备战年中考数学考前模拟测试题新课标
- 格式:docx
- 大小:129.48 KB
- 文档页数:9
黄金卷1(满分100分,考试用时120分钟)一、选择题(本大题共8小题,每小题2分,共16分) 1.下列立体图形中,从正面看得到的图形是圆的是( )A .B .C .D .【答案】D【详解】解:从正面看选项A 中的图形是两个长方形, 从正面看选项B 中的图形是长方形, 从正面看选项C 中的图形是三角形, 从正面看选项D 中的图形是圆, 故选D2.2022年12月28日,第26届长春冰雪节开幕.长春市重点打造的世界级冰雪主题乐园-“长春冰雪新天地”流光溢彩,该园占地超1560000平方米.数字1560000用科学记数法可以表示为( ) A .51.5610⨯ B .61.5610⨯C .415610⨯D .515.610⨯【答案】B【详解】解:61560000 1.5610=⨯, 故选:B .3.如图,AB CD P ,若165∠=︒,则2∠的度数是( )A .65︒B .105︒C .115︒D .125︒【答案】C【详解】解:如图,AB CD ∥Q ,23180∴∠+∠=︒,1365∠=∠=︒Q , 265180∴∠+︒=︒,218065115∴∠=︒−︒=︒,故选:C .4.实数a ,b 在数轴上对应点的位置如图所示,下列结论中正确的是( )A .a b <B .0a b +<C .0a b −>D .0ab >【答案】A【详解】解:根据题意,得21a −<<−,23b <<, ∴12a <<,23b <<,∴a b <,0a b +>,0a b −<,0ab <, ∴选项A 正确,选项B 、C 、D 错误. 故选:A .5.学校新开设了航模、彩绘两个社团,如果征征、舟舟两名同学每人随机选择参加其中一个社团,那么征征和舟舟选到同一社团的概率为( ) A .23B .12C .13D .14【答案】B【详解】解:由题意,画树状图如图所示:由图可知,征征和舟舟选择社团共有4种等可能的结果,其中,征征和舟舟选到同一社团的有2种情况,则征征和舟舟选到同一社团的概率是2142P ==. 故选:B .6.若关于x 的方程20x mx n ++=有两个相等的实数根,则方程21x mx n ++=−的根的情况是( ) A .只有一个实数根 B .有两个相等的实数根 C .有两个不相等的实数根 D .没有实数根【答案】D【详解】Q 20x mx n ++=有两个相等的实数根, 24=0m n ∴−,一元二次方程21x mx n ++=−,即2+10x mx n ++=,()222=4=4+1=44=04=40b ac m n m n ∆−−⨯−−−−<,使用方程21x mx n ++=−没有实数根. 故选:D .7.下列图形中,既是中心对称图形又是轴对称图形,且对称轴条数最多的是( )A .B .C .D .【答案】C【详解】解:A .既是中心对称图形又是轴对称图形,有2条对称轴; B .既是中心对称图形又是轴对称图像,有2条对称轴; C .既是中心对称图形又是轴对称图形,有4条对称轴; D .不是中心对称图形,是轴对称图形,有3条对称轴 故选:C8.下面的四个选项中都有两个变量,其中变量y 与变量x 之间的函数关系可以用如图所示的图像表示的是( )A .圆的面积y 与它的半径x ;B .正方形的周长y 与它的边长x ;C .用长度一定的铁丝围成一个矩形,矩形的面积y 与一边长x ;D .小明从家骑车去学校,路程一定时,匀速骑行中所用时间y 与平均速度x ; 【答案】C【详解】解:A 、圆的面积y 与它的半径x 的关系式为2y x π=,变量y 与变量x 之间的函数关系不可以用如图所示的图像表示,故此选项不符合题意;B 、正方形的周长y 与它的边长x 的关系式为4y x =,变量y 与变量x 之间的函数关系不可以用如图所示的图像表示,故此选项不符合题意;C 、设铁丝的长度为a ,则矩形的面积22122a xy x x ax −=⋅=−+,变量y 与变量x 之间的函数关系可以用如图所示的图像表示,故此选项符合题意;D 、设路程为s ,则所用时间y 与平均速度x 的关系式为sy x=,变量y 与变量x 之间的函数关系不可以用如图所示的图像表示,故此选项不符合题意, 故选:C .二、填空题(本大题共8小题,每小题2分,共16分) 9x 的取值范围是___________. 【答案】2x ≤【详解】解:根据题意,得20x −≥, 解得2x ≤. 故答案为:2x ≤.10.把多项式22369a b ab b −+分解因式的结果是________. 【答案】2(3)b a b −【详解】解:22369a b ab b −+ ()2269b a ab b =−+2(3)b a b =−.故答案为:2(3)b a b −. 11.分式方程3122x xx x−+=−−的解是_____. 【答案】x 53=【详解】解:3122x xx x−+=−−, 去分母得:3﹣x ﹣x =x ﹣2, 解得:x 53=,经检验x 53=是分式方程的解.故答案为:x 53=.12.如图,平面直角坐标系中,若反比例函数()0ky k x=≠的图象过点A 和点B ,则a 的值为______.【答案】32##1.5【详解】解:依题意,将点()1,3A −代入ky x=,得出3k =−, ∴反比例数解析式为3y x =−,当2x =−时,32y =, 即32a =, 故答案为:32.13.为了落实“双减”政策,东营市某学校对初中学生的课外作业时长进行了问卷调查,15名同学的作业时长统计如下表,则这组数据的众数是____________分钟.【答案】70【详解】解:由表可知: ∵6>4>2>2>1,∴这组数据的众数是70分钟.故答案为:70.14.如图,在△ABC中,∠C=90°,AD平分∠BAC,AB=5,CD=2,则△ABD的面积是________.【答案】5【详解】解:如图,过D作DE⊥AB于E,△DAE和△DAC中,AD平分∠BAC,则∠DAE=∠DAC,∠DEA=∠DCA=90°,DA=DA,∴△DAE≌△DAC(AAS),∴DE=DC=2,∴△ABD的面积=12×AB×DE=12×5×2=5,故答案为:5;15.如图,ABCD中,连接BD,E是BD上一点,连接AE并延长交CD于F,交BC延长线于点G,若2,3EF FG==,则AE=________.【详解】解:如图,过点E作EH AD∥,∴EFH AFD ∽V V , ∴EH EF AD AF =,即22EH AD AE =+, ∵四边形ABCD 是平行四边形, ∴AD BC ∥,AD BC =, ∴EH BC ∥, ∴DEH DBC ∽V V , ∴EH DEBC BD=, ∵AD BC ∥,∴ADE GBE ∽V V, ∴AE AD DE EG BG BE==, ∴DE AEBD AG=, ∴AE EH AG BC =,即23AE EHAE AD=++, ∴2232AE AE AE =+++,解得:AE =,16.某快递公司的快递件分为甲类件和乙类件,快递员送甲类件每件收入1元,送乙类件每件收入2元.累计工作1小时,只送甲类件,最多可送30件,只送乙类件,最多可送10件;累计工作2小时,只送甲类件,最多可送55件,只送乙类件,最多可送20件;…,经整理形成统计表如表:(1)如果快递员一天工作8小时,且只送某一类件,那么他一天的最大收入为_____元;(2)如果快递员一天累计送x小时甲类件,y小时乙类件,且x+y=8,x,y均为正整数,那么他一天的最大收入为_____元.