马尔可夫链模型
- 格式:doc
- 大小:225.00 KB
- 文档页数:12
马尔可夫链模型简介设考察对象为一系统,若该系统在某一时刻可能出现的事件集合为,}{N N E E E E E E ⋅⋅⋅⋅⋅⋅,2,1,2,1,两两互斥,则陈i E 为状态。
N i ⋅⋅⋅=,2,1。
称该系统从一种状态i E 变化到另一状态j E 的过程称为状态转移,并把整个系统不断实现状态转移的过程称为马尔可夫过程。
定义1 具有下列两个性质的马尔可夫过程称为马尔可夫链: (1)无后效性,即系统的第n 次实验结果出现的状态,只与第1-n 次有关,而与它以前所处的状态无关;(2)具有稳定性,该过程逐渐趋于稳定状态,而与初始状态无关。
定义2 向量),,,(21n u u u u ⋅⋅⋅= 成为概率向量,如果u 满足:⎪⎩⎪⎨⎧=⋅⋅⋅=≥∑=nj jj u nj u 11,,2,10 定义3 如果方阵P 的每行都为概率向量,则称此方阵为概率矩阵。
如果矩阵A 和B 皆为概率矩阵,则AB ,k A ,k B 也都是概率矩阵(k 为正整数)。
定义4 系统由状态i E 经过一次转移到状态j E 的概率记为ij P ,称矩阵⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=3212222111211N N N N N P P P P P P P P P P 为一次(或一步)转移矩阵。
转移矩阵必为概率矩阵,且具有以下两个性质: 1、P P P k k )1()(-=; 2、k k P P =)(其中)(k P 为k 次转移矩阵。
定义5 对概率矩阵P ,若幂次方)(m P 的所有元素皆为正数,则矩阵P 称为正规概率矩阵。
(此处2≥m )定理1 正规概率矩阵P 的幂次方序列P ,2P ,3P ,…趋近于某一方阵T ,T 的每一行均为同一概率向量t ,且满足t tP = 。
马尔可夫链模型如下:设系统在0=k 时所处的初始状态 ),,()0()0(2)0(1)0(N S S S S ⋅⋅⋅=为已知,经过k 次转移后的状态向量 ),,()()(2)(1)(k N k k k S S S S ⋅⋅⋅=),2,1(⋅⋅⋅=k ,则⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=NN N N N N k P P P P P P P P P S S 212222111211)0()( 此式即为马尔可夫链预测模型。
马尔可夫模型(Markov Model)是一种基于概率的数学模型,它可以用来描述随机过程中状态的转移规律。
在自然语言处理领域,马尔可夫模型被广泛应用于文本生成任务。
通过利用马尔可夫模型,我们可以根据已有的文本数据,生成新的文本内容,这对于自然语言生成、机器翻译等任务具有重要意义。
一、马尔可夫链马尔可夫链是指一个随机过程,其在任意时刻的状态只与前一个状态有关,而与过去的状态无关。
在文本生成任务中,我们可以将每个词或者字符看作一个状态,而文本中相邻的词或字符之间的转移概率可以用马尔可夫链来描述。
通过统计文本数据中相邻词之间的转移概率,我们可以构建一个马尔可夫链模型,用来生成新的文本内容。
二、一阶马尔可夫模型一阶马尔可夫模型是最简单的马尔可夫模型,它假设当前状态的转移概率只与前一个状态有关。
在文本生成中,一阶马尔可夫模型可以用来预测下一个词的概率分布。
假设我们有一个包含N个词的文本数据,我们可以统计每个词出现在前一个词之后的概率分布,然后根据这个概率分布来生成新的文本内容。
三、高阶马尔可夫模型除了一阶马尔可夫模型,我们还可以使用高阶马尔可夫模型来生成文本内容。
