其零点即可求斜率范围.【详解】A 选项,由条件知1b a =-且01a <<,所以21(1,1)a b a -=-∈-,即1222a b -<<;B 选项,34a b ==log a =4log b =1212112(log 3log 4)2a b ab a b+=+=+=; C 选项,2361y x x '=--中>0∆且开口向上,所以存在两个零点12,x x 且122x x +=、1213x x =-,即12,x x 为y 两个极值点, 所以2212121212121212()[()3]3[()2]()6y y x x x x x x x x x x x x +=++--+--+=-; D 选项,令直线为(1)y k x =+与3y x x =-有三个交点,即2()()(1)g x x x k x =--+有三个零点,所以2()h x x x k =--有两个零点即可 ∴140(1)20k h k ∆=+>⎧⎨-=-≠⎩,解得1(,2)(2,)4k ∈-+∞ 故选:ACD【点睛】本题考查了指对数的运算及指数函数性质,利用导数研究极值,由函数交点情况求参数范围,属于难题.。
第 17- 20 课时:解读几何问题的题型与方法一.复习目标:1.能正确导出由一点和斜率确立的直线的点斜式方程;从直线的点斜式方程出发推导出直线方程的其余形式,斜截式、两点式、截距式;能依据已知条件,娴熟地选择合适的方程形式写出直线的方程,娴熟地进行直线方程的不一样形式之间的转变,能利用直线的方程来研究与直线有关的问题了 .2.能正确画出二元一次不等式(组)表示的平面地区,知道线性规划的意义,知道线性拘束条件、线性目标函数、可行解、可行域、最优解等基本观点,能正确地利用图解法解决线性规划问题,并用之解决简单的本质问题,认识线性规划方法在数学方面的应用;会用线性规划方法解决一些本质问题.3.理解“曲线的方程”、“方程的曲线”的意义,认识解读几何的基本思想,掌握求曲线的方程的方法 .4.掌握圆的标准方程:(x a)2( y b) 2r 2( r> 0),明确方程中各字母的几何意义,能依据圆心坐标、半径娴熟地写出圆的标准方程,能从圆的标准方程中娴熟地求出圆心坐标和半径,掌握圆的一般方程:x2y 2Dx Ey F 0 ,知道该方程表示圆的充要条件并正确地进行一般方程和标准方程的互化,能依据条件,用待定系数法求出圆的x r cos方程,理解圆的参数方程(θ为参数),明确各字母的意义,掌握直线与圆的y r sin地点关系的判断方法.5.正确理解椭圆、双曲线和抛物线的定义,明确焦点、焦距的观点;能依据椭圆、双曲线和抛物线的定义推导它们的标准方程;记着椭圆、双曲线和抛物线的各样标准方程;能依据条件,求出椭圆、双曲线和抛物线的标准方程;掌握椭圆、双曲线和抛物线的几何性质:范围、对称性、极点、离心率、准线(双曲线的渐近线)等,进而能快速、正确地画出椭圆、双曲线和抛物线;掌握 a、 b、 c、p、 e 之间的关系及相应的几何意义;利用椭圆、双曲线和抛物线的几何性质,确立椭圆、双曲线和抛物线的标准方程,并解决简单问题;理解椭圆、双曲线和抛物线的参数方程,并掌握它的应用;掌握直线与椭圆、双曲线和抛物线地点关系的判断方法 .二.考试要求:(一 )直线和圆的方程1.理解直线的斜率的观点,掌握过两点的直线的斜率公式,掌握直线方程的点斜式、两点式、一般式,并能根据条件熟练地求出直线方程。
上高中生公益平台:,找学长学姐聊天~第六讲导数的应用命题要点:(1)导数的实际背景与几何意义;(2)导数的基本运算;(3)利用导数研究函数的单调性;(4)利用导数研究函数的极值与最值。
命题趋势:(1)导数的几何意义是高考考查的重要内容,常与解析几何知识交汇命题,多以选择、填空题的形式出现,有时也出现在简答题中关键的一步,其中常求曲线在某点的切线问题——切线的斜率、倾斜角、切线方程等是考查的重点与热点;(2)导数的运算时导数的基本内容,虽然高考很少命题,但它在考查导数的应用中同时出现,多涉及三次函数、对数函数、指数函数、正余弦函数等以及由他们复合而成的函数的求导问题,主要考查对初等函数的导数熟练记忆与导数运算法则的正确运用;(3)导数在研究函数的单调性及最值等方面有着传统工具无法比拟的优越性,是研究函数、方程、不等式等知识的重要工具。
从今几年各个地区高考题看,利用导数求函数的单调区间及最值、极值的试题频率较高,多以选择和填空题的形式出现,难度不大,随着高考导数在函数知识中的应用逐步加深,导数的综合运用得到加强,其中利用导数讨论方程的根,恒成立问题等常在高考中多以简答题的形式出现。