【答案】160180【详解】解:(1)由统计表可知:如果该快递员一天工作8小时只送甲类件,则他的收入是1×145=145(元)如果该快递员一天工作8小时只送乙类件,则他的收入是2 × 80= 160 (元)∴他一天的最大收入是160元;(2)依题意可知:x和y均正整数,且x+y= 8①当x=1时,则y=7∴该快递员一天的收入是1 ×30+2×70=30+ 140= 170 (元);②当x=2时,则y=6∴该快递员-天的收入是1×55+2×60=55+120=175(元);③当x=3时,则y=5∴该快递员一天的收入是1× 80+2×50= 80+ 100= 180 (元);④当x=4时,则y=4∴该快递员一天的收入是1×100+2×40= 100+80 = 180 (元);⑤当x=5时,则y=3∴该快递员一天的收入是1×115+2×30=115十60 = 175 (元);⑥当x=6时,则y=2∴该快递员一天的收入是1 × 125+ 2× 20= 125+40 = 165 (元);⑦当x=7时,则y=1∴该快递员一天的收入是1×135+2×10=135+20= 155 (元)综上讨论可知:他一天的最大收入为180元.故填:160;180.三、解答题(共68分,第17-20题,每题5分,第21题6分,第22题5分,第23-24题,每题6分,第25题5分,第26题6分,第27-28题,每题7分) 17.(5分)计算:()20233tan 4512sin 60−+︒+−−︒.【答案】3【详解】解:()20233tan 4512sin 60−+︒+−−︒31122=+−−⨯3=18.(5分)解不等式组()815171062x x x x ⎧+>−⎪⎨−−≤⎪⎩.【答案】2523x −≤< 【详解】8(1)5171062x x x x +−⎧⎪⎨−−≤⎪⎩>①②, 由①式得:253x ≥−; 由②式得:2x ≤; ∴不等式组的解集为:2523x −≤< 19.(5分)先化简,再求值:()()()212323x x x +−+−,其中x 满足23220320x x −−=. 【答案】23210x x −++,2022− 【详解】解:()()()212323x x x +−+−222149x x x =++−+ 23210x x =−++, ∵23220320x x −−=,∴2322032x x −=,即2322032x x −+=−, ∴当23220320x x −−=时, 原式2032102022=−+=−.20.(5分)(1)如图1,三角形ABC 中,试用平行线的知识证明180A B C ∠+∠+∠=︒;(2)如图2,将线段BC折断成BDC的形状,证明D A B C∠=∠+∠+∠.【答案】(1)见解析;(2)见解析【详解】(1)证明:如图,延长BC到D,过点C作CE∥BA,∵BA∥CE,∴∠B=∠1(两直线平行,同位角相等),∠A=∠2(两直线平行,内错角相等),又∵∠BCD=∠BCA+∠2+∠1=180°(平角的定义),∴∠A+∠B+∠ACB=180°(等量代换).(2)证明:连接AD并延长,如图1,∵∠2=∠1+∠B,∠4=∠3+∠C,∴∠2+∠4=∠1+∠B+∠3+∠C,∴∠BDC=∠A+∠B+∠C.即∠D=∠A+∠B+∠C.∠=∠,21.(6分)如图,点A,B,C,D在同一条直线上,点E,F分别在直线AD的两侧,且AE DF=,A D =.AB DC(1)求证:四边形BFCE 是平行四边形;(2)如果7AD =,2DC =,60EBD ∠=︒,那么当四边形BFCE 为菱形时BE 的长是多少? 【答案】(1)见解析 (2)3【详解】(1)证明:AB DC =Q ,AC DB ∴=,在AEC △和DFB △中,AC DB A D AE DF =⎧⎪∠=∠⎨⎪=⎩, ()SAS AEC DFB ∴V V ≌,BF EC ACE DBF ∴=∠=∠,, EC BF ∴∥,∴四边形BFCE 是平行四边形;(2)当四边形BFCE 是菱形时,BE CE =,722AD DC AB CD ====Q ,,, 7223BC ∴=−−=, 60EBD ∠=︒Q ,BE CE =, BEC ∴V 是等边三角形,3BE BC ∴==,∴当四边形BFCE 是菱形时,BE 的长是3.22.(5分)如图,已知直线,5y x =+与x 轴交于点A ,直线y kx b =+与x 轴交于点()10B ,,且与直线5y x =+交于第二象限点()C m n ,.若ABC V 的面积为12.(1)求点A 、点C 的坐标;(2)写出关于x 的不等式5x kx b +>+的解集. 【答案】(1)()5,0A −;点C 坐标为()1,4− (2)1x >−【详解】(1)解:在直线5y x =+中,令0y =,则50x += 解得:5x =−,()5,0A ∴−; ()1,0B Q ,()156AB ∴=−−=, ()C m n Q ,,11631222ABC C S AB y n n =⋅=⨯==V Q . 4n ∴=,Q 点(),C m n 在直线AB 上,54m n ∴+==,1m ∴=−,∴点C 坐标为()1,4−;(2)解:由图象可知,不等式5x kx b +>+的解集为1x >−.23.(6分)某校举办了一次 “成语知识竞赛”,满分10分,学生得分均为整数,成绩达到6分及6分以上为合格,达到9分或10分为优秀,这次竞赛中,甲、乙两组各10名学生成绩分布的折线统计图和成绩统计分析表如图所示.(1) =a _____,b =_____;(2)小军同学说:“这次竞赛我得了7分,在我们小组中排名属中游略偏上”观察表格试分析判断,小军是哪个组的学生;(3)甲组同学说他们组的合格率、优秀率均高于乙组,所以他们组的成绩好于乙组,但乙组同学不同意他的说法,认为乙组的成绩要好于甲组.请你写出两条支持乙组同学观点的理由. 【答案】(1)6.8,7.5 (2)小军属于甲组学生(3)①乙组的平均分高于甲组,即乙组的总体平均水平高;②乙组的方差比甲组小,即乙组的成绩比甲组的成绩稳定【详解】(1)解:由题意,得()131657192101 6.810a =⨯⨯+⨯+⨯+⨯+⨯=; 把乙组成绩从低到高排在中间的两个数为7分,8分,故()7827.5b =+÷=. 故答案为:6.8,7.5;(2)∵甲组的中位数为6,乙组的中位数为7.5,而小军的成绩位于小组中上游 ∴小军属于甲组学生;(3)①乙组的平均分高于甲组,即乙组的总体平均水平高; ②乙组的方差比甲组小,即乙组的成绩比甲组的成绩稳定.24.(6分)如图,ABC V 是O e 的内接三角形,CD 是O e 的直径,AB CD ⊥于点E ,过点A 作O e 的切线交CD 的延长线于点F ,连接FB .(1)求证:FB 是O e 的切线.(2)若AC =1tan 2ACD ∠=,求O e 的半径. 【答案】(1)见解析 (2)O e 的半径为5.【详解】(1)证明:连接OA OB 、,∵在O e 中,OA OB =,AB CD ⊥于点E , ∴AOF BOF =∠,在OAF △和OBF V 中,OA OB AOF BOF OF OF =⎧⎪∠=∠⎨⎪=⎩,∴()SAS OAF OBF ≌△△. ∴OAF OBF ∠=∠.又∵AF 切O e 于点A ,OA 为O e 半径, ∴OA FA ⊥, ∴90OAF ∠=︒. ∴90OBF ∠=︒. ∴OB FB ⊥于点B . ∴FB 是O e 的切线;(2)解:∵AB CD ⊥,1tan 2ACD ∠=, ∴1tan 2AE ACD CE ∠==, ∴2CE AE =,∵AC =∴222AE CE AC +=,即()(2222AE AE +=,∴4AE =,8CE =,设O e 的半径为r ,则OA OC r ==,8OE r =−, 在Rt AOE △中,222AE EO AO +=,即()22248r r +−=, 解得=5r , ∴O e 的半径为5.25.