高阶马尔可夫模型考虑了当前状态与前面多个状态之间的关系,因此可以更准确地捕捉文本数据中的规律。
在实际应用中,我们可以根据文本数据的特点选择合适的高阶马尔可夫模型,来生成更具有连贯性和逼真感的文本内容。
四、马尔可夫链的参数估计在构建马尔可夫模型时,我们需要对模型中的转移概率进行估计。
通常情况下,我们可以通过统计文本数据中相邻状态之间的转移概率来估计马尔可夫链模型中的参数。
对于一阶马尔可夫模型,我们可以简单地统计每个词出现在前一个词之后的概率分布;对于高阶马尔可夫模型,我们需要考虑更多的前驱状态,然后进行参数估计。
五、马尔可夫链的应用利用马尔可夫模型进行文本生成有着广泛的应用。
在自然语言生成任务中,我们可以使用马尔可夫模型来生成新闻标题、诗歌、散文等文本内容。
马尔可夫链模型与天气马尔可夫链是一种数学模型,用于描述在随机过程中状态之间的转移规律。
而天气是我们日常生活中广泛关注的话题之一。
本文将探讨马尔可夫链模型在天气预测中的应用。
一、马尔可夫链模型简介马尔可夫链模型是以数学家安德烈·马尔可夫的名字命名的概率模型。
该模型基于马尔可夫性质,即未来的状态仅与当前状态有关,与之前的状态无关。
马尔可夫链模型可以用一个状态转移矩阵表示,其中矩阵的每个元素表示从一个状态转移到另一个状态的概率。
二、天气预测与马尔可夫链模型天气预测一直是人们关注的热门话题。
准确地预测未来的天气对农业、旅游和交通等行业有着重要的意义。
而马尔可夫链模型可以用来预测天气的变化。
为了简化问题,我们将天气分为三种状态:晴天、多云和雨天。
假设我们已经根据历史数据建立了一个马尔可夫链模型。
现在我们想要预测未来五天的天气情况。
根据马尔可夫链模型,我们可以根据当前天气状态转移到下一个天气状态的概率来进行预测。
例如,如果当前是晴天,我们可以查找状态转移矩阵中对应的行,然后根据概率分布来确定下一个天气状态。
通过迭代这个过程,我们可以预测出未来五天的天气情况。
三、马尔可夫链模型的应用案例为了更好地理解马尔可夫链模型在天气预测中的应用,下面将介绍一个实际案例。
假设某地区的天气仅有晴天、多云和雨天三种状态。
我们根据历史天气数据得到了如下的状态转移矩阵:晴天多云雨天晴天 0.7 0.2 0.1多云 0.3 0.4 0.3雨天 0.2 0.3 0.5现在我们要通过这个马尔可夫链模型来预测未来五天的天气。
假设当前天气是晴天,根据状态转移矩阵可知,下一个天气为晴天的概率为0.7,多云的概率为0.2,雨天的概率为0.1。
根据这些概率,我们可以随机选择一个状态作为下一个天气。
假设我们选择到了多云。
接下来,我们根据多云状态对应的行来确定下一个天气。
根据状态转移矩阵可知,下一个天气为晴天的概率为0.3,多云的概率为0.4,雨天的概率为0.3。
马尔可夫链模型及其应用领域马尔可夫链模型是一种描述随机过程的数学工具,它以马尔可夫性质为基础,描述了一个系统在不同状态之间转移的概率。
马尔可夫链模型在各个领域都有广泛的应用,包括自然科学、金融、计算机科学等。
本文将介绍马尔可夫链模型的基本原理,并探讨其在不同应用领域中的具体应用。
马尔可夫链模型的基本原理是基于马尔可夫性质。
马尔可夫性质指的是一个系统在给定当前状态下,其下一个状态只依赖于当前状态,而与过去的状态无关。
这种性质使得马尔可夫链模型成为处理许多问题的理想模型。
首先,我们来了解一下马尔可夫链模型的基本概念。
一个马尔可夫链由一组状态和状态转移矩阵组成。
状态表示系统可能处于的情况,状态转移矩阵描述了状态之间的转移概率。
状态转移矩阵是一个方阵,其元素表示从一个状态到另一个状态的转移概率。