题型分析:类型一利用导数研究切线问题导数的几何意义yfxxxfxyfxxfx))(=(()在(=,处的导数′())就是曲线(1)函数在点=0000kfx) =′(处的切线的斜率,即0yfxxfxyfxfxxx).′(-))处的切线方程为-) (((2)曲线=)(=)在点(, (00000yfx)在某处的切线还是求过某点曲线的切方法总结:首先要分清是求曲线(=yfxxxfx)=求曲线=′((处的切线方程可先求)在,利用点斜式写出线.(1)00所求切线方程;(2)求过某点的曲线的切线方程要先设切点坐标,求出切点坐标后再写切线方程.1x baafxf(2)),在点+(21] (2012年高考安徽卷改编)设函数(()=>0)e.+例[x a e3baxy,处的切线方程为的值.=,求21x axf-)=,e∵[解析]′(x a e132af2=,∴′()=e-2a2e122aa=-(舍去或解得e=2e),2.上高中生公益平台:,找学长学姐聊天~21ab=3+,所以=,代入原函数可得2+22e1b=,即221ab=.=,故22e跟踪训练3xxfx.已知函数=(-)yfx)的过点(1,(0)的切线方程;(1)求曲线=xayfxa的取值范围.=)(2)若过(轴上的点(的三条切线,求,0)可以作曲线2yfxMxtftfx))处的切线方1.曲线(=(解析:(1)由题意得(′(,)=3)在点-23txxtytyftft,将点(12,0)(-)=1)′(·) (代入切线-,即)-=程为-(313223yxyttttt得曲线=(3-32,解得+1=0-=1或-,代入方程得21)-211fxyxyx+或.=2=-=-(0))的过点(1,的切线方程为24432atatayfx+3,0)可作曲线2=-()的三条切线,则方程(2)由(1)知若过点(32aattgt. -0有三个相异的实根,记3()=2+=2atttgtta).(-6 =则6′()=6-3aaagaagtg,要使方程(当+>0时,函数())的极大值是=-(0)=,极小值是32aaagtaa-1>0>0且->0且+<0,即(0)=有三个相异的实数根,需使,即a>1;agtgt)=0(不可能有三个相异的实数根;当=0时,函数(单调递增,方程)3agaggataa,要使方程=(0),极小值是+=-)(的极大值是)(时,函数<0当.上高中生公益平台:,找学长学姐聊天~32aaaaagt-1>0<0+且(>0)=0有三个相异的实数根,需使,即<0且-,即a<-1.a的取值范围是(-∞,-1)∪(1,+∞).综上所述,点评:由导数几何意义先求斜率,再求方程,注意点是否在曲线上,是否为切点.类型二利用导数研究函数的单调性函数的单调性与导数的关系abfxfxab)(,那么函数上单调递增;如在区间((,,)内,如果)′(在区间)>0fxfxab)上单调递减.,( 果)′(在区间)<0,那么函数(方法总结:函数在指定区间上单调递增(减),函数在这个区间上的导数大于或等于0(小于fx)求函数的单调区间解′(0)或等于,只要不在一段连续区间上恒等于0即可,fx)<0)>0(或即可.含参数的函数单调性求参数取值一般转化为恒成立问′(题。
第27练 压轴小题专练(1)[明晰考情] 高考题中填空题的最后2或3个小题,往往出现逻辑思维深刻,难度高档的题目.考点一 与函数有关的压轴小题方法技巧 本类压轴题常以超越方程、分段函数、抽象函数等为载体,考查函数性质、函数零点、参数的X 围和通过函数性质求解不等式.解决该类问题的途径往往是构造函数,进而研究函数的性质,利用函数性质去求解问题是常用方法,其间要注意导数的应用.1.偶函数f (x )满足f (x -1)=f (x +1),且当x ∈[-1,0]时,f (x )=x 2,若函数g (x )=f (x )-|lg x |,则g (x )在(0,10)上的零点个数为________. 答案 10解析 由题意g (x )=f (x )-|lg x |=⎩⎪⎨⎪⎧f (x )-lg x ,lg x ≥0,f (x )+lg x ,lg x <0,∵f (x -1)=f (x +1),∴f (x )=f (x +2),故f (x )是周期函数,且T =2, 又函数f (x )是R 上的偶函数,∴f (1-x )=f (1+x ),∴f (x )的图象关于x =1对称,当x >0时,在同一坐标系中作出y =f (x )和y =|lg x |的图象,如图所示.由图象知函数g (x )的零点个数为10.2.已知函数f (x )=2x-12(x <0)与g (x )=log 2(x +a )的图象上存在关于y 轴对称的点,则a 的取值X 围是________. 答案 (-∞,2)解析 由f (x )关于y 轴对称的函数为h (x )=f (-x )=2-x-12(x >0),令h (x )=g (x ),得2-x-12=log 2(x +a )(x >0),则方程2-x-12=log 2(x +a )在(0,+∞)上有解,作出y =2-x-12与y =log 2(x +a )的图象,如图所示,当a ≤0时,函数y =2-x-12与y =log 2(x +a )的图象在(0,+∞)上必有交点,符合题意;若a >0,两函数在(0,+∞)上必有交点,则log 2a <12,解得0<a <2,综上可知,实数a 的取值X 围是(-∞,2).3.