比表面积测试方法分类
- 格式:doc
- 大小:53.50 KB
- 文档页数:5
比表面积测试方法
比表面积测试方法(BET)是一种用于测量物质表面积的测试方法。
它是分子吸附理论的基础,由古斯塔夫·勒奥摩和巴尔米拉·费曼于1938年首次提出。
费曼展示了气体分子如何在表面/固体界面上结合,推导出BET方程,并可以用来计算这些结合的表面积和比表面积。
根据费曼的理论,当一种气体定积在中性表面上时,气体分子会与表
面的具有不同活性的气体分子结合。
在此结合中,气体的分子状态可
以通过应力/压强调整改变,因为通常情况下,费曼理论可以被认为是
测试物质表面积时的理想状态。
比表面积测试方法(BET)通常用于测量粉状体、纤维状体和胶体等物
质的表面积。
BET技术可以准确测量具有复杂表面结构的样品的表面积,而不受体积或其他影响。
例如,BET测试方法可以精确测量细胞
膜表面积,而不受其厚度或其他因素的影响。
比表面积测试一般以室温和固定的压强为基础,常见的是低压吸附和
高压吸附,其中低压吸附很常见,它以低于0.2兆帕的低压开始,并
以慢慢升高的压力范围,准确地测量表面积。
BET测试可以在短时间内进行许多次重复,其结果非常准确和可靠,通常需要使用专业的仪器进行测量。
专业仪器可以精确地测量微量浓度
的物质,并把这些结果绘制成曲线,以显示在不同压力范围内的分子
吸附曲线。
比表面积测试方法是一种常用的、简便的、精确的测量表面积的标准
评估方法,可用于一系列表面活性物质,如类脂、矿物粉末、催化剂
和材料等。
费曼和勒奥夫曼提出的计算模型也被广泛应用于药物吸收、载体设计、生物医学研究和其他各种应用研究中。
测定材料比表面积的方法
测定材料比表面积的方法有:
1. 气体吸附法:常用吸附剂有氮气和氩气。
在液氮温度下(-196℃),氮气通过单纯的物理吸附,吸附于吸附剂的表面,等温度恢复到室温,吸附的氮气会脱附出来。
可以假定吸附在吸附剂表面的氮气正好是一个分子层,如果知道每一个氮分子的横截面积,则氮气吸附的比表面积Sg公式为:氮气吸附的比表面积公式。
2. 比液体吸附法:通过浸泡法或浇注法将吸附剂与液体接触,测定吸附剂对液体的吸附量来计算比表面积。
常用的液体有水、乙醇等。
该方法适用于吸附剂具有较高的亲液性或亲油性的情况。
此外,还有压汞法、流体通过法、X射线层析摄像(照相)法和显微观测统计法等方法测定材料的比表面积。
这些方法均可以从实验测试结果中直接对数据进行处理,得到孔径分布及比表面积等。
气体吸附(氮气吸附法)比表面积测定比表面积分析测试方法有多种,其中气体吸附法因其测试原理的科学性,测试过程的可靠性,测试结果的一致性,在国内外各行各业中被广泛采用,并逐渐取代了其它比表面积测试方法,成为公认的最权威比表面积测试方法。
许多国际标准组织都已将气体吸附法列为比表面积测试标准,如美国ASTM的D3037,国际ISO标准组织的ISO-9277 (Determination of the specific surface area of solid by gas adsorption-BET method)。
我国比表面积测试有许多行业标准,其中最具代表性的是国标GB/T 19587-2004《气体吸附BET法测定固体物质比表面积》。
气体吸附法测定比表面积原理,是依据气体在固体表面的吸附特性,在一定的压力下,被测样品颗粒(吸附剂)表面在超低温下对气体分子(吸附质)具有可逆物理吸附作用,并对应一定压力存在确定的平衡吸附量。
通过测定出该平衡吸附量,利用理论模型来等效求出被测样品的比表面积。
由于实际颗粒外表面的不规则性,严格来讲,该方法测定的是吸附质分子所能到达的颗粒外表面和内部通孔总表面积之和,如图所示意位置。
氮气因其易获得性和良好的可逆吸附特性,成为最常用的吸附质。
通过这种方法测定的比表面积我们称之为“等效”比表面积,所谓“等效”的概念是指:样品的比表面积是通过其表面密排包覆(吸附)的氮气分子数量和分子最大横截面积来表征。
实际测定出氮气分子在样品表面平衡饱和吸附量(V),通过不同理论模型计算出单层饱和吸附量(Vm),进而得出分子个数,采用表面密排六方模型计算出氮气分子等效最大横截面积(Am),即可求出被测样品的比表面积。