在实际应用中,马尔可夫链模型可以用于解决许多问题。
其中一个常见的应用是预测未来状态。
根据当前的状态和状态转移矩阵,我们可以计算下一步系统处于不同状态的概率。
通过不断迭代计算,我们可以预测未来系统状态的分布。
另一个常见的应用是基于马尔可夫链模型的推荐系统。
推荐系统通过分析用户的历史行为,预测用户未来的喜好,并向其推荐相关的内容。
马尔可夫链模型可以用于建模用户的行为转移过程,推断用户下一步的行为。
在金融领域,马尔可夫链模型被广泛应用于股票市场的预测和风险评估。
通过分析历史股票价格的变化,我们可以建立一个马尔可夫链模型,来预测股票未来的涨跌趋势。
此外,马尔可夫链模型还被用于计算资产组合的风险价值,帮助投资者制定合理的投资策略。
在自然科学领域,马尔可夫链模型可以用于模拟复杂系统的行为。
例如,生态学家可以使用马尔可夫链模型来模拟生物群落的动态变化,预测不同物种的数量和分布。
此外,马尔可夫链模型还可以用于研究气象系统、生物化学反应等的动态特性。
另一个马尔可夫链模型的应用领域是自然语言处理。
马尔可夫链模型可以用于根据已有的语料库生成新的文本。
马尔可夫链模型及其在预测模型中的应用马尔可夫链模型是一个重要的数学模型,在各种预测问题中都有广泛应用。
该模型描述的是一个随机过程,在每一个时间步骤上,其状态可以从当前状态转移到另一个状态,并且转移的概率只与当前状态有关,而与历史状态无关。
这种性质被称为“马尔可夫性”。
本文将介绍马尔可夫链模型的基本原理和应用,以及相关的统计方法和算法。
马尔可夫链模型的构造方法通常是通过定义状态空间和状态之间的转移概率来完成的。
状态空间是指可能的状态集合,而状态之间的转移概率则是指在一个时间步骤上从一个状态转移到另一个状态的概率。
这些转移概率通常被表示为一个矩阵,称为转移矩阵。
转移矩阵的元素表示从一个状态转移到另一个状态的概率。
马尔可夫链模型的重要性在于它对于许多实际问题的数学描述,因为很多现象都符合马尔可夫过程的特点,即时间上的无后效性,即系统的当前状态仅仅依赖于它的上一个状态。
比如,一个天气预测问题,天气系统的状态可以描述为“晴、雨、阴”,在每一个时间步骤上,系统可能会转移到另一个状态,转移概率可以根据历史天气数据进行估计。
马尔可夫链模型可以用于各种预测问题,如下一个状态的预测、状态序列的预测以及时间序列的预测。
对于下一个状态的预测问题,我们可以使用当前状态的转移矩阵来计算目标状态的概率分布。
对于状态序列的预测,我们可以利用当前状态的转移概率估计下一个状态的状态分布,并重复该过程,直到预测的序列达到一定的长度为止。
对于时间序列的预测,我们可以将时间序列转化为状态序列,并将时间作为状态的一个特征进行建模,在此基础上进行预测。
马尔可夫链模型也可以用于分析时间序列数据的特性。
例如,可以使用马尔可夫过程来检测时间序列数据中的周期性、趋势和季节性等特征。
这些特征可以反映时间序列数据的长期和短期变化情况,为精确的预测提供了基础。
对于马尔可夫链模型的参数估计问题,通常使用统计学习方法来完成。
常见的方法包括极大似然估计、贝叶斯估计以及最大后验估计等。
马 氏 链 模 型 简 介1、随机过程的概念。
定义:设集合{}T t t ∈:ξ是一族随机变量,T 是一个实数集合,如果对于任意T t ∈,t ξ是一个随机变量,则称{}T t t ∈:ξ是一个随机过程。
其中:(1)t 为参数可以认为是时间,T 为参数集合。
(2)随机变量t ξ的每一个可能值,称为随机过程的一个状态。
其全体可能值构成的集合,称为随机过程的状态空间,用E 表示。
(3)当参数集合T 为非负整数集时,随机过程又称为随机序列。