函数f (x )的定义域为D ,若满足:①f (x )在D 内是单调函数;②存在[a ,b ]⊆D 使得f (x )在[a ,b ]上的值域为⎣⎢⎡⎦⎥⎤a 2,b2,则称函数f (x )为“成功函数”.若函数f (x )=log m (m x+2t )(其中m >0,且m ≠1)是“成功函数”,则实数t 的取值X 围为________.答案 ⎝ ⎛⎭⎪⎫0,18 解析 无论m >1还是0<m <1,f (x )=log m (m x+2t )都是R 上的单调增函数,故应有⎩⎪⎨⎪⎧f (a )=a 2,f (b )=b 2,则问题可转化为求f (x )=x2,即f (x )=log m (m x+2t )=x2,即m x+2t =12x m在R 上有两个不相等的实数根的问题,令λ=12x m(λ>0),则m x+2t =12x m可化为2t =λ-λ2=-⎝ ⎛⎭⎪⎫λ-122+14,结合图形(图略)可得t ∈⎝ ⎛⎭⎪⎫0,18. 4.(2018·某某省如东高级中学月考)已知函数f (x )=(x 2-3)e x ,设关于x 的方程f 2(x )-af (x )=0(a ∈R )有4个不同的实数解,则a 的取值X 围是________.答案 ⎩⎨⎧⎭⎬⎫6e 3∪(-2e,0)解析 由题意知,f ′(x )=2x e x +(x 2-3)e x=e x(x 2+2x -3),令f ′(x )=0,解得x =1或x =-3,所以当x <-3或x >1时,f ′(x )>0,当-3<x <1时,f ′(x )<0,所以f (x )在(-∞,-3)上单调递增,在(-3,1)上单调递减,在(1,+∞)上单调递增,所以当x =-3时,f (x )取得极大值6e3;当x =1时,f (x )取得极小值-2e ,当x →-∞时,f (x )→0, 作出函数f (x )的图象,如图所示,由f 2(x )-af (x )=0,得f (x )=0或f (x )=a , 由图象可知f (x )=0有两解,所以f (x )=a 也有两解, 所以a =6e 3或-2e<a <0.考点二 与数列有关的压轴小题方法技巧 数列与函数的交汇、数列与不等式的交汇问题是高考的热点.解决这类问题的关键在于利用数列与函数的对应关系,将条件进行准确的转化,确定数列的通项或前n 项和,利用函数的性质、图象求解最值问题,不等关系或恒成立问题.5.在公比为q 的正项等比数列{a n }中,a 4=4,则当2a 2+a 6取得最小值时,log 2q =________. 答案 14解析 2a 2+a 6≥22a 2a 6=22a 24=82,即2a 2+a 6=2a 4q2+a 4q 2≥82,所以q 4-22q 2+2≥0,即(q 2-2)2≥0,当且仅当q 4=2时取等号,所以log 2q =log 2214=14.6.已知数列{a n }满足:a 1=1,a n +1=a na n +2(n ∈N *).若b n +1=(n -2λ)·⎝ ⎛⎭⎪⎫1a n +1(n ∈N *),b 1=-λ,且数列{b n }是单调递增数列,则实数λ的取值X 围是________. 答案 ⎝ ⎛⎭⎪⎫-∞,23解析 由a n +1=a na n +2,得1a n +1=2a n +1,即1a n +1+1=2⎝ ⎛⎭⎪⎫1a n +1,所以⎩⎨⎧⎭⎬⎫1a n +1是以1a 1+1为首项,2为公比的等比数列,所以1a n+1=⎝ ⎛⎭⎪⎫1a 1+12n -1=2n ,所以b n +1=(n -2λ)·2n.因为数列{b n }是单调递增数列,所以当n ≥2时,由b n +1>b n ,得(n -2λ)·2n>(n -1-2λ)·2n -1,解得n >2λ-1,即2>2λ-1,所以λ<32;当n =1时,由b 2>b 1得(1-2λ)·2>-λ,解得λ<23,因此λ<23.7.已知S n 和T n 分别为数列{a n }与数列{b n }的前n 项和,且a 1=e 4,S n =e S n +1-e 5,a n =e n b,则当T n 取得最大值时n 的值为________. 答案 4或5解析 由S n =e S n +1-e 5,得S n -1=e S n -e 5(n ≥2),两式相减,得a n =e a n +1(n ≥2),易知a 2=e 3,a 2a 1=e 3e 4=1e ,所以数列{a n }是首项为e 4,公比为1e的等比数列,所以a n =e 5-n .因为a n =e n b,所以b n =5-n .由⎩⎪⎨⎪⎧b n ≥0,b n +1≤0,即⎩⎪⎨⎪⎧5-n ≥0,5-(n +1)≤0,解得4≤n ≤5,所以当n =4或n =5时,T n 取得最大值.8.已知函数f (x )=x 2+(a +8)x +a 2+a -12,且f (a 2-4)=f (2a -8),设等差数列{a n }的前n 项和为S n (n ∈N *),若S n =f (n ),则S n -4aa n -1的最小值为________. 