三年级下第4讲 最不利原则
- 格式:docx
- 大小:43.40 KB
- 文档页数:3
组合数学第19讲_最不利原则一.最不利原则考虑最坏的情况.这一原则不仅体现在抽屉原理中,还在解决很多与“至多”、“至少”相关的问题时非常重要.二.利用最值原理解题1.将题目中没有阐明的量进行极限讨论,将复杂的题目变的非常简单,任意取值,特殊化法;2.在黑袋摸球问题中:要求取同色则尽量取一异色,要求取异色则尽量取一同色.重难点:取袜子、筷子中一双、一只要认清,同色、异色要做到心中有数.题模一:基础例1.1.1袋子里有红色的球3个,黄色的球5个,蓝色的球6个,绿色的球8个,那么一次至少拿__________个球,才能保证一定有绿色的球.【答案】15【解析】保证一定有绿色的球,那么最不利的情况下,先拿完红色、黄色、蓝色的球,再+++=个球.拿1个就是绿色的了.所以至少拿356115例1.1.2一个布袋里有大小相同颜色不同的一些木球,其中红色的有10个,黄色的有8个,蓝色的有3个,绿色的有1个.请问:(1)一次至少要取出多少个球,才能保证取出的球至少有三种颜色?(2)一次至少要取出多少个球,才能保证其中必有红球和黄球?【答案】(1)19个(2)15个【解析】(1)要使取出的球至少有3种颜色,最不利的情况是尽量多地取出其中的某2种,且这2种的数量最多.红球和黄球显然最多,全都取出共有10818+=个球.此时只要再多取1个球,就保证至少有3种颜色了,因此取19个球即可.(2)要保证取出的球中必有红球和黄球,最不利的情况首先是蓝色和绿色的球都取出,并且红色和黄色的其中一种颜色的球都取出.因为要尽可能多取出球,就要选择多的那种球.因此在红色和黄色中,应选择将红色球全部取出.因此最不利的情况是取出所有的蓝色,绿色以及红色球,此时共取出311014++=个球.从而至少要取出15个球,才能保证其中必有红色和黄色球.例1.1.3将1只白袜子,2只黑袜子,3只红袜子,8只黄袜子和9只绿袜子放入一个布袋里.请问(1)一次至少要摸出多少只袜子才能保证有颜色相同的两双袜子?(2)一次至少要摸出多少只袜子才能保证有颜色不同的两双袜子?(两只袜子颜色相同即为一双)【答案】(1)13只(2)14只【解析】(1)题目不仅要求有两双袜子,并且这两双的颜色要一样,也就是至少有4只同色的袜子.如果每种袜子都足够多,最不利情况就是:每种颜色都只摸出3只.但现在白色和黑色袜子都不足3只,而红色只有3只.因此最不利情况为:白色,黑色和红色全取出,其他两种颜色各3只,一共有1232312+++⨯=只.因此最少要摸出13只袜子才能保证有颜色相同的两双袜子.(2)题目不仅要求有两双袜子,并且这两双的颜色还必须不同,则最不利的情况就是:尽可能多地拿出袜子,但是能够配成一双的都是同一种颜色.绿色的袜子最多,所以把绿色的9只袜子全部拿出,这样能配成双的袜子全是绿色的.接下来,在剩下的四种颜色中还能各取1只袜子,共取了91413+⨯=只.因此至少要摸出14只袜子才能保证有颜色不同的两双袜子.例1.1.4一副扑克牌共54张,其中有2张王牌,还有黑桃、红心、草花和方块4种花色的牌各13张.现在要从中随意取出一些牌,如果要保证在取出来的牌中至少包含三种花色,并且这三种花色的牌至少都有3张,那么最少要取出多少张牌?【答案】33张【解析】扑克牌中的两张王牌是不算花色的,所以最不利的情况首先要取出这2张,这时还剩下四种花色各13张.此时问题相当于要求“至少有三种花色的牌都不少于3张”.反过来考虑,就是“最多只有2种花色的牌不少于3张,其余花色都不到3张.”最不利的情况就要使取的牌尽量多,应该将其中两种花色尽量多取(取完为止),剩下两种花色都取2张,包括2张大小王牌,最多能取13222232⨯+⨯+=张牌.因此至少应该取出33张扑克牌才能保证满足条件.例 1.1.5新春佳节,商场举办抽奖活动.抽奖箱中有五种不同颜色的奖券,分别有32,30,28,26,24张.每次可以抽出任意多张,但每抽出一张就要付2元钱.奖励方式如下:用15张同色的奖券换一架相同颜色的飞机模型,用11张同色的奖券换一架相同颜色的坦克模型,用4张同色的奖券换一架相同颜色的摩托车模型.