随机序列可用{} ,3,2,1:=n n ξ表示。
当T 为时间时,该随机序列就是一个时间序列。
如:(1)用t ξ表示“t 时刻,某商店的库存量”,则{}),0[:+∞∈t t ξ就是一个随机过程。
(2)用t ξ表示“在一天中t 时刻,某地区的天气状况”,则{}]24,0[:∈t t ξ是一个随机过程。
(3)用t ξ表示“在一天中t 时刻(整数),某城市的出租汽车的分布状况”,则{}24,,2,1,0: =t t ξ是一个随机时间序列。
马氏链,也称为马尔可夫链,就是一个特殊的随机时间序列,也为随机序列。
2、(离散时间)马尔可夫链——马氏链。
定义:设{} ,3,2,1:=n n ξ是一个随机序列,状态空间E 为有限或可列集。
若对于任意正整数m 、n 。
如果E i ∈、E j ∈、E i k ∈ (1,,2,1-=n k )满足)(),,,(1111i j P i i i j P n m n n n n m n =======+--+ξξξξξξ 成立,则称随机序列{} ,3,2,1:=n n ξ为一个马尔可夫链,简称为马氏链。
(时间、状态均为离散的随机转移过程) 从该定义可知:(1)如果将随机变量n ξ的下角标n ,理解为步数。
则随机变量n ξ就是从起始点经过n 步,到达的随机变量。
(2)随机变量)(i n =ξ,是指第n 步时的随机变量n ξ所处的状态i 。
(3)条件概率)(i j P n m n ==+ξξ是指,第n 步时的随机变量n ξ所处的状态i 发生的条件下,第m n +步时的随机变量m n +ξ所处的状态j ,发生的条件概率。
马尔可夫链在自然界与社会现象中,许多随机现象遵循下列演变规律,已知某个系统(或过程)在时刻0t t =所处的状态,与该系统(或过程)在时刻0t t >所处的状态与时刻0t t <所处的状态无关。
例如,微分方程的初值问题描述的物理系统属于这类随机性现象。
随机现象具有的这种特性称为无后效性(随机过程的无后效性),无后效性的直观含义:已知“现在”,“将来”和“过去”无关。
在贝努利过程(){},1X n n ≥中,设()X n 表示第n 次掷一颗骰子时出现的点数,易见,今后出现的点数与过去出现的点数无关。
在维纳过程(){},0X t t ≥中,设()X t 表示花粉在水面上作布朗运动时所处的位置,易见,已知花粉目前所处的位置,花粉将来的位置与过去的位置无关。
在泊松过程(){,0}N t t ≥中,设()N t 表示时间段[0,]t 内进入某商店的顾客数。
易见,已知时间段0[0,]t 内进入商店的顾客数()0N t ,在时间段()0[0,]t t t >内进入商店的顾客数()N t 等于()0N t 加上在时间段0(,]t t 内进入商店的顾客数()()0N t N t -,而与时刻0t 前进入商店的顾客无关。
一、马尔可夫过程定义:给定随机过程(){},X t t T ∈。
如果对任意正整数3n ≥,任意的12,,1,,n i t t t t T i n <<<∈=,任意的11,,,n x x S -∈S 是()X t 的状态空间,总有()()()1111|,n n n n P X x X t x X t x --≤==()()11|,n n n n n P X x X t x x R --=≤=∈ 则称(){},X t t T ∈为马尔可夫过程。
在这个定义中,如果把时刻1n t -看作“现在”,时刻n t 是“将来”,时刻12,,n t t -是“过去”。
马尔可夫过程要求:已知现在的状态()11n n X t x --=,过程将来的状态()n X t 与过程过去的状态()()1122,,n n X t x X t x --==无关。