(5分)跳台滑雪是冬季奥运会的比赛项目之一,如图,运动员通过助滑道后在点A 处起跳经空中飞行后落在着陆坡BC 上的点P 处,他在空中飞行的路线可以看作抛物线的一部分,这里OA 表示起跳点A 到地面OB 的距离,OC 表示着陆坡BC 的高度,OB 表示着陆坡底端B 到点O 的水平距离,建立如图所示的平面直角坐标系,从起跳到着陆的过程中,运动员的竖直高度y (单位:m )与水平距离x (单位:m )近似满足函数关系:2116y x bx c =−++,已知70m OA =,60m OC =,落点P 的水平距离是40m ,竖直高度是30m .(1)点A 的坐标是_____,点P 的坐标是_______; (2)求满足的函数关系2116y x bx c =−++; (3)运动员在空中飞行过程中,当他与着陆坡BC 竖直方向上的距离达到最大时,直接写出此时的水平距离. 【答案】(1)()0,70A ,()40,30P ; (2)21370162y x x =−++; (3)18m【详解】(1)解:70m OA =Q ,落点P 的水平距离是40m ,竖直高度是30m , ()0,70A ∴,()40,30P ;(2)解:把()0,70A ,()40,30P 代入2116y x bx c =−++ 得,270130404016c b c =⎧⎪⎨=−⨯++⎪⎩, 解得,3270b c ⎧=⎪⎨⎪=⎩, 21370162y x x ∴=−++; (3)解:60m OC =Q ,∴设直线BC 的表达式为()600y kx k =+≠,把()40,30P 代入,得304060k =+,解得,34k =−,3604y x ∴=−+,设213,70162M m m m ⎛⎫−++ ⎪⎝⎭到BC 竖直方向上的距离最大,作MN y ∥轴交抛物线和直线BC 于点M 、N ,∴3,604N m m ⎛⎫−+ ⎪⎝⎭,213370601624MN m m m ⎛⎫∴=−++−−+ ⎪⎝⎭21910164m m =−++ ()22213618181016m m =−−+−+ ()21811810164m =−−++ ()2112118164m =−−+ ()2118016m −−≤Q , ∴当18m =时,MN 最大,即水平距离为18m 时,运动员与着陆坡BC 竖直方向上的距离达到最大.26.(6分)在平面直角坐标系xOy 中,点(1,)m −,(4,)n −在抛物线2(0)y ax bx c a =++>上,设抛物线的对称轴为x t =.(1)当2c =,m n =时,求抛物线与y 轴交点的坐标及t 的值;(2)点()()00,1x m x ≠−在抛物线上.若m n c <<,求t 的取值范围及0x 的取值范围. 【答案】(1)抛物线与y 轴的交点坐标为:()0,2, 52x t ==−.(2)522t −<<−,0x 的取值范围043x −<<−.【详解】(1)解:∵2c =,∴抛物线为:22(0)y ax bx a =++>, ∴当0x =,则2y =,∴抛物线与y 轴的交点坐标为:()0,2,∵m n =,∴点(1,)m −,(4,)n −关于抛物线的对称轴对称, ∴抛物线的对称轴为直线14522x t −−===−. (2)∵m n c <<,∴164a b c a b c c −+<−+<, 解得45a b a <<,∴54a b a −<−<−, 而2>0a , ∴5222b a −<−<−,即522t −<<−, ∵点(1,)m −,()()00,1x m x ≠−在抛物线上, ∴抛物线的对称轴为直线012x x −=, ∴015222x −−<<−, 解得:043x −<<−, ∴0x 的取值范围043x −<<−.27.(7分)在Rt ABC V 中,90BAC ∠=︒,AB AC =,P 是直线AC 上的一点,连接BP ,过点C 作CD BP ⊥,交直线BP 于点D .(1)当点P 在线段AC 上时,如图①,求证:BD CD −=;(2)当点P 在直线AC 上移动时,位置如图②、图③所示,线段CD ,BD 与AD 之间又有怎样的数量关系?请直接写出你的猜想,不需证明. 【答案】(1)见解析(2)如图②CD BD −=,如图③CD BD += 【详解】(1)证明:如图1,在BD 上截取BE CD =,90BAC BDC ∠︒∠==Q ,90ABP APB ∴∠+∠=︒,90ACD DPC ∠+∠=︒.APB DPC ∠=∠Q ,ABP ACD ∴∠=∠.又AB AC =,(SAS)ABE ACD ∴V V ≌,AE AD ∴=,BAE CAD ∠=∠.90EAD EAP CAD EAP BAE ∴∠=∠+∠=∠+∠=︒.在Rt AED V 中,22222DE AE AD AD =+=,∴DE =∴BD CD BD BE ED −=−==;(2)解:如图2,CD BD −=. 在CD 上截取CE BD =,连接AE ,由(1)可知△≌△ADB AEC , AE AD ∴=,BAD CAE ∠=∠,90EAD BAE BAD BAE CAE ∴∠=∠+∠=∠+∠=︒,在Rt AED V 中,22222DE AE AD AD =+=,DE ∴=,CD BD CD CE DE ∴−=−==,CD BD ∴−=.如图3,CD BD +=.延长DC 至点E ,使得CE BD =,连接AE ,90BAC BDC ∠︒∠==Q ,180ABD ACD ∴∠+∠=︒,180ACD ACE ∠+∠=︒, ABD ACE ∴∠=∠,在ABD △和ACE △中,AB AC ABD ACE BD CE =⎧⎪∠=∠⎨⎪=⎩, (SAS)ADB AEC ∴V V ≌,AE AD ∴=,BAD CAE ∠=∠,90EAD CAE CAD BAD CAD ∴∠=∠+∠=∠+∠=︒,在Rt AED V 中,22222DE AE AD AD =+=,DE ∴=,CD BD CD CE DE ∴+=+==.28.(7分)在平面直角坐标系中,对点(),P a b 作如下变换:若a b ≥,作点P 关于y 轴的对称点;若a b <,作点P 关于x 轴的对称点,我们称这种变换为“YS 变换”.(1)点()1,0作“YS 变换”后的坐标为___________;点()3,4−作“YS 变换”后的坐标为___________;(2)已知点()1,2A m m ++,(),1B m ,()1,1C m +,其中01m <<,且点A ,B 作“YS 变换”后对应的点分为M ,N 两点,74MNC S =△,求m 的值. (3)已知点()1,5E ,()5,5F ,在EF 即所在直线上方作等腰直角三角形EFG ,若点1,2P a b ⎛⎫− ⎪⎝⎭,()1,Q a b −作“YS 变换”后对应的点分别为P ',Q ',其中a b <,若点G 在线段P Q ''上,求a 的取值范围. 【答案】(1)()1,0−,()3,4−− (2)12m =(3)322a ≤≤或1162a ≤≤或742a ≤≤【详解】(1)解:∵10> ∴作点关于y 轴轴的对称点∴点()1,0作“YS 变换”后的坐标为()1,0− ∵34−<∴作点关于x 轴轴的对称点∴点()3,4−作“YS 变换”后的坐标为()3,4−−; 故填:()1,0−,()3,4−−. (2)解:∵01m <<,∴()1,2A m m ++作YS -变换后的点为()1,2M m m +−−,(),1B m 作YS -变换后的点为(),1N m − ∴()173124MNC S m =+⨯=△ ∴12m =; (3)解:∵a b <,∴点1,2P a b ⎛⎫− ⎪⎝⎭作YS 变换后的点为1,2P a b ⎛⎫'−− ⎪⎝⎭,点()1,Q a b −作YS 变换后的点为()1,Q a b '−−, ∵在EF 上方作等腰直角三角形EFG V ∴()1,8G 或()5,8G 或()3,7G , 分类讨论如下:①当()1,8G 在线段P Q ''上时,则11112a a −≤⎧⎪⎨−≥⎪⎩, ∴322a ≤≤, ②当()5,8G 在线段P Q ''上时,则15152a a −≤⎧⎪⎨−≥⎪⎩,∴1162a ≤≤,②当()3,7G ,在线段P Q ''上时,则13132a a −≤⎧⎪⎨−≥⎪⎩, ∴742a ≤≤ ∴322a ≤≤或1162a ≤≤或742a ≤≤.。