答案378解析 由题意可得a 2-4=2a -8或a 2-4+2a -8=2×⎝⎛⎭⎪⎫-a +82,解得a =1或a =-4.当a =1时,f (x )=x 2+9x -10,数列{a n }不是等差数列; 当a =-4时,f (x )=x 2+4x ,S n =f (n )=n 2+4n , ∴a 1=5,a 2=7,a n =5+(7-5)(n -1)=2n +3,∴S n -4a a n -1=n 2+4n +162n +2=12×(n +1)2+2(n +1)+13n +1=12×⎣⎢⎡⎦⎥⎤(n +1)+13n +1+2≥12⎣⎢⎡⎦⎥⎤2(n +1)×13n +1+2=13+1, 当且仅当n +1=13n +1,即n =13-1(舍负)时取等号, ∵n 为正整数,2<13-1<3,当n =2时,S n -4a a n -1=143;当n =3时,S n -4a a n -1=378,故当n =3时原式取最小值378.1.(2018·全国Ⅱ改编)已知f (x )是定义域为(-∞,+∞)的奇函数,满足f (1-x )=f (1+x ).若f (1)=2,则f (1)+f (2)+f (3)+…+f (50)=________. 答案 2解析 ∵f (x )是奇函数,∴f (-x )=-f (x ),∴f (1-x )=-f (x -1).∵f (1-x )=f (1+x ), ∴-f (x -1)=f (x +1),∴f (x +2)=-f (x ), ∴f (x +4)=-f (x +2)=-[-f (x )]=f (x ), ∴函数f (x )是周期为4的周期函数. 由f (x )为奇函数及其定义域为R 得f (0)=0. 又∵f (1-x )=f (1+x ),∴f (x )的图象关于直线x =1对称, ∴f (2)=f (0)=0,∴f (-2)=0. 又f (1)=2,∴f (-1)=-2,∴f (1)+f (2)+f (3)+f (4)=f (1)+f (2)+f (-1)+f (0)=2+0-2+0=0,∴f (1)+f (2)+f (3)+f (4)+…+f (49)+f (50)=0×12+f (49)+f (50)=f (1)+f (2)=2+0=2.2.已知实数f (x )=⎩⎪⎨⎪⎧e x,x ≥0,lg (-x ),x <0,若关于x 的方程f 2(x )+f (x )+t =0有三个不同的实根,则t 的取值X 围为________. 答案 (-∞,-2]解析 设m =f (x ),作出函数f (x )的图象,如图所示,则当m ≥1时,m =f (x )有两个根,当m <1时,m =f (x )有一个根.若关于x 的方程f 2(x )+f (x )+t =0有三个不同的实根,则等价为m 2+m +t =0有两个不同的实数根m 1,m 2,且m 1≥1,m 2<1.当m =1时,t =-2,此时由m2+m -2=0,解得m =1或m =-2,f (x )=1有两个根,f (x )=-2有一个根,满足条件;当m ≠1时,设h (m )=m 2+m +t ,其对称轴为m =-12,则需h (1)<0即可,即1+1+t <0,解得t <-2.综上,实数t 的取值X 围为t ≤-2.3.若存在两个正实数x ,y 使等式2x +m (y -2e x )(ln y -ln x )=0成立(其中e =2.71828…),则实数m 的取值X 围是________.答案 (-∞,0)∪⎣⎢⎡⎭⎪⎫2e ,+∞ 解析 当m =0时,不满足题意,由题意可得m =2x(2e x -y )(ln y -ln x ),则1m =(2e x -y )(ln y -ln x )2x =⎝ ⎛⎭⎪⎫e -12·y x ·ln y x ,令t =yx ()t >0,构造函数g (t )=⎝ ⎛⎭⎪⎫e -t 2ln t (t >0), 则g ′(t )=-12ln t +⎝ ⎛⎭⎪⎫e -t 2×1t=-12ln t +e t -12(t >0),设h (t )=g ′(t ),则h ′(t )=-12t -e t 2=-t +2e 2t 2<0恒成立,则g ′(t )在(0,+∞)上单调递减, 当t =e 时,g ′(t )=0,则当t ∈(0,e)时,g ′(t )>0,函数g (t )单调递增, 当t ∈(e,+∞)时,g ′(t )<0,函数g (t )单调递减, 则当t =e 时,g (t )取得最大值g (e)=e2,且当t →0时,g (t )→-∞, 据此有1m ≤e 2,∴m <0或m ≥2e.综上可得实数m 的取值X 围是(-∞,0)∪⎣⎢⎡⎭⎪⎫2e ,+∞.4.已知函数f (x )=2x 2x +1,函数g (x )=a sin π6x -2a +2(a >0),若存在x 1,x 2∈[0,1],使得f (x 1)=g (x 2)成立,则实数a 的取值X 围是________.