投资学中的马尔可夫链模型分析马尔可夫链模型是投资学中一种常用的分析工具,它可以帮助投资者预测市场走势、制定投资策略以及评估投资风险。
本文将从马尔可夫链模型的基本原理、应用案例以及优缺点等方面进行分析。
一、马尔可夫链模型的基本原理马尔可夫链模型是基于马尔可夫过程的一种数学模型,它假设未来的状态只与当前的状态有关,与过去的状态无关。
换句话说,马尔可夫链模型认为市场的走势是随机的,且未来的状态只与当前的状态有关。
马尔可夫链模型的基本原理可以用一个简单的例子来说明:假设有一个投资者,他的投资策略只有两种状态,即买入和卖出。
如果他当前的状态是买入,那么下一个状态可能是买入或卖出,而与他之前的操作无关。
同样,如果他当前的状态是卖出,那么下一个状态也可能是买入或卖出,而与他之前的操作无关。
这种状态之间的转移关系就构成了一个马尔可夫链模型。
二、马尔可夫链模型的应用案例马尔可夫链模型在投资学中有着广泛的应用。
例如,在股票市场中,投资者可以利用马尔可夫链模型来预测股票价格的走势。
他们可以根据过去一段时间的股票价格数据,构建一个马尔可夫链模型,然后利用这个模型来预测未来的股票价格走势。
此外,马尔可夫链模型还可以用于量化投资中的策略制定。
量化投资是一种利用数学和统计方法进行投资决策的方法,它可以帮助投资者制定更科学、更有效的投资策略。
马尔可夫链模型可以作为量化投资中的一个重要工具,帮助投资者分析市场走势,找到适合的投资机会。
三、马尔可夫链模型的优缺点马尔可夫链模型具有一些优点和缺点。
首先,马尔可夫链模型能够较好地描述随机过程,对于市场的走势预测有一定的准确性。
其次,马尔可夫链模型的计算比较简单,可以快速得出结果。
再次,马尔可夫链模型可以用于分析多个状态之间的转移关系,对于复杂的市场情况也能够进行有效的建模。
然而,马尔可夫链模型也存在一些缺点。
首先,马尔可夫链模型的预测结果受到初始状态的影响较大,如果初始状态选择不当,可能会导致预测结果的偏差。
随机过程中的马尔可夫链模型马尔可夫链是一种描述随机过程的数学模型,它具有“无记忆性”的特点,即未来状态仅受当前状态的影响,与过去状态无关。
在这篇文章中,我们将探讨随机过程中的马尔可夫链模型及其应用。
一、什么是马尔可夫链模型马尔可夫链是一种随机过程,指的是一系列的随机事件,其中每个事件的发生仅依赖于前一个事件的状态。
这种“无记忆性”使得马尔可夫链具有简洁的数学描述和计算特性。
马尔可夫链由五个基本要素组成:状态空间、状态转移概率、初始概率分布、时间步长和转移矩阵。
1. 状态空间:马尔可夫链的状态空间表示系统可能处于的所有状态的集合。
例如,掷骰子的状态空间是{1, 2, 3, 4, 5, 6}。
2. 状态转移概率:状态转移概率表示从一个状态转移到另一个状态的概率。
通常用转移矩阵表示,其中每个元素表示从一个状态到另一个状态的转移概率。
3. 初始概率分布:初始概率分布表示系统在初始时刻处于各个状态的概率分布。
通常用向量形式表示,其中每个元素表示系统处于对应状态的概率。
4. 时间步长:时间步长表示系统从一个状态转移到下一个状态所经过的时间。
5. 转移矩阵:转移矩阵是一个方阵,其中的每个元素表示从一个状态到另一个状态的转移概率。
转移矩阵的每一行之和为1。
二、马尔可夫链模型的应用马尔可夫链模型在许多领域都有广泛的应用,包括自然语言处理、金融市场分析、生物信息学、网络传播模型等。
1. 自然语言处理:在自然语言处理中,马尔可夫链模型被用于文本生成、机器翻译和语音识别等任务。
通过建立一个马尔可夫链模型,可以根据已知的文本数据生成具有相似特征的新文本。