备战2024年中考数学模拟卷(陕西专用)黄金卷02(考试时间:120分钟试卷满分:120分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3.回答填空题时,请将每小题的答案直接填写在答题卡中对应横线上。
写在本试卷上无效。
4.回答解答题时,每题必须给出必要的演算过程或推理步骤,画出必要的图形(包括辅助线),请将解答过程书写在答题卡中对应的位置上。
写在本试卷上无效。
5.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共8小题,每小题3分,共24分。
1.(2023·四川达州·统考中考真题)-2024的倒数是()A.-2024B.2024C.12024D.−12024【答案】D【分析】根据相乘等于1的两个数互为倒数,即可求解.【详解】解:-2024的倒数是−12024,故选:D.【点睛】本题考查了倒数,掌握倒数的定义是解题的关键.2.(2023·湖北荆州·统考中考真题)观察如图所示的几何体,下列关于其三视图的说法正确的是()A.主视图既是中心对称图形,又是轴对称图形B.左视图既是中心对称图形,又是轴对称图形C.俯视图既是中心对称图形,又是轴对称图形D .主视图、左视图、俯视图都是中心对称图形【答案】C【分析】先判断该几何体的三视图,再根据轴对称和中心对称图形定义逐项判断三视图,即可求出答案.【详解】解:A 选项:主视图是上下两个等腰三角形,不是中心对称图形,是轴对称图形,故不符合题意;B 选项:左视图是上下两个等腰三角形,不是中心对称图形,是轴对称图形,故不符合题意;C 选项:俯视图是圆(带圆心),既是中心对称图形,又是轴对称图形,故符合题意;D 选项:由A 和B 选项可知,主视图和左视图都不是中心对称图形,故不符合题意.故选:C.【点睛】本题考查了简单几何体的三视图、轴对称图形和中心对称图形,解题的关键在于掌握轴对称和中心对称的定义.如果一个平面图形沿着一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形;中心对称是指把一个图形绕着某一点旋转180︒,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称.3.(2023·湖北宜昌·统考中考真题)如图,小颖按如下方式操作直尺和含30︒角的三角尺,依次画出了直线a ,b ,c .如果170=︒∠,则2∠的度数为().A .110︒B .40︒C .70︒D .30︒【答案】B 【分析】可求34570∠=∠+∠=︒,由25∠=∠,即可求解.【详解】解:如图,由题意得:430∠=︒,a b ∥,3170∴∠=∠=︒,34570∠=∠+∠=︒ ,540∴∠=︒,2540∴∠=∠=︒,故选:B .【点睛】本题考查了平行线的性质,对顶角的性质,三角形外角定理,掌握平行线的性质是解题的关键.4.(2023·浙江绍兴·统考中考真题)下列计算正确的是()A .623a a a ÷=B .()52a a -=-C .()()2111a a a +-=-D .22(1)1a a +=+【答案】C【分析】根据同底数幂相除法则判断选项A ;根据幂的乘方法则判断选项B ;根据平方差公式判断选项C ;根据完全平方公式判断选项D 即可.【详解】解:A .6243a a a a ÷=≠,原计算错误,不符合题意;B .()5210a a a -=-≠-,原计算错误,不符合题意;C .()()2111a a a +-=-,原计算正确,符合题意;D .222(1)211a a a a +=++≠+,原计算错误,不符合题意;故选:C .【点睛】本题考查了同底数幂相除法则、幂的乘方法则、平方差公式、完全平方公式等知识,熟练掌握各运算法则是解答本题的关键.5.(2023·湖北荆州·统考中考真题)如图,直线332y x =-+分别与x 轴,y 轴交于点A ,B ,将OAB 绕着点A 顺时针旋转90 得到CAD ,则点B 的对应点D 的坐标是()A .()2,5B .()3,5C .()5,2D .)2【答案】C【分析】先根据一次函数解析式求得点,A B 的坐标,进而根据旋转的性质可得2,3AC OA CD OB ====,90OAC ∠=︒,=90ACD ∠︒,进而得出CD OA ∥,结合坐标系,即可求解.【详解】解:∵直线332y x =-+分别与x 轴,y 轴交于点A ,B ,∴当0x =时,3y =,即()0,3B ,则3OB =,当0y =时,2x =,即()2,0A ,则2OA =,∵将OAB 绕着点A 顺时针旋转90 得到CAD ,又∵90AOB ∠=︒∴2,3AC OA CD OB ====,90OAC ∠=︒,=90ACD ∠︒,∴CD OA ∥,延长DC 交y 轴于点E ,则()0,2E ,235DE EC CD =+=+=,∴D ()5,2,故选:C .【点睛】本题考查了一次函数与坐标轴交点问题,旋转的性质,坐标与图形,掌握旋转的性质是解题的关键.6.(2023·四川内江·统考中考真题)如图,在ABC 中,点D 、E 为边AB 的三等分点,点F 、G 在边BC 上,AC DG EF ∥∥,点H 为AF 与DG 的交点.若12AC =,则DH 的长为()A .1B .32C .2D .3【答案】C 【分析】由三等分点的定义与平行线的性质得出BE DE AD ==,BF GF CG ==,AH HF =,DH 是AEF △的中位线,易证BEF BAC ∽△△,得EF BE AC AB =,解得4EF =,则122DH EF ==.【详解】解:D 、E 为边AB 的三等分点,EF DG AC ∥∥,BE DE AD ∴==,BF GF CG ==,AH HF =,3AB BE ∴=,DH 是AEF △的中位线,12DH EF ∴=,EF AC ∥,,,BEF BAC BFE BCA ∴∠=∠∠=∠BEF BAC ∴∽△△,∴EF BE AC AB=,即123EF BE BE =,解得:4EF =,114222DH EF ∴==⨯=,故选:C .【点睛】本题考查了三等分点的定义、平行线的性质、相似三角形的判定与性质、三角形中位线定理等知识;熟练掌握相似三角形的判定与性质是解题的关键.7.(2023·安徽·统考中考真题)如图,正五边形ABCDE 内接于O ,连接,OC OD ,则BAE COD ∠-∠=()A .60︒B .54︒C .48︒D .36︒【答案】D 【分析】先计算正五边形的内角,再计算正五边形的中心角,作差即可.【详解】∵360360180,55BAE COD ︒︒∠=︒-∠=,∴3603601803655BAE COD ︒︒∠-∠=︒--=︒,故选:D .【点睛】本题考查了正五边形的外角,内角,中心角的计算,熟练掌握计算公式是解题的关键.8.(2023·湖南·统考中考真题)如图所示,直线l 为二次函数2(0)y ax bx c a =++≠的图像的对称轴,则下列说法正确的是()A .b 恒大于0B .a ,b 同号C .a ,b 异号D .以上说法都不对【答案】C 【分析】先写出抛物线的对称轴方程,再列不等式,再分a<0,>0a 两种情况讨论即可.【详解】解:∵直线l 为二次函数2(0)y ax bx c a =++≠的图像的对称轴,∴对称轴为直线>02b x a =-,当a<0时,则>0b ,当>0a 时,则0b <,∴a ,b 异号,故选:C .【点睛】本题考查的是二次函数的性质,熟练的利用对称轴在y 轴的右侧列不等式是解本题的关键.二、填空题:本题共5小题,共15分。