答案 ⎣⎢⎡⎦⎥⎤12,43解析 当x ∈[0,1]时,f (x )=2x2x +1是增函数,其值域是[0,1].g (x )=a sin π6x -2a +2(a >0)的值域是⎣⎢⎡⎦⎥⎤2-2a ,2-32a ,因为存在x 1,x 2∈[0,1],使得f (x 1)=g (x 2)成立,所以[0,1]∩⎣⎢⎡⎦⎥⎤2-2a ,2-32a ≠∅,若[0,1]∩⎣⎢⎡⎦⎥⎤2-2a ,2-32a =∅,则2-2a >1或2-32a <0,即a <12或a >43,所以a 的取值X 围是⎣⎢⎡⎦⎥⎤12,43.5.设数列{a n }的前n 项和为S n ,若S nS 2n为常数,则称数列{a n }为“精致数列”.已知等差数列{b n }的首项为1,公差不为0,若数列{b n }为“精致数列”,则数列{b n }的通项公式为__________.答案 b n =2n -1(n ∈N *)解析 设等差数列{b n }的公差为d , 由S n S 2n 为常数,设S nS 2n=k 且b 1=1, 得n +12n (n -1)d =k ⎣⎢⎡⎦⎥⎤2n +12×2n (2n -1)d ,即2+(n -1)d =4k +2k (2n -1)d , 整理得(4k -1)dn +(2k -1)(2-d )=0, 因为对任意正整数n 上式恒成立,则⎩⎪⎨⎪⎧d (4k -1)=0,(2k -1)(2-d )=0,解得⎩⎪⎨⎪⎧d =2,k =14,所以数列{b n }的通项公式为b n =2n -1(n ∈N *). 6.若数列{a n }满足1a n +1-pa n=0,n ∈N *,p 为非零常数,则称数列{a n }为“梦想数列”.已知正项数列⎩⎨⎧⎭⎬⎫1b n 为“梦想数列”,且b 1b 2b 3…b 99=299,则b 8+b 92的最小值是________.答案 4解析 依题意可得b n +1=pb n ,则数列{b n }为等比数列.又b 1b 2b 3…b 99=299=b 9950,则b 50=2.b 8+b 92≥2b 8·b 92=2b 50=4,当且仅当b 8=b 92=2,即该数列为常数数列时取等号.7.当n 为正整数时,定义函数N (n )表示n 的最大奇因数.如N (3)=3,N (10)=5,…,S (n )=N (1)+N (2)+N (3)+…+N (2n),则S (5)=________. 答案 342解析 ∵N (2n )=N (n ),N (2n -1)=2n -1,而S (n )=N (1)+N (2)+N (3)+…+N (2n), ∴S (n )=N (1)+N (3)+N (5)+…+N (2n-1)+[N (2)+N (4)+…+N (2n)], ∴S (n )=1+3+5+ (2)-1+[N (1)+N (2)+N (3)+…+N (2n -1)],∴S (n )=1+2n-12×2n2+S (n -1)(n ≥2),即S (n )-S (n -1)=4n -1,又S (1)=N (1)+N (2)=1+1=2,∴S (5)-S (1)=[S (5)-S (4)]+[S (4)-S (3)]+…+[S (2)-S (1)]=44+43+42+4,∴S (5)=2+4+42+43+44=342.8.抛物线x 2=12y 在第一象限内图象上的一点(a i ,2a 2i )处的切线与x 轴交点的横坐标记为a i +1,其中i ∈N *,若a 2=32,则a 2+a 4+a 6=________. 答案 42解析 抛物线x 2=12y 可化为y =2x 2,则y ′=4x ,抛物线在点(a i ,2a 2i )处的切线方程为y -2a 2i=4a i (x -a i ),所以切线与x 轴交点的横坐标为a i +1=12a i ,所以数列{a 2k }是以a 2=32为首项,14为公比的等比数列,所以a 2+a 4+a 6=32+8+2=42. 9.已知等比数列{a n }的前n 项和为S n ,a 2>a 1,S 4=a 1+28,且a 3+2是a 2,a 4的等差中项,若数列⎩⎨⎧⎭⎬⎫a n +1S n S n +1的前n 项和T n ≤2n -2+M 恒成立,则M 的最小值为________. 答案 -16解析 设等比数列{a n }的公比为q ,依题意得2(a 3+2)=a 2+a 4,又S 4=a 1+28,∴a 2+a 3+a 4=28,得a 3=8,∴⎩⎪⎨⎪⎧a 1q +a 1q 3=20,a 3=a 1q 2=8,解得⎩⎪⎨⎪⎧a 1=2,q =2或⎩⎪⎨⎪⎧a 1=32,q =12.又a 2>a 1,∴a 1=2,q =2,∴a n =2n,S n =2n +1-2.令b n =a n +1S n S n +1, ∴b n =2n +1(2n +1-2)(2n +2-2)=12n +1-2-12n +2-2, ∴T n =⎝⎛⎭⎪⎫122-2-123-2+⎝ ⎛⎭⎪⎫123-2-124-2+…+⎝ ⎛⎭⎪⎫12n +1-2-12n +2-2=122-2-12n +2-2=12-12n +2-2.