2. 金融市场分析:马尔可夫链模型被广泛应用于金融市场的分析和预测。
通过分析历史数据,建立一个马尔可夫链模型,可以预测未来的市场变化趋势,帮助投资者做出决策。
3. 生物信息学:在生物信息学中,马尔可夫链模型被用于基因序列分析、蛋白质结构预测等任务。
通过构建一个马尔可夫链模型,可以识别基因序列中的编码区域和非编码区域,进而对基因功能进行推断。
马尔可夫链模型马尔可夫链模型(Markov Chain Model)目录[隐藏]∙ 1 马尔可夫链模型概述∙ 2 马尔可夫链模型的性质∙ 3 离散状态空间中的马尔可夫链模型∙ 4 马尔可夫链模型的应用o 4.1 科学中的应用o 4.2 人力资源中的应用∙ 5 马尔可夫模型案例分析[1]o 5.1 马尔可夫模型的建立o 5.2 马尔可夫模型的应用∙ 6 参考文献[编辑]马尔可夫链模型概述马尔可夫链因安德烈·马尔可夫(Andrey Markov,1856-1922)得名,是数学中具有马尔可夫性质的离散时间随机过程。
该过程中,在给定当前知识或信息的情况下,过去(即当期以前的历史状态)对于预测将来(即当期以后的未来状态)是无关的。
时间和状态都是离散的马尔可夫过程称为马尔可夫链, 简记为。
马尔可夫链是随机变量的一个数列。
这些变量的范围,即他们所有可能取值的集合,被称为“状态空间”,而Xn的值则是在时间n的状态。
如果Xn + 1对于过去状态的条件概率分布仅是Xn的一个函数,则这里x为过程中的某个状态。
上面这个恒等式可以被看作是马尔可夫性质。
马尔可夫在1906年首先做出了这类过程。
而将此一般化到可数无限状态空间是由柯尔莫果洛夫在1936年给出的。
马尔可夫链与布朗运动以及遍历假说这两个二十世纪初期物理学重要课题是相联系的,但马尔可夫寻求的似乎不仅于数学动机,名义上是对于纵属事件大数法则的扩张。
马尔可夫链是满足下面两个假设的一种随机过程:1、t+l时刻系统状态的概率分布只与t时刻的状态有关,与t时刻以前的状态无关;2、从t时刻到t+l时刻的状态转移与t的值无关。
一个马尔可夫链模型可表示为=(S,P,Q),其中各元的含义如下:1)S是系统所有可能的状态所组成的非空的状态集,有时也称之为系统的状态空间,它可以是有限的、可列的集合或任意非空集。
本文中假定S是可数集(即有限或可列)。
用小写字母i,j(或S i,S j)等来表示状态。
2)是系统的状态转移概率矩阵,其中Pij表示系统在时刻t处于状态i,在下一时刻t+l处于状态i的概率,N是系统所有可能的状态的个数。
对于任意i∈s,有。
3)是系统的初始概率分布,qi是系统在初始时刻处于状态i的概率,满足。
[编辑]马尔可夫链模型的性质马尔可夫链是由一个条件分布来表示的P(Xn + 1 | X n)这被称为是随机过程中的“转移概率”。
这有时也被称作是“一步转移概率”。
二、三,以及更多步的转移概率可以导自一步转移概率和马尔可夫性质:同样:这些式子可以通过乘以转移概率并求k−1次积分来一般化到任意的将来时间n+k。
边际分布P(Xn)是在时间为n时的状态的分布。
初始分布为P(X0)。
该过程的变化可以用以下的一个时间步幅来描述:这是Frobenius-Perron equation的一个版本。
这时可能存在一个或多个状态分布π满足:其中Y只是为了便于对变量积分的一个名义。
这样的分布π被称作是“平稳分布”(Stationary Distribution)或者“稳态分布”(Steady-state Distribution)。
一个平稳分布是一个对应于特征根为1的条件分布函数的特征方程。
平稳分布是否存在,以及如果存在是否唯一,这是由过程的特定性质决定的。