请问:至少要付多少钱,才能保证可以换到三种模型,且三种模型之间颜色互不相同?【答案】146元【解析】考虑最不利原则:如果抽不中15张同色的奖券,最坏情况下可以取到14570⨯=张奖券;如果抽到了15张同色的奖券和另一种颜色的10张同色奖券,,但抽不中11张另一种颜色的同色奖券,最坏情况下可以取到3210472+⨯=张奖券;如果抽到了15张同色的奖券和另一种颜色的11张同色奖券,但抽不中第三种颜色的4张同色奖券,最坏情况下可以取到32303371++⨯=张奖券.综合起来,要想保证可以换到三种模型,至少要买+=张奖券才行,因此至少要146元.72173题模二:进阶例1.2.1将1只白袜子、2只黑袜子、3只红袜子、8只黄袜子和9只绿袜子放入布袋中,请问:一次至少要摸出多少只袜子,才能保证一定有颜色相同的两双袜子?【答案】13【解析】最不利情况是白、黑、红拿光,黄、绿各拿3只,此时仍不满足要求,但再取1只即可,故至少需()++⨯+=只.1233113例1.2.2从1到50这50个自然数中,至少选出多少个数,才能保证其中一定有两个数的和是50?【答案】27【解析】对1到50分组:(1,49)、(2,48)、(3,47)、……、(24,26)、(50).除最后一组外,每组2个数,且和为50.根据最不利原则,至少要选26127+=个数.例1.2.3从1,2,3,···,23这23个自然数中,至少要选出多少个不同的数,才能保证其中有一个数是5的倍数?【答案】20【解析】1至23中有4个是5的倍数,23419-=个不是5的倍数,故至少要选出+=个数才能保证其中有一个数是5的倍数.19120例1.2.4有一个大口袋,里面装着许多球,每个球上写着一个数字.其中写0的有1个,写1的有2个,写2的有3个,……,写9的有10个.如果闭着眼睛从袋中取球,那么至少要取出多少个球,才能保证取出的球中必有3个,它们上面的数字恰好组成678?(考虑“9”倒过来看是“6”)【答案】48个【解析】根据题意,袋中共有1231055++++=个球.从反面分析,“保证有3个球上面的数字恰好组成678”的反面是“任意3个球上的数字都不会刚好是678”.也就是说这3个球不能同时写了“678”或“789”.则这些球的可能情况有以下几种:①没有7;②没有8;③没有6,9.①不取写有数字7的球,但写着其它数字的球全部取出,那么此时共取出55847-=个球.②不取写有数字8的球,但写着其它数字的球全部取出,那么此时共取出55946-=个球.③不取写有数字6和9的球,但写着其它数字的球全部取出,那么此时共取出--=个球.因为问题的最不利情况是取出最多的球,使得取出的3个球不能同5571038时写了“678”或“789”.比较三种情况取出的球数,可知情况①是最不利情况.因此至少要取出47148+=个球,就能保证取出的球中必有3个,它们上面的数字恰好组成678.随练1.1盘子里有一些饺子,韭菜味的5个,牛肉味的8个,辣椒味的6个.那么至少吃__________个饺子,才能保证一定能吃到2个口味一样的饺子.【答案】4【解析】一定能吃到2个口味一样的饺子,那么最不利的情况下,每种口味的饺子都吃了⨯+=个饺子.1个,再吃1个就可以了.所以至少吃3114随练1.2布袋中有60个彩球,每种颜色的球都有6个.蒙眼取球,要保证取出的球中有三个同色的球,至少要取出_______个球.【答案】21【解析】60÷6=10,有10种彩球,考虑最不利情况,每种彩球都拿了2个,再拿一个就能保证取出的球中有三个同色的球,所以答案为2×10+1=21.随练1.3黑色、白色、黄色、红色的筷子各有8根,混杂放在一起.在黑暗中取出一些筷子.要使得这些筷子能够搭配成两双(两根筷子颜色相同即为一双),那么最少要取多少根才能保证达到要求?【答案】7根【解析】“最少有两双”这句话的反面是“最多只有一双”,所以最不利情况是:取出了一双筷子,另外4种颜色的筷子各1根,最多可以取2146+⨯=根.因此最少要取出7根筷子才能保证达到要求.随练1.4一个口袋中装有10种颜色不同的珠子,每种都是100个,要想保证从袋中摸出3种不同颜色的珠子,并且每种珠子至少10个,那么至少要摸出_________个珠子.