【赢在中考·黄金八卷】备战2023年中考数学全真模拟卷(上海专用)第一模拟(满分150分,完卷时间100分钟)注意事项:1.本试卷分选择题、填空题、解答题三部分。
答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.用2B铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上。
写在本试卷上无效。
4.考试结束后,将本试卷和答题卡一并交回。
考试范围:九上全部内容1、选择题(本大题共6小题,每题4分,满分24分)1.下列函数中,y关于x的二次函数是( )A.y=ax2+bx+c B.y=C.y=x(x+1)D.y=(x+2)2﹣x22.在Rt△ABC中,∠C=90°,如果∠A=40°,AC=b,那么BC等于( )A.b sin40°B.b cos40°C.b tan40°D.b cot40°3.已知和都是单位向量,下列结论中,正确的是( )A.B.C.D.4.已知点P、点Q是线段AB的两个黄金分割点,且AB=10,那么PQ的长为( )A.5(3﹣)B.10(﹣2)C.5(﹣1)D.5(+1)5.如图,正方形ABCD与△EFG在方格纸中,正方形和三角形的顶点都在格点上,那么与△EFG相似的是( )A.以点E、F、A为顶点的三角形B.以点E、F、B为顶点的三角形C.以点E、F、C为顶点的三角形D.以点E、F、D为顶点的三角形6.在△ABC中,点D、E分别在边BA、CA的延长线上,下列比例式中能判定DE∥BC的为( )A.=B.=C.=D.=2、填空题(本大题共12题,每题4分,满分48分)7.已知线段AB=8cm,点C在线段AB上,且AC2=BC•AB,那么线段AC的长 cm.8.若两个相似三角形的面积比为3:4,则它们的相似比为 .9.小杰沿坡比为1:2.4的山坡向上走了130米.那么他沿着垂直方向升高了 米.10.已知,则的值为 .11.若点A(﹣3,y1)、B(0,y2)是二次函数y=2(x﹣1)2﹣1图象上的两点,那么y1与y2的大小关系是 (填y1>y2、y1=y2或y1<y2).12.如果将抛物线y=x2+2x﹣1先向右平移1个单位,再向上平移2个单位,那么所得的新抛物线的顶点坐标为 .13.如图,△ABC中,∠BAC=90°,点G是△ABC的重心,如果AG=4,那么BC的长为 .14.如图,已知AD∥EF∥BC,AE=3BE,AD=2,EF=5,那么BC= .15.如图,在△ABC中,AD⊥BC,sin B=,BC=13,AD=12,则tan C的值 .16.如图,已知tan O=,点P在边OA上,OP=5,点M、N在边OB上,PM=PN,如果MN=2,那么PM= .17.如图,已知在Rt△ABC中,∠C=90°,AC=BC=1,点D在边BC上,将△ABC沿直线AD翻折,使点C落在点C′处,联结AC′,直线AC′与边CB的延长线相交于点F.如果∠DAB=∠BAF,那么BF= .18.如图,在梯形ABCD中,AD∥BC,AC平分∠BCD,∠BAC=∠D,若AD=4,BC=10,则AC= .三、解答题(满分78分)19.计算:+cot260°20.已知在平面直角坐标系xOy中,二次函数y=ax2+bx+c的图象经过点A(1,0)、B(0,﹣5)、C(2,3).求这个二次函数的解析式,并求出其图象的顶点坐标和对称轴.21.如图,已知在△ABC中,CD⊥AB,垂足为点D,AD=2,BD=6,tan∠B=,点E是边BC的中点.(1)求边AC的长;(2)求∠EAB的正弦值.22.如图,在大楼AB的正前方有一斜坡CD,CD=26米,坡度i=1:2.4,小明在斜坡下端C处测得楼顶点B的仰角为60°,在斜坡上的点D处测得楼顶B的仰角为30°,DE与地面垂直,垂足为E,其中点A、C、E在同一直线上.(1)求DE的值;(2)求大楼AB的高度(结果保留根号).23.已知:如图,在△ABC中,点D在边BC上,AE∥BC,BE与AD、AC分别相交于点F、G,AF2=FG•FE.(1)求证:△CAD∽△CBG;(2)联结DG,求证:DG•AE=AB•AG.24.在平面直角坐标系xOy(如图)中,抛物线y=ax2+bx+2经过点A(4,0)、B(2,2),与y轴的交点为C.(1)试求这个抛物线的表达式;(2)如果这个抛物线的顶点为M,求△AMC的面积;(3)如果这个抛物线的对称轴与直线BC交于点D,点E在线段AB上,且∠DOE=45°,求点E的坐标.25.如图,已知在Rt△ABC中,∠ACB=90°,AC=BC=4,点D为边BC上一动点(与点B、C不重合),点E为AB上一点,∠EDB=∠ADC,过点E作EF⊥AD,垂足为点G,交射线AC于点F.(1)如果点D为边BC的中点,求∠DAB的正切值;(2)当点F在边AC上时,设CD=x,CF=y,求y关于x的函数解析式及x的取值范围;(3)联结DF,如果△CDF与△AGE相似,求线段CD的长.【赢在中考·黄金八卷】备战2023年中考数学全真模拟卷(上海专用)第一模拟(满分150分,完卷时间100分钟)注意事项:1.本试卷分选择题、填空题、解答题三部分。
2024年辽宁省大连三十四中中考数学考前模拟试卷(6月份)一、选择题:本题共10小题,每小题3分,共30分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.的相反数是()A.3B.C.D.2.如图是一个正方体纸盒的展开图,正方体的各面标有数字1,2,3,,A ,B ,相对面上的两个数互为相反数,则()A. B.C.1D.23.我国自主研发的500m 口径球面射电望远镜有“中国天眼”之称,它的反射面面积约为用科学记数法表示数据250000为()A.B.C. D.4.中国“二十四节气”已被列入联合国教科文组织人类非物质文化遗产代表作名录,下列四幅作品分别代表“立春”、“立夏”、“芒种”、“大雪”,其中既是轴对称图形,又是中心对称图形的是()A. B. C. D.5.如图,把一块含有角的直角三角板的两个顶点分别放在直尺的一组对边上.如果,那么的度数是()A.B. C. D.6.下列计算正确的是()A.B. C. D.7.不等式组的解集在数轴上表示正确的是()A. B.C. D.8.下列命题中真命题的个数是()①过一点有且只有一条直线与已知直线平行;②同角的余角相等;③垂直于同一条直线的两直线平行;④长度相等的弧是等弧.A.1个B.2个C.3个D.4个9.如图,在中,以A为圆心,AC长为半径作弧,交BC于C,D两点,分别以点C和点D为圆心,大于长为半径作弧,两弧交于点P,作直线AP,交CD于点E,若,,则AE长为()A. B.3 C.4 D.510.如图,在中,,,,在中,,,BC与EF在同一条直线上,点C与点E重合以每秒1个单位长度的速度沿线段EF所在直线向右匀速运动,当点B运动到点F时,停止运动.设运动时间为t秒,与重叠部分的面积为S,则下列图象能大致反映S与t之间函数关系的是()A. B.C. D.二、填空题:本题共5小题,每小题3分,共15分。