计算公式如下:Sg: 被测样品比表面积(m2/g)Vm: 标准状态下氮气分子单层饱和吸附量(ml)Am: 氮分子等效最大横截面积(密排六方理论值Am = 0.162 nm2)W: 被测样品质量(g)N: 阿佛加德罗常数(6.02x1023)代入上述数据,得到氮吸附法计算比表面积的基本公式:由上式可看出,准确测定样品表面单层饱和吸附量Vm是比表面积测定的关键。
比表面积,孔径,孔容,测试,分析,检测,方法比表面积,孔径,孔容,测试,分析,检测传统测试方法测试粉末或者多孔性物质表面积比较困难,它们不仅具有不规则的外表面,还有复杂的内表面。
BET测试法是BET比表面积测试法的简称。
广泛应用于测试颗粒和介孔材料的比表面积,孔径分布,孔容等性能。
BET测试理论是根据希朗诺尔、埃米特和泰勒三人提出的多分子层吸附模型,并推导出单层吸附量Vm 与多层吸附量V间的关系方程,即著名的BET方程。
BET方程是建立在多层吸附的理论基础之上,与物质实际吸附过程更接近,因此测试结果更准确。
通过实测3-5组被测样品在不同氮气分压下多层吸附量,以 P/P0为X轴,P/V(P0-P)为Y轴,由BET方程做图进行线性拟合,得到直线的斜率和截距,从而求得Vm值计算出被测样品比表面积。
理论和实践表明,当P/P0取点在0.05~0.35范围内时,BET方程与实际吸附过程相吻合,图形线性也很好,因此实际测试过程中选点在此范围内。
1. 比表面积, 孔径,孔容1.1比表面积:单位质量物料所具有的总面积1.2孔径:介孔材料的孔直径1.3孔容:单位质量多孔固体所具有的细孔总容积2. 测试方法多点BET法其原理是求出不同分压下待测样品对氮气的绝对吸附量,通过BET理论计算出单层吸附量,从而求出比表面积,孔径,孔容。
3. 常见测试标准GB/T 19587-2004 气体吸附BET法测定固态物质比表面积GB/T 13390-2008 金属粉末比表面积的测定氮吸附法GB/T 7702.20-2008 煤质颗粒活性炭试验方法比表面积的测定GB/T 6609.35-2009 氧化铝化学分析方法和物理性能测定方法SY/T 6154-1995 岩石比表面和孔径分布测定静态氮吸附容量法。
物理实验技术中的材料吸附性能测试方法与实验技巧引言:材料的吸附性能是评价其表面活性和化学反应能力的重要指标之一。
通过对材料的吸附性能进行测试和分析,可以了解材料在吸附过程中的表现,为材料的应用提供参考依据。
本文将介绍一些常见的材料吸附性能测试方法和实验技巧。
一、比表面积测试法比表面积是指单位质量或单位体积的材料所暴露的表面积。
比表面积测试法常用的有BET法、Langmuir法等。
BET法是通过对吸附等温线的测定,根据吸附分子在多层与单层吸附状态间的转变,计算出比表面积。
而Langmuir法则是通过对吸附容量与吸附浓度的关系进行实验测定,从而得到比表面积的大小。
二、扫描电子显微镜(SEM)扫描电子显微镜是一种常用的表征材料形貌和微观结构的方法。
其中重要的技巧是样品的制备和操作。
在制备方面,要保证样品的充分干燥,避免水分对测试结果造成干扰。
在操作上,应注意电压和工作距离的选择,以保证样品表面的高分辨率成像。
三、能谱分析(EDS)能谱分析是通过对样品表面进行元素成分的分析,进而了解其化学组成和吸附能力。
在能谱分析过程中,一些实验技巧十分重要。
首先,在选择元素分析区域时,要尽可能选择均匀的区域,避免混杂元素的影响。
其次,在样品处理时,应避免材料的损坏或受污染。
最后,在测量时,要注意选择适当的电流和测量时间,以保证测试的准确性。
四、气体吸附测试法气体吸附测试法常用于研究材料的孔隙结构、孔径分布和孔隙体积等吸附性能。
其中一种常用方法是通过低温氮吸附法进行测试。
然而,在使用该方法时,实验技巧也十分重要。
首先,样品需要经过充分的真空处理,以保证吸附效果的准确性。
其次,在测量时,要注意温度和压力的控制,以避免因条件不合适而导致的测试误差。
结论:材料的吸附性能测试是评价材料表面特性的重要手段,通过适当的测试方法和实验技巧可以更准确地描述材料吸附性能。
在进行实验时,我们需要注意样品的制备和操作,选择适当的测试参数,以确保测试结果的准确性和可靠性。