【答案】273【解析】考虑最不利的情况,即有两种珠子都摸出了100个,剩下的8种珠都再摸出9个,那么接下来只要再随便摸出一个珠子就可以满足条件,所以至少要摸出2100891273⨯+⨯+=个.随练1.5袋子里有4种硬币:金币、银币、铜币、乐币,每种硬币都有很多,那么一次至少拿__________枚,才能保证其中一定有5枚是同一种类型的硬币.【答案】17【解析】一定有5枚是同一种类型的硬币,那么最不利的情况下,每种硬币都拿了4枚,再拿1枚就可以了.所以至少拿44117⨯+=枚.随练1.6一副扑克牌共54张,其中有2张王牌,还有黑桃、红心、草花和方块4种花色的牌各13张.那么至少抽出__________张牌,才能保证取出的牌中至少包含2种花色,并且这2种花色的牌至少都有3张.【答案】22【解析】最不利的情况下,先取走王牌,接下来考虑花色,先取完1个花色,其余的花色每种取2张,那么再任取1张,就能保证取出的牌中至少包含2种花色,并且这2种花色的牌至少都有3张.所以至少取21323122++⨯+=张.随练1.7口袋里有10双黑筷子,8双红筷子,7双白筷子,总共50根筷子.至少从中取出多少根筷子,才能保证每种颜色的筷子都至少有1双?【答案】38【解析】最不利的情况是取完两种颜色的筷子,才取到一双第三种颜色的筷子.所以至少从中取出()1082238+⨯+=根筷子,才能保证每种颜色的筷子都至少有1双.随练1.8如果筷子颜色有黑色、白色、黄色、红色、蓝色五种,每种各有10根.在黑暗中取出一些筷子,为了搭配出两双颜色相同的筷子,最少要取________根才能保证达到要求.【答案】16【解析】最不利的情况是每种颜色的筷子最多有3根,共3515⨯=根.所以至少取出16根才能保证达到要求.作业1盘子里有一些饺子,韭菜味的5个,牛肉味的8个,辣椒味的6个.那么至少吃__________个饺子,才能保证一定能吃到3个口味一样的饺子.【答案】7【解析】一定能吃到3个口味一样的饺子,那么最不利的情况下,每种口味的饺子都吃了2个,再吃一个就可以了.所以至少吃2317⨯+=个饺子.作业2在一个盒子里装着形状相同的3种口味的果冻,分别是苹果口味的、草莓口味的和牛奶口味的,每种果冻都有20个,现在闭着眼睛从盒子里拿果冻.请问:(1)至少要从中拿出多少个,才能保证拿出的果冻中有牛奶口味的?(2)至少要从中拿出多少个,才能保证拿出的果冻中至少有两种口味?【答案】(1)41个(2)21个【解析】(1)要保证拿出的果冻中有牛奶口味的,最坏的情况应该是:拿完了其它口味的果冻,但是始终没有牛奶味的.此时共拿了202040+=个.在这种最不利的情况下,只要再多拿1个,这个果冻必然是牛奶味的因此最少需要拿41个果冻,才能保证一定有牛奶口味的.(2)拿出的果冻至少有两种口味,反面情况是:所有的果冻口味都相同.那么最坏的情况是:把某一种口味的果冻拿完,还没有出现其他的口味,则最多能拿20个.利用最不利原则,至少要拿出20121+=个果冻,才能保证有两种口味.作业3一副扑克牌共54张,其中有2张王牌,还有黑桃、红心、草花和方块4种花色的牌各13张.那么至少抽出__________张牌,才能保证取出的牌中至少包含3种花色,并且这3种花色的牌至少都有2张.【答案】31【解析】最不利的情况下,先取走王牌,接下来考虑花色,先取完2个花色,剩下的花色每种取1张,那么再任取一张就能保证包含3种花色,并且这3种花色的牌至少都有2 +⨯+⨯+=张.张.所以至少抽出213212131作业4一副扑克牌有大小王各一张,还有四种花色,每种花色有13张,分别是1到13,从中任意抽牌:(1)最少要抽______张牌,才能保证有4张牌是同一花色的;(2)至少抽______张牌才能保证有4张牌是同样的大小;(3)至少抽______张牌,才能保证有3张牌的数字是连续的.(改自2013年8月26考试真题)【答案】(1)15(2)42(3)39【解析】(1)最不利情况是抽了大小王,每种花色各抽了3张,此时再抽1张即可,共+⨯+=张.234115(2)最不利情况是抽了大小王,每种大小各抽了3张,此时再抽1张即可,共+⨯+=张.2313142(3)最不利情况是抽了大小王,大小为1、2、4、5、7、8、10、11、13的全被取走,此时再抽1张即可,共249139+⨯+=张.