“不可约”是指每一个状态都可来自任意的其它状态。
当存在至少一个状态经过一个固定的时间段后连续返回,则这个过程被称为是“周期的”。
[编辑]离散状态空间中的马尔可夫链模型如果状态空间是有限的,则转移概率分布可以表示为一个具有(i,j)元素的矩阵,称之为“转移矩阵”:Pij = P(X n + 1 = i | X n = j)对于一个离散状态空间,k步转移概率的积分即为求和,可以对转移矩阵求k次幂来求得。
就是说,如果是一步转移矩阵,就是k步转移后的转移矩阵。
平稳分布是一个满足以下方程的向量:在此情况下,稳态分布π * 是一个对应于特征根为1的、该转移矩阵的特征向量。
如果转移矩阵不可约,并且是非周期的,则收敛到一个每一列都是不同的平稳分布π* ,并且,独立于初始分布π。
这是由Perron-Frobenius theorem所指出的。
正的转移矩阵(即矩阵的每一个元素都是正的)是不可约和非周期的。
矩阵被称为是一个随机矩阵,当且仅当这是某个马尔可夫链中转移概率的矩阵。
注意:在上面的定式化中,元素(i,j)是由j转移到i的概率。
有时候一个由元素(i,j)给出的等价的定式化等于由i转移到j的概率。
在此情况下,转移矩阵仅是这里所给出的转移矩阵的转置。
另外,一个系统的平稳分布是由该转移矩阵的左特征向量给出的,而不是右特征向量。
转移概率独立于过去的特殊况为熟知的Bernoulli scheme。
仅有两个可能状态的Bernoulli scheme被熟知为贝努利过程[编辑]马尔可夫链模型的应用[编辑]科学中的应用马尔可夫链通常用来建模排队理论和统计学中的建模,还可作为信号模型用于熵编码技术,如算法编码。
马尔可夫链也有众多的生物学应用,特别是人口过程,可以帮助模拟生物人口过程的建模。
隐蔽马尔可夫模型还被用于生物信息学,用以编码区域或基因预测。
马尔可夫链最近的应用是在地理统计学(geostatistics)中。
其中,马尔可夫链用在基于观察数据的二到三维离散变量的随机模拟。
这一应用类似于“克里金”地理统计学(Kriging geostatistics),被称为是“马尔可夫链地理统计学”。
这一马尔可夫链地理统计学方法仍在发展过程中。
[编辑]人力资源中的应用马尔可夫链模型主要是分析一个人在某一阶段内由一个职位调到另一个职位的可能性,即调动的概率。
该模型的一个基本假设就是,过去的内部人事变动的模式和概率与未来的趋势大体相一致。
实际上,这种方法是要分析企业内部人力资源的流动趋势和概率,如升迁、转职、调配或离职等方面的情况,以便为内部的人力资源的调配提供依据。
它的基本思想是:通过发现过去组织人事变动的规律,以推测组织在未来人员的供给情况。
马尔可夫链模型通常是分几个时期收集数据,然后再得出平均值,用这些数据代表每一种职位中人员变动的频率,就可以推测出人员变动情况。
具体做法是:将计划初期每一种工作的人数量与每一种工作的人员变动概率相乘,然后纵向相加,即得到组织内部未来劳动力的净供给量。
其基本表达式为:N i(t):t时间内I类人员数量;P ji:人员从j类向I类转移的转移率;V i(t):在时间(t-1,t)I类所补充的人员数。
企业人员的变动有调出、调入、平调、晋升与降级五种。
表3 假设一家零售公司在1999至2000年间各类人员的变动情况。
年初商店经理有12人,在当年期间平均90%的商店经理仍在商店内,10%的商店经理离职,期初36位经理助理有11%晋升到经理,83%留在原来的职务,6%离职;如果人员的变动频率是相对稳定的,那么在2000年留在经理职位上有11人(12×90%),另外,经理助理中有4人(36×83%)晋升到经理职位,最后经理的总数是15人(11+4)。