有效比表面积有效比表面积是指单位质量材料的表面积,也称为表面积比表质量,是材料在自身重力下所受到的阻力和摩擦力的一种表现形式。
在各种工业生产和科学研究中,有效比表面积都具有重要意义。
本文将从定义、测量方法、影响因素等几方面来介绍有效比表面积的相关参考内容。
一、定义有效比表面积是指单位质量材料的表面积,通常用单位为m2/g 的比表面积来描述。
其大小与材料的化学组成、晶体结构、物理性质、加工工艺等因素有关。
比表面积越大,表示该材料单位重量内所具有的表面积越多,表明其与周围环境的交换作用更加充分,因此具有更好的化学反应、吸附、催化、传质等性能。
二、测量方法通常采用比表面积测试仪来测量有效比表面积。
具体测试方法根据材料的不同而有所不同,但常见的有以下两种测量方法:1. BET(Brunauer-Emmett-Teller)法该方法是通过吸附气体在材料表面上的吸附行为来计算比表面积的。
BET法的基本原理是通过给定物理化学条件下气体或蒸汽在固体表面吸着和脱附现象,通过实验数据加以计算比表面积。
2. Langmuir法该方法是针对实验条件简单,测量结果准确可靠的优点而设计的,使用定流量或者给定压力的气体吸附实验来进行比表面积测定。
Langmuir法的基本原理是通过吸附气体与材料表面间的互作用力,测定气体在温度和压力固定条件下吸附量与饱和吸附量的比值来计算比表面积。
三、影响因素1. 材料的结构和形态。
材料的结构和形态对比表面积的大小影响较大,例如球形形状的颗粒,其比表面积相对较小;片状、丝状、细胞状等形态的材料,由于表面积增加,其比表面积较大。
2. 外界环境的影响。
比表面积的测量需要控制一定的环境条件,如温度、压力等。
外界环境的变化会导致测量结果的不准确。
3. 测定方法的影响。
不同的测定方法会对测量结果产生不同的影响。
4. 材料的制备工艺。
不同的制备工艺会导致材料的结构、形态、晶格等方面存在差异,从而影响比表面积的大小。
比表面测试方法根据测试思路不同分为吸附法、透气法和其它方法,透气法是将待测粉体填装在透气管内震实到一定堆积密度,根据透气速率不同来确定粉体比表面积大小,比表面测试范围和精度都很有限;其它比表面积测试方法有粒度估算法、显微镜观测估算法,已很少使用;其中吸附法比较常用且精度相对其它方法较高;比表面积测试方法有透气法,粒度估算法,和吸附法等。
吸附法根据吸附质的不同又分为吸碘法,吸汞法,低温氮吸附法等。
低温氮吸附法根据吸附质吸附量确定方法不同又分为动态色谱法,静态容量法,重量法等,目前仪器以动态色谱法和静态容量法为主;动态色谱法在比表面积测试方面比较有优势,静态容量法在孔径测试方面有优势。
实验二十六粉体比表面积的测定-透气法每单位质量的粉体所具有的表面积总和,称为比表面积(m2·kg-1)。
比表面积是粉体的基本物性之一。
测定其表面积可以求得其表面积粒度。
在工业中,钢铁冶炼及粉末冶金;电子材料;水泥、陶瓷、耐火材料;燃料、磨料;化工、药品;石油化工中固体催化剂等很多行业的原料是粉末状的。
这些工业的有些中间产品或最终产品也是粉末状的。
在生产中,一些化学反应需要有较大的表面积以提高化学反应速度,要有适当的比表面积来控制生产过程;许多产品要求有一定的粒度分布才能保证质量或者是满足某些特定的要求。
粉体有非孔结构和多孔结构两种特征,因此粉体的表面积有外表面积和内表面积两种。
粉体比表面积的测定方法有勃氏透气法、低压透气法、动态吸附法三种。
理想的非孔性结构的物料只有外表面积,一般用透气法测定。
对于多孔性结构的粉料,除有外表面积外还有内表面积,一般多用气体吸附法测定。
一、目的意义勃莱恩(Blaine)透气法是许多国家用于测定粉体试样比表面积的一种方法。
在无机非金属材料中,水泥产品是粉体。
水泥细度是水泥的分散度(水泥颗粒的粗细程度),是水泥厂用来控制水泥产量与质量的重要参数。
测水泥的比表面积可以检验水泥细度以保证水泥的强度。
测试方法分类
比表面积测试方法有两种分类标准。
一是根据测定样品吸附气体量多少方法的不同,可分为:连续流动法、容量法及重量法(重量法现在基本上很少采用);另一种是根据计算比表面积理论方法不同可分为:直接对比法比表面积分析测定、Langmuir法比表面积分析测定和BET法比表面积分析测定等。