作业5四年级一班选班长,每人投票从甲、乙、丙三位侯选人中选一人,已知全班共有52人,并且在计票过程中的某一时刻,甲得到17票,乙得到16票,丙得到11票,如果得票最多的侯选人将成为班长,甲最少再得多少张票就能够保证当选().A.1张B.2张C.4张D.8张【答案】C【解析】还有521716118---=票未统计,甲再得4票即可.作业6羊村小学四年级进行一次数学测验,测验共有10道题.如果小喜喜、小沸沸、小美美、小懒懒都是恰好答对8道题,那么他们四人都答对的题至少有__________道.【答案】2【解析】每人错两题,按照最不利原则,错的题各不同,则四个人共错8题,还有108=2-题是没人错的.作业7在箱子中有3种颜色的袜子各10只,问:(1)至少取多少只才能保证三种颜色都有?(2)至少取多少只才能保证有2双颜色不同的袜子?(3)至少取多少只才能保证有2双颜色相同的袜子?【答案】(1)21(2)13(3)10【解析】(1)最不利情况是有2种全拿光,这时再拿1只即可,故至少取102121⨯+=只.(2)最不利情况是1种拿光,另2种各拿1只,这时再拿1只即可,故至少取()+++=只.1011113(3)最不利情况是每种拿2213⨯+=只.⨯-=只,这时再拿1只即可,故至少取33110。
最不利原则【知识点】1、当问题中出现“保证”二字,就要求我们必须利用“最不利”原则分析问题。
最不利原则就是从“极端倒霉”的情况考虑问题,将所有不利的情况都考虑进来。
才能达到“保证”目的。
2、要求:从最不利的条件开始分析;考虑所有最坏的可能。
例题1:一个盒子中装有10个黑球、6个白球和4个红球,一次至少取出多少个球才能保证其中有白球?【答案】15个【分析】最不利的情况是每次取出的都是黑球或红球,就是没有白球。
这时取了10个黑球和4个红球。
然后第15个球就必然能取到白球。
所以一次至少取出10+4+1=15(个)球。
例题2:泡泡糖出售机内有各种颜色的糖,有红色糖10颗、白色糖15颗、蓝色糖16颗、黄色糖20颗,紫色糖3颗。
如果投入1元钱钱币可得到1颗糖,那么至少投入多少元钱,就可以保证得到5颗颜色相同的糖?【答案】20元【分析】要想保证有5颗颜色相同的糖,根据最不利原则,先把数量不够5的得到。
然后让剩下4种颜色的糖都各得到了4颗,那么再任意得到一颗糖就能达到“保证有5颗颜色相同的糖”,算式:3+4×4+1=20(元),至少投20元钱。
例题3:一个布袋里有大小相同、颜色不同的一些木球,其中红色的有10个,黄色的有8个,蓝色的有3个,绿色的有1个。
请问:(1)一次至少要取出多少个球,才能保证取出的球至少有3种颜色?(2)一次至少要取出多少个球,才能保证其中必有红色球和黄色球?【答案】(1)19(2)15【分析】(1)要使取出的球至少有3种颜色,最不利的情况是尽量多的取出其中某2种颜色的球,且这2种球的数量要最多。
显然红球和黄球最多,全都取出共有10+8=18个球,此时再多取1个球,就可以保证至少有3种颜色,因此取19个球即可。
(2)要使取出的球中必有红球和黄球,最不利的情况首先是蓝色和绿色的球都取出,然后红色和黄色的其中一种颜色的球都取出(选最多)。
算式:3+1+10+1=15个球。
例题4:一个布袋里有大小相同、颜色不同的一些木球,其中红色的有10个,黄色的有8个,蓝色的有3个,绿色的有1个。
最不利原则例题解答在日常生活和生产中,我们常常会遇到求最大值或最小值的问题,解答这类问题,常常需要从最不利的情况出发分析问题,这就是最不利原则。
下面通过具体例子说明最不利原则以及它的应用。
例1:口袋里有同样大小和同样质地的红、黄、蓝三种颜色的小球各20个。
问:一次最少摸出几个球,才能保证至少有4个小球颜色相同?分析与解:如果碰巧一次取出的4个小球的颜色都相同,就回答是“4”,那么显然不对,因为摸出的4个小球的颜色也可能不相同。
回答是“4”是从最“有利”的情况考虑的,但为了“保证至少有4个小球颜色相同”,就要从最“不利”的情况考虑。
如果最不利的情况都满足题目要求,那么其它情况必然也能满足题目要求。
“最不利”的情况是什么呢?那就是我们摸出3个红球、3个黄球和3个蓝球,此时三种颜色的球都是3个,却无4个球同色。