故T n -2n -2=12-12n +2-2-2n -2. 又T n -2n -2-(T n +1-2n -1)=2n -2-2n -2⎝⎛⎭⎪⎫2n -12⎝ ⎛⎭⎪⎫2n +1-12>2n -2-2n -2(2n -1)2=22n -2(2n-2)(2n -1)2≥0, 即T n -2n -2>T n +1-2n -1,故数列{T n -2n -2}单调递减,故(T n -2n -2)max =12-123-2-2-1=-16.又T n ≤2n -2+M 恒成立,即M ≥T n -2n -2恒成立,故M ≥-16,所以M 的最小值为-16.10.已知数列{a n }的奇数项是首项为1的等差数列,偶数项是首项为2的等比数列,数列{a n }的前n 项和为S n ,且满足a 4=S 3,a 9=a 3+a 4,则使得S 2kS 2k -1恰好为数列{a n }的奇数项的正整数k 的值为________. 答案 1解析 设等差数列的公差为d ,等比数列的公比为q , 则a 1=1,a 2=2,a 3=1+d ,a 4=2q ,a 9=1+4d . 因为a 4=S 3,a 9=a 3+a 4,所以1+2+1+d =2q,1+4d =1+d +2q , 解得d =2,q =3,则对于n ∈N *,有a 2n -1=2n -1,a 2n =2×3n -1,所以S 2n =[1+3+…+(2n -1)]+2(1+3+32+…+3n -1)=3n +n 2-1,S 2n -1=S 2n -a 2n =3n -1+n 2-1.若S 2k S 2k -1恰好为数列{a n }的奇数项,则可设S 2kS 2k -1=m (m 为正奇数), 所以S 2k S 2k -1=3k +k 2-13k -1+k 2-1=m ,即(3-m )3k -1=(m -1)(k 2-1).当k =1时,m =3,满足条件;当k ≠1时,3k -1k 2-1=m -13-m ,由3k -1k 2-1>0,得m -13-m>0,解得1<m <3,因为m 为正奇数,所以此时满足条件的正整数k 不存在.综上,k =1. 11.已知函数f (x )=x 2+(ln3x )2-2a (x +3ln3x )+10a 2,若存在x 0使得f (x 0)≤110成立,则实数a 的值为________. 答案130解析 f (x )=x 2+(ln3x )2-2a (x +3ln3x )+10a 2=(x -a )2+(ln3x -3a )2表示点M (x ,ln3x )与点N (a,3a )距离的平方,M 点的轨迹是函数g (x )=ln3x 的图象,N 点的轨迹是直线y =3x ,则g ′(x )=1x .作g (x )的平行于直线y =3x 的切线,切点为(x 1,y 1),则1x 1=3,所以x 1=13,切点为P ⎝ ⎛⎭⎪⎫13,0,所以曲线上点P ⎝ ⎛⎭⎪⎫13,0到直线y =3x 的距离最小,最小距离d =110,所以f (x )≥110,根据题意,要使f (x 0)≤110,则f (x 0)=110,此时N 为垂足,点M 与点P 重合,k MN=3a -0a -13=-13,得a =130. 12.(2018·某某省海安高级中学月考)已知公比不为1的等比数列{a n }中,a 1=1,a 2=a ,且a n+1=k (a n +a n +2)对任意正整数n 都成立,且对任意相邻三项a m ,a m +1,a m +2按某顺序排列后成等差数列,则满足题意的k 的值为________. 答案 -25解析 设等比数列{a n }的公比为q ,则q =a 2a 1=a (a ≠1), 所以a m =am -1,a m +1=a m ,a m +2=am +1.①若a m +1为等差中项,则2a m +1=a m +a m +2, 即2a m=am -1+am +1,解得a =1,不合题意.②若a m 为等差中项,则2a m =a m +1+a m +2, 即2am -1=a m +am +1,化简得a 2+a -2=0,解得a =-2或a =1(舍去).∴k =a m +1a m +a m +2=a m a m -1+a m +1=a 1+a 2=-25.③若a m +2为等差中项,则2a m +2=a m +1+a m , 即2am +1=a m +am -1,化简得2a 2-a -1=0,解得a =-12或a =1(舍去),∴k =a m +1a m +a m +2=a m a m -1+a m +1=a 1+a 2=-25.综上可得满足要求的实数k 有且仅有一个,且k =-25.。