11.若二次根式有意义,则x的取值范围为______.12.绿豆在相同条件下的发芽试验,结果如下表所示:每批粒数n100300400600100020003000发芽的粒数m9628238257094819122850发芽的频数则绿豆发芽的概率估计值是______精确到13.若关于x的方程的一个根是3,则此方程的另一个根是______.14.如图,在矩形ABCD中,点E为AD中点,BD和CE相交于点F,如果,那么线段BF的长度为______.15.如图,一条抛物线与x轴相交于A、B两点点A在点B的左侧,其顶点P在线段MN上移动.若点M、N的坐标分别为、,点B的横坐标的最大值为3,则点A的横坐标的最小值为______.三、解答题:本题共7小题,共63分。
新课标备战中考数学模拟试卷The following text is amended on 12 November 2020.2012年度九年级中考数学模拟试卷(一)一、选择题(每小题3分,共18分)1、-2012的绝对值是【】A.12012B.12012C. 2012D. -20122、视力表对我们来说并不陌生.如图是视力表的一部分,其中开口向上的两个“E”之间的变化是【】A.平移B.旋转C.对称D.位似3、已知x =-2 是关于x的一元二次方程x2 + 2x + a = 0的一个解,则此方程的另一个解是【】A.x = 0 B.x = - 2 C.x = 2 D.x =- 14.4、下列一组几何体是左图的俯视图的是【】5、为了了解某小区居民的用水情况,随机抽查了10户家庭的用水量,结果如下表:则关于这10户家庭的月用水量,下列说法错误的是【】A.中位数为5吨; B.众数是5吨; C.极差是3吨; D.平均数是吨6、如图,将一个大三角形剪成一个小三角形及一个梯形,若梯形上、下底的长分别为6、14,两腰长为12、16,则下列数据表示此小三角形的三边长的是【】月用水量(吨)4 5 6 9户数 3 4 2 1DCBAOD CBAP· ACBO A . B . C . D .二.填空题(每小题3分,共27分)7、如果□×(- 23)=1,则“□”内应填的实数是__________.8、比较大小:3- 2. 9、 有效数字的个数为__________.10、某种品牌的手机经过四、五月份连续两次降价,每部售价由3200元降到了2500元.设平均每月降价的百分率为x ,根据题意列出的方程是 .11、如图,∠ACB =60°,半径为1cm 的⊙O 切BC 于点C ,若将⊙O 在CB 上向右滚动,则当滚动到⊙O 与CA 也相切时,圆心O 移动的水平距离是cm .第11题 第13题12、缺图,将矩形ABCD 沿AE 折叠,已知∠CE 'D =60°,则∠BA 'D 的大小是__________.13、如图,点B 是⊙O 的半径OA 的中点,且CD ⊥OA 于B ,则tan ∠CPD 的值为__________.14、破译密码v w X g h q w 为student ,联想英语字母寻找破译它的密码钥匙。
【赢在中考·黄金八卷】备战2023年中考数学全真模拟卷(惠州专用)第一模拟(本卷满分120分,考试时间为90分钟)第Ⅰ卷(选择题 共30分)一、单选题(共10小题,每小题3分,共30分。
每小题给出的四个选项中只有..一个..选项是最符合题意的) 1.下列智能手机的功能图标中,不是轴对称图形的是( )A .B .C .D . 2.不等式3x ≤6的解集在数轴上表示为( )A .B .C .D . 3.在Rt ABC 中,90C ∠=︒,4AC =,5AB =,则( )A .3sin 4A =B .4cos 5A =C .3cos 4B =D .3tan 5B = 4.如图,AB 是⊙O 直径,若⊙AOC =140°,则⊙D 的度数是( )A .20°B .30°C .40°D .70° 5.一个正多边形的内角和等于1080︒,则这个正多边形的每个外角都等于( ) A .45︒ B .60︒ C .90︒ D .120︒6.下列运算中,正确的是( )A .3515x x x ⋅=B .235x y xy +=C .22(2)4x x -=-D .()2242235610x x y x x y ⋅-=-7.如图,小兰用彩纸制作了一个圆锥形的生日帽。
若底面半径为5cm ,母线长为10cm ,不考虑接缝的情况,则这个圆锥的侧面积是( )A .250πcm 2B .125πcm 2C .100πcm 2D .50πcm 28.下列说法:⊙等弧所对的圆心角相等;⊙经过三点可以作一个圆;⊙劣弧一定比优弧短;⊙平分弦的直径垂直于这条弦;⊙圆的内接平行四边形是矩形.其中正确的有( )A .1个B .2个C .3个D .4个 9.甲,乙两车在笔直的公路AB 上行驶,乙车从AB 之间的C 地出发,到达终点B 地停止行驶,甲车从起点A 地与乙车同时出发,到达B 地休息半小时后,立即以另一速度返回C 地并停止行驶,在行驶过程中,两车均保持匀速,甲、乙两车相距的路程y (千米)与乙车行驶的时间x (小时)之间的关系如图所示,下列说法错误的是( )A .乙车行驶的速度为每小时40千米B .甲车到达B 地的时间为7小时C .甲车返回C 地比乙车到B 地时间晚3小时D .甲车全程共行驶了840千米10.小雨利用几何画板探究函数y =||()a x c xb --图象,在他输入一组a ,b ,c 的值之后,得到了如图所示的函数图象,根据学习函数的经验,可以判断,小雨输入的参数值满足( )A.a>0,b>0,c=0B.a<0,b>0,c=0C.a>0,b=0,c=0D.a<0,b=0,c>0第II卷(非选择题)二、填空题(共7小题,每小题4分,共28分)11.把多项式218122x x-+分解因式的结果是_____________.12.586300用科学记数法表示为__,2.70×105精确到__位,42600精确到千位是______.13.若关于x的一元二次方程(m﹣1)x2﹣2mx+(m+2)=0 有实数根,则m取值范围是____.14.分式方程3x+61x-=27x x-的解为x=____________.15.如图,将一副三角板按如图所示的方式摆放,其中两条斜边AB//DE,30°角的顶点与含45°角的直角三角板的直角顶点重合,点E,D,C在同一条直线上,则⊙CAD的度数是_______.16.解方程2141x xx x-+=-,若设1xyx=-,则可得关于y的分式方程为______.17.如图,下列图形是将正三角形按一定规律摆放,第一次摆放的图形中有_____个正三角形,第二次摆放的图形中有_____个正三角形,…以此类推,则第五次摆放的图形中所有的正三角形的个数_____.三、解答题(共3小题,每小题6分,共18分)1820112cos30()2-+︒+-. 19.某数学社团开展实践性研究,在一公园南门A 测得观景亭C 在北偏东37°方向,继续向北走105m 后到达游船码头B ,测得观景亭C 在游船码头B 的北偏东53°方向.求南门A 与观景亭C 之间的距离.(参考数据:3tan 374︒≈,tan 5343︒≈)20.如图,已知ABC ,(1)尺规作图:作BC 的垂直平分线MN 交AB 于点D ;(2)连接CD .若CD AC =,50A ∠=︒,求ACB ∠的度数.四、解答题(共3小题,每小题8分,共24分)21.如图,在Rt ⊙ABC 中,⊙C =90°,BD 平分⊙ABC 交AC 于点D ,点O 在AB 上,以点O 为圆心,OB 为半径的圆经过点D ,交BC 于点E .(1)求证:AC 是⊙O 的切线;(2)若OB =10,CD =8,求CE 的长.22.