这样摸出的9个球是“最不利”的情形。
这时再摸出一个球,无论是红、黄或蓝色,都能保证有4个小球颜色相同。
所以回答应是最少摸出10个球。
由例1看出,最不利原则就是从“极端糟糕”的情况考虑问题。
如果例1的问题是“最少摸出几个球就可能有4个球颜色相同”,那么我们就可以根据最有利的情况回答“4个”。
现在的问题是“要保证有4个小球的颜色相同”,这“保证”二字就要求我们必须从最不利的情况分析问题。
例2口袋里有同样大小和同样质地的红、黄、蓝三种颜色的小球共18个。
其中红球3个、黄球5个、蓝球10个。
现在一次从中任意取出n个,为保证这n个小球至少有5个同色,n的最小值是多少?分析与解:与例1类似,也要从“最不利”的情况考虑。
最不利的情况是取了3个红球、4个黄球和4个蓝球,共11个。
此时袋中只剩下黄球和蓝球,所以再取一个球,无论是黄球还是蓝球,都可以保证有5个球颜色相同。
因此所求的最小值是12。
例3一排椅子只有15个座位,部分座位已有人就座,乐乐来后一看,他无论坐在哪个座位,都将与已就座的人相邻。
问:在乐乐之前已就座的最少有几人?分析与解:将15个座位顺次编为1~15号。
最不利原则【例题1】老师们为三~八年级准备决赛试题.每个年级12道题,并且至少有8道题与其他各年级都不同.如果每道题出现在不同年级,最多只能出现3次.本届活动至少要准备道决赛试题.每个年级都有自己8道题目,然后可以三至五年级共用4道题目,六到八年级共用4道题目,总共有8×6+4×2=56(道)题目.【巩固】有一个布袋中有5种不同颜色的球,每种都有20个,问:一次至少要取出多少个小球,才能保证其中至少有3个小球的颜色相同?5种颜色看作5个抽屉,要保证一个抽屉中至少有3个苹果,最“坏”的情况是每个抽屉里有2 个“苹果”,共有:5×2=10个,再取1个就能满足要求,所以一次至少要取出11个小球,才能保证其中至少有3个小球的颜色相同【例题2】有一个布袋中有40个相同的小球,其中编上号码1、2、3、4的各有10个,问:一次至少要取出多少个小球,才能保证其中至少有3个小球的号码相同?将1、2、3、4四种号码看作4个抽屉,要保证一个抽屉中至少有3个苹果,最“坏”的情况是每个抽屉里有2个“苹果”,共有:4×2=8(个),再取1个就能满足要求,所以一次至少要取出9个小球,才能保证其中至少有3个小球的号码相同.【巩固】有红、黄、白三种颜色的小球各10个,混合放在一个布袋中,一次至少摸出个,才能保证有5个小球是同色的?根据最不利原则,至少需要摸出4×3+1=13(个).【例题3】黑色、白色、黄色的筷子各有8根,混杂地放在一起,黑暗中想从这些筷子中取出颜色不同的两双筷子。
问至少要取多少根才能保证达到要求?根据最不利原则,至少取9根筷子就能保证有一双颜色不同,我们把颜色不同那双筷子取出,再补2只筷子,就能又保证一双颜色不同筷子,所以取出11根筷子就得到颜色不同的两双筷子.【巩固】有形状、长短都完全一样的红筷子、黑筷子、白筷子、黄筷子、紫筷子和花筷子各25根。
在黑暗中至少应摸出_____根筷子,才能保证摸出的筷子至少有8双(每两根花筷子或两根同色的筷子为一双)。
第十二讲最不利原则在生活中,要保证完成某一个任务,必须考虑最不利条件。
只有用最不利条件下也能实现的做法,才可以使这个任务必能完成,这就是解决问题时要采用的最不利原则。
因此,必须全面分析给定的条件,分析最不利的因素,然后选用万无一失的方法。
本讲运用学生已有的数学工具(如枚举法、余数的妙用、可能性分析等),确定最不利的情况,培养学生严谨的思维习惯和应用现有知识解决实际问题的能力。
1. 红桃、黑桃各2张,要保证从中摸出两张同色的,至少要摸出张。
2.红桃、黑桃各5张,要保证从中摸出两张同色的,至少要摸出张。
3.红桃、黑桃各4张,要保证从中摸出3张同色的,至少要摸出张。
[解答]两种颜色的扑克,要摸出两张同色的,至少都要摸出3张,就能保证有两个扑克同色,在每种扑克数量足够多的情况下,与扑克的数量多少没有关系。
摸出3张同色的,最不利的情形是先各摸出红、黑2张,再摸出1张,就肯定有3张同色的。
1、3张;2、3张;3、5张。