第25-29课时:导数应用的题型与方法一.复习目标:1.了解导数的概念,能利用导数定义求导数.掌握函数在一点处的导数的定义和导数的几何意义,理解导函数的概念.了解曲线的切线的概念.在了解瞬时速度的基础上抽象出变化率的概念.2.熟记基本导数公式(c,x m (m为有理数),sin x, cos x, e x, a x, lnx, logxa的导数)。
掌握两个函数四则运算的求导法则和复合函数的求导法则,会求某些简单函数的导数,利能够用导数求单调区间,求一个函数的最大(小)值的问题,掌握导数的基本应用. 3.了解函数的和、差、积的求导法则的推导,掌握两个函数的商的求导法则。
能正确运用函数的和、差、积的求导法则及已有的导数公式求某些简单函数的导数。
4.了解复合函数的概念。
会将一个函数的复合过程进行分解或将几个函数进行复合。
掌握复合函数的求导法则,并会用法则解决一些简单问题。
二.考试要求:⑴了解导数概念的某些实际背景(如瞬时速度、加速度、光滑曲线切线的斜率等),掌握函数在一点处的导数的定义和导数的几何意义,理解导函数的概念。
x的⑵熟记基本导数公式(c,x m (m为有理数),sin x, cos x, e x, a x,lnx, loga导数)。
掌握两个函数四则运算的求导法则和复合函数的求导法则,会求某些简单函数的导数。
⑶了解可导函数的单调性与其导数的关系,了解可导函数在某点取得极值的必要条件和充分条件(导数要极值点两侧异号),会求一些实际问题(一般指单峰函数)的最大值和最小值。
三.教学过程:(Ⅰ)基础知识详析导数是微积分的初步知识,是研究函数,解决实际问题的有力工具。
在高中阶段对于导数的学习,主要是以下几个方面:1.导数的常规问题:(1)刻画函数(比初等方法精确细微);(2)同几何中切线联系(导数方法可用于研究平面曲线的切线);(3)应用问题(初等方法往往技巧性要求较高,而导数方法显得简便)等关于n次多项式的导数问题属于较难类型。
2.关于函数特征,最值问题较多,所以有必要专项讨论,导数法求最值要比初等方法快捷简便。
3.导数与解析几何或函数图象的混合问题是一种重要类型,也是高考中考察综合能力的一个方向,应引起注意。
4.曲线的切线在初中学过圆的切线,直线和圆有惟一公共点时,叫做直线和圆相切,这时直线叫做圆的切线,惟一的公共点叫做切点.圆是一种特殊的曲线,能不能将圆的切线的概念推广为一段曲线的切线,即直线和曲线有惟一公共点时,直线叫做曲线过该点的切线,显然这种推广是不妥当的.如图3—1中的曲线C 是我们熟知的正弦曲线y=sinx .直线1l 与曲线C 有惟一公共点M ,但我们不能说直线1l 与曲线C 相切;而直线2l 尽管与曲线C 有不止一个公共点,我们还是说直线2l 是曲线C 在点N 处的切线.因此,对于一般的曲线,须重新寻求曲线的切线的定义.所以课本利用割线的极限位置来定义了曲线的切线.5.瞬时速度在高一物理学习直线运动的速度时,涉及过瞬时速度的一些知识,物理教科书中首先指出:运动物体经过某一时刻(或某一位置)的速度叫做瞬时速度,然后从实际测量速度出发,结合汽车速度仪的使用,对瞬时速度作了说明.物理课上对瞬时速度只给出了直观的描述,有了极限工具后,本节教材中是用物体在一段时间运动的平均速度的极限来定义瞬时速度. 6.导数的定义导数定义与求导数的方法是本节的重点,推导导数运算法则与某些导数公式时,都是以此为依据.对导数的定义,我们应注意以下三点:(1)△x 是自变量x 在 0x 处的增量(或改变量).(2)导数定义中还包含了可导或可微的概念,如果△x→0时,xy ∆∆有极限,那么函数y=f(x)在点0x 处可导或可微,才能得到f(x)在点0x 处的导数.(3)如果函数y=f(x)在点0x 处可导,那么函数y=f(x)在点0x 处连续(由连续函数定义可知).反之不一定成立.例如函数y=|x|在点x=0处连续,但不可导.由导数定义求导数,是求导数的基本方法,必须严格按以下三个步骤进行: (1)求函数的增量)()(00x f x x f y -∆+=∆;(2)求平均变化率xx f x x f xy ∆-∆+=∆∆)()(00;(3)取极限,得导数xy x f x ∆∆=→∆00lim )('。
7.导数的几何意义函数y=f(x)在点0x 处的导数,就是曲线y=(x)在点))(,(00x f x P 处的切线的斜率.由此,可以利用导数求曲线的切线方程.具体求法分两步:(1)求出函数y=f(x)在点0x 处的导数,即曲线y=f(x)在点))(,(00x f x P 处的切线的斜率;(2)在已知切点坐标和切线斜率的条件下,求得切线方程为 ))(('000x x x f y y -=-特别地,如果曲线y=f(x)在点))(,(00x f x P 处的切线平行于y 轴,这时导数不存,根据切线定义,可得切线方程为0x x = 8.和(或差)的导数对于函数23)(x x x f +=的导数,如何求呢?我们不妨先利用导数的定义来求。