某校数学兴趣小组的同学设计了“垃圾分类知识及投放情况”问卷,并在本校随机抽取部分同学进行问卷测试,把测试成绩分成“优、良、中、差”四个等级,绘制了如下不完整的统计图:根据扇形统计图和条形统计图形的信息,解答下列问题:(1)求成绩是“优”的人数占抽取人数的百分比;(2)求本次随机抽取问卷测试的人数;(3)请把条形统计图补充完整;(4)若该校学生人数为2100人,请估计成绩是“优”和“良”的学生共有多少人?23.如图,点E在平行四边形ABCD的对角线AC上,连BE并延长到F,使BE=EF,连DF.(1)求证:DF⊙AC(2)若BF=2AB且CD与EF的交点G正好是CD的中点,请连接CF、DE,判断四边形CEDF 的形状,并证明.五、解答题(共2小题,每小题10分,共20分)24.已知二次函数y=﹣x2+2x+m.(1)如果二次函数的图象与x轴有两个交点,求m的取值范围;(2)如图,二次函数的图象过点A(-1,0),与y轴交于点C,求直线BC与这个二次函数的解析式;(3)在直线BC上方的抛物线上有一动点D,DE⊥x轴于E点,交BC于F,当DF最大时,求点D的坐标,并写出DF最大值.25.如图,在平面直角坐标系中,O是坐标原点,等边三角形AOB的顶点A的坐标为()4,0,动点P从点O出发,以每秒2个单位的速度,沿O A→路线向终点A匀速运动,设运动时间为t秒,连接BP,线段BP的中点为点Q,将线段PQ绕点P顺时针旋转60︒得到线段PC,连接AC.(1)求证:CPA OBP∠=∠;(2)当23t=时,求点C的坐标;(3)在点P的运动过程中,PCA能否成为直角三角形?若能,直接写出满足条件的所有t的值;若不能,说明理由;(4)在点P从起点O向终点A运动的过程中,直接写出点C所经过的路径长.。
2024年黑龙江省哈尔滨市中考数学考前模拟试题一、单选题1.2024的相反数是( )A .2021B .2024-C .12024D .12024- 2.下列计算中,正确的是( )A .32523a a a -=B .()236a a -=C .3412236⨯=D .347m m m m ⋅⋅=3.如图是由大小相同的小正方体搭成的几何体,下列关于该几何体三视图的描述:①主视图是中心对称图形;②左视图是轴对称图形;③俯视图既是轴对称图形,又是中心对称图形.其中正确的是( )A .①B .②C .③D .②③4.某无盖分类垃圾桶如右图所示,则它的俯视图是( )A .B .C .D . 5.如图所示,已知AB CD ∥,37A ∠=︒,63C ∠=︒,那么F ∠的度数为( )A .63°B .45°C .37°D .26°6.如图,抛物线2y ax bx c =++经过点()2,0-,()3,0.下列结论:①0ab c >;②2c b =;③若抛物线上有点15,2y ⎛⎫ ⎪⎝⎭,()23,y -,31,2y ⎛⎫- ⎪⎝⎭,则213y y y <<;④方程20cx bx a ++=的解为112x =,213x =-,其中正确的个数是( )A .4B .3C .2D .17.现定义一种新运算“※”,对任意有理数m 、n 都有()m n mn m n =-※,则()()a b a b +-=※( )A .2222ab b -B .2322a b b -C .2222ab b +D .222ab ab -8.“敬老爱老”是中华民族的优秀传统美德.小刚、小强计划利用暑期从A ,B ,C 三处养老服务中心中,随机选择一处参加志愿服务活动,则两人恰好选到同一处的概率是( )A .12B .13C .16D .299.如图,已知正方形ABCD 由四个全等的直角三角形和一个小正方形EFGH 组成,把四个直角三角形分别沿斜边向外翻折,得到正方形MNPQ ,连接MF 并延长交NP 于点O ,设正方形EFGH 的面积为1S ,正方形MNPQ 的面积为2S ,若12449S S =,则OP OC 的值为( )A.4920B.5625C.3516D.210.双胞胎兄弟小明和小亮在同一班读书,周五16:00时放学后,小明和同学走路回家,途中没有停留,小亮骑车回家,他们各自与学校的距离s(米)与用去的时间t(分)的关系如图所示,根据图象提供的有关信息,下列说法中错误的是()A.兄弟俩的家离学校1000米B.他们同时到家,用时30分C.小明的速度为50米/分D.小亮中间停留了一段时间后,再以80米/分的速度骑回家二、填空题11.截止2021年4月中国高速路总里程达16万公里.请将“16万”用科学记数法表示记为.12.在函数31yx=+中,自变量x的取值范围是.13.反比例函数y=1kx+的图像经过点(-2,3),则k的值为.14.一个等腰三角形的周长为15.因式分解:3221218a a a-+=.16.不等式组2(1)3213x x +≤⎧⎪-⎨>-⎪⎩的解集为. 17.如图,ABC V 是等腰三角形,AC BC ⊥,以点A 为圆心,AC 为半径画弧,交边AB 于点D .若2AB =,则»CD 的长为(结果保留π).18.用火柴棍拼成如下图案,其中第①个图案由4个小等边三角形围成1个小菱形,第②个图案由6个小等边三角形围成2个小菱形,……,若按此规律拼下去,则第n 个图案需要火柴棍的根数为(用含n 的式子表示).19.如图所示的一块地,∠ADC=90°,CD=3,AD=4,AB=13,BC=12,求这块地的面积为.20.如图,在Rt ABC △中,90ACB ∠=︒,30ABC ∠=︒,1AC =,点D 为AB 边上一点(不与A ,B 重合),点E 为BC 的中点,将CDE V 沿DE 翻折,得到DEF V ,连接BF ,当以点D ,E ,B ,F 为顶点的四边形为平行四边形时,AD 的长为.三、解答题21.先化简,再求值.22421244x x x x x x x x -+-⎛⎫÷+ ⎪--+⎝⎭.已知2x .22.如图,在Rt ABC △中,30B ∠=o ,3AC =.(1)求作:以斜边AB 为对角线且其中一个顶点在BC 边上的菱形;(尺规作图,保留作图痕迹)(2)求(1)中所求作菱形的边长.23.在贯彻落实“五育并举”的工作中,某校开设了五个社团活动:传统国学(A )、科技兴趣(B )、民族体育(C )、艺术鉴赏(D )、劳技实践(E ),每个学生每个学期只参加一个社团活动.为了了解本学期学生参加社团活动的情况,学校随机抽取了若干名学生进行调查,并将调查结果绘制成如下两幅尚不完整的统计图.请根据统计图提供的信息,解答下列问题:(1)将条形统计图补充完整;(2)在扇形统计图中,传统国学(A )对应扇形的圆心角度数是______;(3)若该校有2700名学生,请估算本学期参加艺术鉴赏(D )活动的学生人数;(4)若小明和小亮可从这五个社团活动中任选一个参加,请直接写出两人恰好选择同一个社团的概率.24.如图,在ABC V 中,90BAC ∠=︒,AD 是BC 边上的中线,E 是AD 的中点,过点A 作BC 的平行线交BE 的延长线于点F ,连接CF .(1)求证:四边形ADCF 是菱形;(2)若60ACB ∠=︒,平行线AF 与BC 间的距离为ADCF 的面积.25.2022年7月19日亚奥理事会宣布将于2023年9月23日至10月8日在杭州举办第19届亚运会,吉祥物为“宸宸”、“琮琮”、“莲莲”,如图,某校准备举行“第19届亚运会”知识竞赛活动,拟购买30套吉祥物(“宸宸”、“琮琮”、“莲莲”)作为竞赛奖品.某商店有甲,乙两种规格,其中乙规格比甲规格每套贵20元.(1)若用700元购买甲规格与用900元购买乙规格的数量相同,求甲、乙两种规格每套吉祥物的价格;(2)在(1)的条件下,若购买甲规格数量不超过乙规格数量的2倍,如何购买才能使总费用最少?26.如图,已知抛物线经过原点O ,顶点为A(1,1),且与直线-2y x =交于B ,C 两点. (1)求抛物线的解析式及点C 的坐标;(2)求△ABC 的面积;(3)若点N 为x 轴上的一个动点,过点N 作MN ⊥x 轴与抛物线交于点M ,则是否存在以O ,M ,N 为顶点的三角形与△ABC 相似?若存在,请求出点N 的坐标;若不存在,请说明理由.27.如图,在Rt ABC △中,90BAC ∠=︒,AB AC =,D ,E 是边BC 上的两点,过点D ,E 分别作DM AB ⊥,EN AC ⊥,垂足为M ,N ,MD 与NE 的延长线交于点F ,连接,AD AE .(1)若BD CE =.①求证:AD AE =.②试判断四边形AMFN 是什么特殊的四边形,并说明理由.(2)若BD CE ≠,45DAE =︒∠,DE AD =,求22CE BD DE CD +⋅的值.。