[例1]灰太狼抓住了懒羊羊。
聪明的喜羊羊决定去营救懒羊羊。
他对灰太狼说:“我知道你很聪明,那你有胆量和我比一下么?如果你赢了的话,那么我也愿意被你吃掉;如果你输了,请把懒羊羊放掉。
题目很简单,就是随意把1和2分别填入下面立方体的格子中,使每个面上的4个数的和都不一样”灰太狼不假思索答应了。
请问谁赢了?为什么?【解析】随意填1,2,那么每个面上4个格子的4个数的和最小为4,最大为8;4到8,共有5个数。
而立方体有6个面。
一定有相同的和。
【例2】120名少先队员选举大队长,有甲、乙、丙三个候选人,每个少先队员只能选他们之中一个人,不能弃权。
若前100票中,甲得45票,乙得35票,甲要当选至少还要()张选票。
【解答】丙已得20票.后面的20票即使全给丙不影响甲当选。
最不利的情况是2 0票都给了乙。
为了避免这种情况发生,甲还需得6票,就能保证当选。
【例3】某小学四年级的学生身高(都按整数厘米计算),最矮的是138厘米,最高的是160厘米。
人教版小学英语精通版三年级下册Unit4第四单元知识点精讲人教版小学英语精通版三年级下册Unit4 第四单元知识点精讲mango芒果bread面包candy糖果;巧克力doughnut 炸面圈,多纳圈coffee咖啡fruit 水果grapes葡萄honey 蜂蜜ice cream 冰激凌jam 果酱重点内容知识点精析Lesson 191. 表达自己喜欢或不喜欢某物的句型—I (don t) like…课文应用:- I like bananas. 我喜欢香蕉。
- I don t like banana.我不喜欢香蕉。
句型结构:I (don t) like+某物(pears,egg…).重点解析:·此句型用于表达自己喜欢或不喜欢某物。
don t是 do not的缩写形式。
like意为“喜欢”,如果后接可数名词,可数名词要用复数形式。
例:Mum, I like mangoes. I don t likebananas. 妈妈,我喜欢芒果。
我不喜欢香蕉。
2. 表达他人喜欢或不喜欢某物的句型主语(第三人称单数)+likes+某物.例如:Li Yan likes bananas.李燕喜欢香蕉。
主语(第三人称单数)+ doesn tlike-+某物.例如: Kate does like bananas. 凯特不喜欢香蕉。
3. 动词like的用法like作动词时,意为“喜欢”。
例:I like apples. 我喜欢苹果。
(后接名词)I like it. 我喜欢它。
(后接代词)I like skating. 我喜欢滑冰。
(后接动词ing形式)I like to draw. 我喜欢画画。
(后接动词不定式)注意:在谓语为实义动词的一般现在时的肯定句中,当主语是第三人称单数时,like变成 likes。
例如: She likes apples. 她喜欢苹果。
My younger brother likes blue. 我弟弟喜欢蓝色。
篮子里有苹果、橘子两种水果各5个,一次至少拿几个,才能保证有两个不同的水果?【答案】6【解析】题中要求“至少”和“保证”,所以要考虑最坏的情况(即最不利原则)。
要拿两个不同的水果,最坏的情况是怎么也拿不到两个不一样的,一直都是拿的一样的水果,等5个一样的都拿完之后,接下来再拿一个,一定有两个不一样的水果。
所以,至少要拿5+1=6(个)。
有红、黄、蓝三种颜色的球各8个,一次至少摸几个,才能保证一定摸到红球?【答案】17【解析】要保证拿到红球,最坏的情况都是拿的黄、蓝球,一共8+8=16(个)。
之后无论怎么拿,一定是红球。
所以,至少要摸:16+1=17(个)。
泡泡糖出售机内有各种颜色的糖,有红色糖10颗,绿色糖15颗,蓝色糖3颗,最不利原则知识纵横在生活中,要保证完成某一个任务,必须考虑最不利的情况。
只有在最不利条件下也能实现时,才能保证这个任务的完成,这就是解决问题时要采用的最不利原则。
例 1试一试 1例 2紫色糖20颗,如果投入1元钱硬币可得到1颗糖,那么至少投入多少元钱,就可以保证得到3颗颜色相同的糖?【答案】9【解析】最坏的情况是每种颜色的糖都得到2颗,共4×2=8(颗)。