xx x x x x x xx f x x f x f x x ∆+-∆++∆+=∆-∆+=→∆→∆)()()(lim)()(lim)('23230xx x x x x x x xx x x x x x x x x x 23))(323(lim )(2)()(33lim22202322+=∆+∆+∆⋅++=∆∆+∆⋅+∆+∆+∆⋅=→∆→∆我们不难发现)'()'(23)'(23223x x x x x x +=+=+,即两函数和的导数等于这两函数的导数的和。
由此我们猜测在一般情况下结论成立。
事实上教材中证明了我们的猜想,这就是两个函数的和(或差)的求导法则。
9.积的导数两个函数的积的求导法则的证明是本节的一个难点,证明过程中变形的关键是依据导数定义的结构形式。
(具体过程见课本P120) 说明:(1)'')'(v u uv ≠;(2)若c 为常数,则(cu) ′=cu′。
10.商的导数两个函数的商的求导法则,课本中未加证明,只要求记住并能运用就可以。
现补充证明如下: 设)()()(x v x u x f y ==[][])()()()()()()()()()()()()()()()()()u(x y x v x x v x v x x v x u x v x u x x u x v x x v x x v x u x v x x u x v x u x x v x ∆+-∆+--∆+=∆+∆+-∆+=-∆+∆+=∆)()()()()()()()(x v x x v xx v x x v x u x v xx u x x u xy ∆+∆-∆+-∆-∆+=∆∆因为v(x)在点x 处可导,所以它在点x 处连续,于是△x→0时,v(x+△x)→v(x),从而[]2)()(')()()('limx v x v x u x v x u xy x -=∆∆→∆即2''''v uv v u v u y -=⎪⎭⎫⎝⎛=。
说明:(1)'''v u v u ≠⎪⎭⎫⎝⎛; (2)2'''v uv v u v u -=⎪⎭⎫ ⎝⎛ 学习了函数的和、差、积、商的求导法则后,由常函数、幂函数及正、余弦函数经加、减、乘、除运算得到的简单的函数,均可利用求导法则与导数公式求导,而不需要回到导数的定义去求。
11. 导数与函数的单调性的关系 ㈠0)(>'x f 与)(x f 为增函数的关系。
0)(>'x f 能推出)(x f 为增函数,但反之不一定。
如函数3)(x x f =在),(+∞-∞上单调递增,但0)(≥'x f ,∴0)(>'x f 是)(x f 为增函数的充分不必要条件。
㈡0)(≠'x f 时,0)(>'x f 与)(x f 为增函数的关系。
若将0)(='x f 的根作为分界点,因为规定0)(≠'x f ,即抠去了分界点,此时)(x f 为增函数,就一定有0)(>'x f 。
∴当0)(≠'x f 时,0)(>'x f 是)(x f 为增函数的充分必要条件。
㈢0)(≥'x f 与)(x f 为增函数的关系。
)(x f 为增函数,一定可以推出0)(≥'x f ,但反之不一定,因为0)(≥'x f ,即为0)(>'x f 或0)(='x f 。
当函数在某个区间内恒有0)(='x f ,则)(x f 为常数,函数不具有单调性。
∴0)(≥'x f 是)(x f 为增函数的必要不充分条件。
函数的单调性是函数一条重要性质,也是高中阶段研究的重点,我们一定要把握好以上三个关系,用导数判断好函数的单调性。
因此新教材为解决单调区间的端点问题,都一律用开区间作为单调区间,避免讨论以上问题,也简化了问题。
但在实际应用中还会遇到端点的讨论问题,要谨慎处理。
㈣单调区间的求解过程,已知)(x f y =(1)分析 )(x f y =的定义域; (2)求导数 )(x f y '=' (3)解不等式0)(>'x f ,解集在定义域内的部分为增区间 (4)解不等式0)(<'x f ,解集在定义域内的部分为减区间我们在应用导数判断函数的单调性时一定要搞清以下三个关系,才能准确无误地判断函数的单调性。
以下以增函数为例作简单的分析,前提条件都是函数)(x f y =在某个区间内可导。
㈤函数单调区间的合并函数单调区间的合并主要依据是函数)(x f 在),(b a 单调递增,在),(c b 单调递增,又知函数在b x f =)(处连续,因此)(x f 在),(c a 单调递增。
同理减区间的合并也是如此,即相邻区间的单调性相同,且在公共点处函数连续,则二区间就可以合并为以个区间。
)(x f y = ],[b a x ∈(1)0)(>'x f 恒成立 ∴)(x f y =为),(b a 上↑∴ 对任意),(b a x ∈ 不等式 )()()(b f x f a f << 恒成立 (2)0)(<'x f 恒成立 ∴ )(x f y =在),(b a 上↓ ∴ 对任意),(b a x ∈不等式)()()(b f x f a f >> 恒成立㈥注意事项1.导数概念的理解.2.利用导数判别可导函数的极值的方法及求一些实际问题的最大值与最小值.复合函数的求导法则是微积分中的重点与难点内容。