同时这两种分类标准又有着一定的联系,直接对比法只能采用连续流动法来测定吸附气体量的多少,而BET法既可以采用连续流动法,也可以采用容量法来测定吸附气体量。
连续流动法
连续流动法是相对于静态法而言,整个测试过程是在常压下进行,吸附剂是在处于连续流动的状态下被吸附。
连续流动法是在气相色谱原理的基础上发展而来,由热导检测器
来测定样品吸附气体量的多少。
连续动态氮
吸附是以氮气为吸附气,以氦气或氢气为载
气,两种气体按一定比例混合,使氮气达到指定的相对压力,流经样品颗粒表面。
当样品管置于液氮环境下时,粉体材料对混合气中的氮气发生物理吸附,而载气不会被吸附,造成混合气体成分比例变化,从而导致热导系数变化,这时就能从热导检测器中检测到信号电压,即出现吸附峰。
吸附饱和后让样品重新回到室温,被吸附的氮气就会脱附出来,形成与吸附峰相反的脱附峰。
吸附峰或脱附峰的面积大小
正比于样品表面吸附的氮气量的多少,可通过定量气体来标定峰面积所代表的氮气量。
通过测定一系列氮气分压P/P0下样品吸附氮气量,可绘制出氮等温吸附或脱附曲线,进而求出比表面积。
通常利用脱附峰来计算比表面积。
特点:连续流动法测试过程操作简单,消除系统误差能力强,同时具有可采用直接对比法和BET方法进行比表面积理论计算。
容量法
容量法中,测定样品吸附气体量多少是利用气态方程来计算。
在预抽真空的密闭系统中导入一定量的吸附气体,通过测定出样品吸脱附导致的密闭系统中气体压力变化,利用气态方程P*V/T=nR换算出被吸附气体摩尔数变化。
直接对比法
直接对比法比表面积分析测试是
利用连续流动法来测定吸附气体量,
测定过程中需要选用标准样品(经严
格标定比表面积的稳定物质)。
并联
到与被测样品完全相同的测试气路
中,通过与被测样品同时进行吸附,分别进行脱附,测定出各自的脱
附峰。
在相同的吸附和脱附条件下,被测样品和标准样品的比表面积正比于其峰面积大小。
计算公式如下:
Sx:被测样品比表面积 S0:标准样品比表面积,
Ax:被测样品脱附峰面积 A0:标准样品脱附峰面积
Wx:被测样品质量 W0:标准样品质量
优点:无需实际标定吸附氮气量体积和进行复杂的理论计算即可求得比表面积;测试操作简单,测试速度快,效率高
缺点:当标样和被测样品的表面吸附特性相差很大时,如吸附层数不同,测试结果误差会较大。
直接对比法仅适用于与标准样品吸附特性相接近的样品测量,由于BET法具有更可靠的理论依据,目前国内外更普遍认可BET法比表面积测定。
BET比表面积测定法
BET理论计算是建立在Brunauer、Emmett和Teller三人从经典统计理论推导出的多分子层吸附公式基础上,即著名的BET方程:
P: 吸附质分压 P0: 吸附剂饱和蒸汽压
V: 样品实际吸附量 Vm: 单层饱和吸附量
C:与样品吸附能力相关的常数
由上式可以看出,BET方程建立了单层饱和吸附量Vm与多层吸附量V 之间的数量关系,为比表面积测定提供了很好的理论基础。
BET方程是建立在多层吸附的理论基础之
上,与许多物质的实际吸附过程更接近,因
此测试结果可靠性更高。
实际测试过程中,
通常实测3-5组被测样品在不同气体分压下
多层吸附量V,以P/P0为X轴,为Y轴,由BET方程做图进行线性拟合,得到直线的斜率和截距,从而求得Vm值计算出被测样品比表面积。
理论和实践表明,当P/P0取点在0.05-0.35范围内时,BET方程与实际吸附过程相吻合,图形线性也很好,因此实际测试过程中选点需在此范围内。
由于选取了3-5组P/P0进行测定,通常我们称之为多点BET。
当被测样品的吸附能力很强,即C值很大时,直线的截距接近于零,可近似认为直线通过原点,此时可只测定一组
P/P0数据与原点相连求出比表面积,我们称之为单点BET。
与多点BET相比,单点BET结果误差会大一些。
若采用流动法来进行BET测定,测量系统需具备能精确调节气体分压P/P0的装置,以实现不同P/P0下吸附量测定。
对于每一点P/P0下
BET吸脱附过程与直接对比法相近似,不同的是BET法需标定样品实际吸附气体量的体积大小,而直接对比法则不需要。
特点:BET理论与物质实际吸附过程更接近,可测定样品范围广,测试结果准确性和可信度高,特别适合科研及生产单位使用。