之后,无论怎么取,都一定有3颗颜色相同的糖果了。
所以,至少要8+1=9(颗)。
因此拿9颗,可以保证一定有三颗颜色相同的糖果。
需要投入9元钱。
试一试 2袋子里有各种颜色的球,有红球15个,蓝球20个,黄球4个。
一次至少摸几个球,就可以保证得到4个颜色相同的球?【答案】10【解析】最坏的情况是每种颜色的球都拿到3个,共3×3=9(个)。
之后,无论怎么取,都一定有4个颜色相同的球了。
所以,至少要9+1=10(个)。
例 3红色,灰色,黄色的筷子各有8根,混杂地放在一起,黑暗中想从这些筷子中取出颜色不同的两双筷子(每双筷子两根颜色应一样),问至少要取出多少根才能保证达到要求?【答案】11【解析】最坏的情况:尽量不凑出第2双颜色不同的筷子。
抽屉原理抽屉原理抽屉王:苹果个数最多的抽屉抽屉原理问题:找到抽屉王最少能有多少个.抽屉王最少:总数要平均分,余数也要平均分.抽屉原理:把m个苹果放入n个抽屉(m>n),假设m÷n=a…b结果有两种可能:(1)如果b=0,那么就一定有抽屉至少放了a个苹果;(2)如果b≠0,那么就一定有抽屉至少放了a+1个苹果。
例1.把9个苹果放入3个抽屉,抽屉王至少有几个苹果?例2.把10个苹果放入3个抽屉,抽屉王至少有几个苹果?例3.把11个苹果放入3个抽屉,抽屉王至少有几个苹果?例4.把100个苹果放入3个抽屉,抽屉王至少有几个苹果?例5.把96个苹果放入8个抽屉,那么一定有抽屉至少放了____个苹果.例6.把98只鸡放在8个笼子里,那么一定有笼子至少放了____只鸡.例7.把1000个苹果放入6个抽屉,那么一定有抽屉至少放了____个苹果.例8.把至少____只鸡放在8个笼子里,那么一定有笼子至少放了3只鸡.最不利原则最不利原则:最倒霉原则.最不利原则问题:要保证一件事在最倒霉的情况下也能做到.最不利原则的题目要先找出最不利的情况:最不利情况+1=成功.题目中有两个要求的问题,保证每个问题都是最倒霉情况(例14,例15).例9.一个鱼缸里有4个品种的鱼,每种鱼都有很多条.至少要捞出多少条鱼,才能保证其中有5条相同品种的鱼?例10.一个布袋里有7种不同颜色的彩球,每种颜色的彩球都有很多,那么至少要拿出多少个彩球,才能保证其中有6个相同颜色的彩球?例11.一个布袋里有大小相同颜色不同的一些木球,其中红色的有10个,黄色的有8个,蓝色的有3个,绿色的有1个.现在闭着眼睛从中摸球,请问:至少要取出多少个球,才能保证取出的球至少有三种颜色?例12.一个布袋里有大小相同颜色不同的一些木球,其中红色的有10个,黄色的有8个,蓝色的有3个,绿色的有1个.现在闭着眼睛从中摸球,请问:至少要取出多少个球,才能保证其中必有红球和黄球?例13.将1只白袜子、2只黑袜子、3只红袜子、8只黄袜子和9只绿袜子放入一个布袋里.请问:一次至少要摸出多少只袜子才能保证一定有颜色相同的两双袜子?例14.将1只白袜子、2只黑袜子、3只红袜子、8只黄袜子和9只绿袜子放入一个布袋里.请问:一次至少要摸出多少只袜子才能保证一定有颜色不同的两双袜子?(两只袜子颜色相同即为一双)例15.一副扑克牌共54张,其中有2张王牌,还有黑桃、红心、草花和方块4种花色的牌各13张.现在要从中随意取出一些牌,如果要保证在取出来的牌中至少包含三种花色,并且这三种花色的牌至少都有3张,那么最少要取出多少张牌?思考题1.口袋里放有3种不同颜色的球共20个,其中红球7个,黄球5个,绿球8个.如果闭上眼睛从袋中取球,最多可以取出________个球,仍能够保证余下的球中至少还有4个同色球,以及至少还有3个另一种颜色的同色球.2.圆桌周围恰好有90把椅子,现已有一些人在桌边就坐,当再有一人入座时,就必须和已就坐的某个人相邻,则已就坐的最少有________人.3.25个人围坐在一个正方形桌子旁边(每个角上都可以坐一个人)开会,那么人数最少的那条边上最多能坐________人.。
三春第4讲最不利原则
一、学习目标
1.理解最不利原则,学会从“最倒霉”情况思考问题。
2.利用最不利原则解释并证明一些结论及生活中的一些问题。
二、知识要点
日常生活中,我们经常会遇到求最大值或最小值的问题,解答这类问题,常常需要从最不利的情况出发分析问题,这就是最不利原则.