可以根据这一矩阵得到其他人员的供给情况,也可以计算出其后各个时期的预测结果。
假设的零售公司的马尔可夫分析,见下表:区域经理(n=96) 11%1166%638%815%14部门经理(=288) 10%2972%2072%616%46销售员(=1440) 6%8674%106625%228供给预测15 41 92 301 1072 351[编辑]马尔可夫模型案例分析[1]案例:在信用卡账户行为变化预测中的应用信用卡业务是商业银行的零售业务,信用卡的消费金额是银行的应收账款.在此,我们可以借鉴零售行业应收账款状态变化的预测方法对信用卡账户的行为变化进行描述和预测。
对信用卡账户的马尔可夫过程进行研究,主要解决新增贷款发生周期性变化的情况下利用马尔可夫过程预测不同时刻的信用卡账户各状态下的金额、已偿付态和坏帐态的金额、全部应收款的现值及它们的方差计算等内容,以为商业银行信用卡账户的行为风险管理提供方法依据。
[编辑]马尔可夫模型的建立马尔可夫状态转移模型是在满足“马氏性”和“平稳性”的基础上建立的.假定银行的信用卡账户中每期处于不同期限的逾期贷款数量只与上期逾期贷款的数量与结构有关,而与前期的状态无关,这就满足了“马氏性”。
同时,在外部经济环境稳定、人口特征比较稳定、银行的信用卡管理技术和方法没有发生重大变化的情况下,可以认为逾期贷款由一种状态转移到另一种状态的概率在各期是保持不变的,即每年的转移概率矩阵基本保持稳定,满足了马氏链的“平稳性”要求.这样,银行就可以通过往年的数据资料模拟出比较精确的转移概率矩阵,对信用卡账户的行为状态做出预测和评估,下面给出具体分析。
假设某一银行在时间i有一定的信用卡应收账款,当前或者随后的时间内这些余额都可以划分为n个时间段(即状态。
对于这批在时间i的应收账款而言,有:B0=逾期为0期的应收账款余额(也就是当前期);B1 = 逾期为1期的应收账款余额;…Bj = 逾期为j期的应收账款余额;…Bn− 1 = 逾期为n-1期的应收账款余额;Bn = 逾期为n期的应收账款余额。
实践中,时间段的数目将视情况而定,最后一个时间段主要依赖于银行应收账款的“冲销”原则,美国的信用卡贷款一般拖欠180天以上即成为呆账予以“冲销”.虽然拖欠账款最终也可能得到偿还,但是将超过规定还款期限的应收账款归入坏帐种类中是很自然的会计程序。
一般而言,我们可以让Bjk表示从i时刻处于j状态转移到i+1时刻处于k状态的账户的金额.用这种方法,我们可以对处于i时刻的所有应收账款做出在i+1时刻的一步转移账户.需要注意的是,还应该有一个“时间”状态应该加入到先前所描述的分类中,这一状态就是已付款状态,用表示.在i时刻任何一种分类状态从0到n的账户在i+1时刻都可以转移到状态.这样,i时刻的应收账款账户可以用一个n+2维矩阵来表示,矩阵中的每一项Bjk表示i时刻j状态转移为i+1时刻k状态的金额,如下所示:对信用卡账户而言,需要注意的是,当状态Bjk中的j<i时,应理解为i时刻处于状态j的账户,在随后的i+1时刻(一般为30天后)偿还了部分的利息,使得应收账款(贷款)又转变为k状态。
从n+2维应收账款矩阵B可以导出n+2维转移概率矩阵P.转移概率矩阵P中的每一项目表示在特定时间内某一账户由一种状态转移到另一状态的可能性.这样的话,一个隐含假设是,转移概率矩阵的考察周期和应收账款分类的考察周期是相同的.一般情况下,转移概率Pjk表示的是i时刻j状态的账款转移到i+1时刻k状态账款的可能性.根据应收账款矩阵B及Bjk,转移概率P jk可被定义为:(1)在应用转移概率矩阵时需要注意两点。