最不利原则就是从“最糟糕”的情况下考虑问题,如果最不利的情况下都能满足要求,那么其他的情况下也必然能满足要求.
三、例题精选
【例1】教室的讲桌上放着大小及形状相同的白板笔,有5支黑笔,4支蓝笔,3支红笔.小倩蒙着眼睛从中摸笔,那么她要从中至少取出多少支笔,才能保证取出的笔中有蓝笔?
【巩固1】一个口袋中装着大小及形状相同的乒乓球,有6个白球,5个黑球,10个黄球.小红闭着眼睛从中摸球,那么她要从中至少取出多少个球,才能保证取出的球中有黑球?
【例2】桌子上有大小及形状相同的礼物盒,8个装着水晶球,9个装着小汽车.问:
(1)从中至少取出多少个礼物盒,才能保证有两个相同的礼物?
(2)从中至少取出多少个礼物盒,才能保证有两个不同的礼物?
【巩固2】一个口袋里有大小及形状相同的黑球6个,白球7个.问:
(1)从中至少摸出多少个小球,才能保证有两个颜色相同的球?
(2)从中至少摸出多少个小球,才能保证有两个颜色不同的球?
【例3】口袋里有同样大小和同样质地的红、黄、蓝、绿颜色的弹珠各10个.问:依次最少摸出几个弹珠,才能保证至少有3个弹珠颜色相同?
【巩固3】有一个布袋中有5种不同颜色的糖果,每种都有20个.问:一次至少要取出多少个糖果,才能保证其中至少有3个糖果的颜色相同?
【例4】小白给鱼缸中的鱼换水,需要先将鱼取出然后放至盛有水的容器中.鱼缸中有黄色小鱼4条,红色小鱼6条,蓝色小鱼8条.小白每次取2条鱼,那么至少要取几次,才能保证盛有水的容器中3种颜色的鱼都有?
【巩固4】笨笨家的小水缸里养着会长大的彩色精灵球,其中白的有9个,黑的有10个,黄的有5个,绿的有3个.若每次取2个精灵球,至少取几次才能保证有4个颜色不同的精灵球?
【例5】在布袋中装有18根红色的筷子,16根黑色的筷子,14根黄色的筷子,5
根白色的筷子,3根蓝色的筷子:那么
(1)至少取出多少根才能保证有3双同色的筷子?
(2)至少取出多少根才能保证有3双颜色各不相同筷子?
(3)至少取出多少根才能保证有3双筷子?
【例6】桔子、香蕉、梨、苹果四种水果各若干个混放在一起,每个人取出两个。
那么,至少需要多少个人才能保证有4人取出的水果是完全相同的?(每种水果足够多)
四、回家作业
【作业1】桌子上有大小及形状相同的白色答题器5个,黑色答题器6个.问:
(1)从中至少取出多少个答题器,才能保证有两个颜色相同的答题器?
(2)从中至少取出多少个答题器,才能保证有两个颜色不同的答题器?
【作业2】商店的橱窗里放着大小及形状相同的文具盒,有7个粉色,3个蓝色,4个白色.小谅背过身子随机取出文具盒,那么他要从中至少取出多少个文具盒,才能保证取出的笔盒中有白色笔盒?
【作业3】有一个布袋中有40个相同的彩蛋,其中编上号码1、2、3、4的各有10个.问:一次至少要取出多少个彩蛋,才能保证其中至少有3个彩蛋的号码相同?
【作业4】小商店的橱窗里摆放着四种颜色的水杯,其中白的有7个,黑的有6个,蓝的有5个,粉的有4个.若每次取2个水杯,至少取几次才能保证有3颜色不同的水杯?
【作业5】有4支红筷子,9支黑筷子,13支黄筷子,2支灰色的筷子和1支蓝筷子放在一个盒子里.
(1)至少从中摸出多少支筷子才能保证有两双颜色相同的筷子?
(2)至少从中摸出多少支筷子才能保证有3双颜色不同的筷子?。