2023年江苏省淮安市中考数学考前30天终极冲刺模拟卷学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.如图,在Rt ABC △中,90ACB ∠=.点P 是半圆弧AC 的中点,连接BP 交AC 于点D ,若半圆弧的圆心为O ,点D 、点E 关于圆心O 对称.则图中的两个阴影部分的面积12S S ,之间的关系是( )A .12S S <B .12S S >C .12S S =D .不确定 2.三角形的外心是( ) A . 三条高线的交点B .三条中线的交点C .三条中垂线的交点D .三条内角平分线的交点 3.抛物线2y ax =和22y x =的形状相同,则 a 的值是( )A .2B .-2C .2±D .不确定 4.已知函数y =ax 2+bx +c 的图像如图所示,那么此函数的解析式为( ) A .y =-x 2+2x +3 B .y =x 2―2x ―3 C .y =―x 2―2x +3 D .y =―x 2―2x ―35.下列命题为真命题的是( )A .三角形的中位线把三角形的面积分成相等的两部分B .对角线相等且相互平分的四边形是正方形C .关于某直线对称的两个三角形是全等三角形D .一组对边平行,另一组对边相等的四边形一定是等腰梯形6.用两块全等的有一个角是30°的直角三角板,能拼成不同的平行四边形有( )A .2个B .3个C .4个D .无数个7.如图,在Rt △ABC 中,CD 是斜边AB 上的高,角平分线AE 交CD 于H ,EF ⊥AB 于F ,则下列结论中不正确的是( )A .∠ACD=∠B B . CH=CE=EFC .AC=AFD .CH=HD8.如图,长方体的长为 15、为 10、高为 20,点B 离点 C 的距离为 5,一只蚂蚁如果要沿着长方体的表面从点A 爬到点B ,需要爬行的最短距离是( )A . 521B .25C . 1055D .359.如图,△ABC 是等腰直角三角形,BC 是斜边,将△ABP 绕A 逆时针旋转后,能够与△ACP ′重合,如果AP=3,那么2PP '等于( )A .9B .12C .15D .l810.如图所示,S △ABC=l ,若S △BDE =S △DEC =S △ACE ,则S △ADE 等于( )A .15B .16C .17D .1811.下列各式中,计算正确的是( )A .236+=B .523-=C .1010()10a b a b -=-D .2(3)3-=-12.当n 为整数时,212(1)(1)n n --+-的值为( )A .-2B .0C .1D . 2二、填空题13.如图,DE ∥AC ,BE :EC=2:1,AC=12,则DE= .14.函数22(3)5y x =--,当x= 时,y 有 ,为 .15.在直角坐标系内,点A ,B ,C ,D 的坐标依次为(-2,0),(-4,5),(x ,y),(0,5),要使四边形ABCD 为菱形,则x= ,y= .16.如图是由一些形状相同的长方体搭成的几何体的三视图,则此几何体共由 块长方体搭成.17.笔直的窗帘轨,至少需要钉 个钉子才能将它固定,理由是 .三、解答题18.如图,甲站在墙前,乙在墙后,为了不被甲看到,请你在图中画出乙的活动区域.19.如图,AD 、CE 是△ABG 的高线,A ′D ′、C ′E ′是△A ′B ′C ′的高线,且CD AD C D A D ='''', ∠B=∠B ′,试说明.20.如图所示,在 □ABCD 中,点E ,F 是对角线AC 上的两点,且AE=CF .求证:四边形BEDF 是平行四边形.21.已知:如图,E ,F 分别是□ABCD 的边AD ,BC 的中点,求证:DE =DF.AB C DFE22.解下列方程:(1)22(12)(3)x x-=+;(2)2449x x-+=23.某村过去是一个缺水的村庄,由于兴修水利,现在家家户户都用上了自来水.据村委会主任徐伯伯讲,以前全村400多户人家只有5口水井:第一口在村委会的院子里,第二口在村委会正西1500 m处,第三口在村委会北偏东30°方向,2000 m处,第四口在村委会东南方向1000 m处,第五口在村委会正南900 m处.请你根据徐伯伯的话,画图表示这个村庄5口水井的位置.24.一个包装盒的表面展开图如图所示,请描述这个包装盒的形状,并求出这个包装盒的表面积和容积(纸板厚度忽略不计).25.2008年 10月 18 日上午 10时,经过中国铁建十六局集团和中铁隧道局集团2000多名员工4年零2个月的顽强拼搏,被誉为世界级工程难题的宜万铁路野三关隧道Ⅱ线胜利贯通. 如图,这是工程建设中一个山峰的平面图,施工队在施工之前需要先测量出隧道AB的长度,请你利用三角形全等的知识设计一种测量方法,并说明理由.26.计算机存储容量的基本单位是字节(B),通常还用 KB(千字节)、MB(兆字节)、GB(吉字节)作为存储容量的计量单位. 已知1KB= 210B ,1MB =210 KB ,1GB = 210 MB ,那么372字节相当于多少音字节?27.在所给数轴上表示数-1,3的相反数,7,2-,并把这组数从小到大用“<”连接起来.28.x 为何值时,式子32x -与式子13x -+满足下面的条件? (1)相等(2)互为相反数(3)式子32x -比式子13x -+的值小 129.在数轴上-7 与 37 之间插入三个数,使这五个数的每相邻两个点之间的距离相等. 求插入的三个数.30.利用旧墙为一边(旧墙长为7 m),再用13 m 长的篱笆围成一个面积为20 m 2的长方形场地,则长方形场地的长和宽分别是多少?【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.C2.C3.C4.A5.C6.B7.D8.B9.D10.B11.CB二、填空题13.814.3-,最大值,-515.-2,1016.417.2,两点确定一条直线三、解答题18.如图中斜线区.19.∵CD ADC D A D='''',且∠ADC =∠A′D′C′,∴△ACD∽△A′C′D′.∴∠ACD=∠A′C′D′.∵∠B=∠B′,△ABC∽△A′B′C′,∴CE AC AD C E A C A D==''''''.20.提示:连结BD,利用对角线互相平分的四边形是平行四边形即可21.提示:四边形BEDF是平行四边形.22.(1)12 3x=-,24x=;(2)15x=,21x=-23.24.该包装盒是一个长方体,它的底面是边长为5厘米的正方形,它的高为25厘米.∴它的表面积为(5×5+25×5+25×5)×2=550(平方厘米),容积为5× 5×25=625(立方厘米) 25.利用全等三角形的判定(AAS,SAS,ASA)来设计完成26.128 GB27.图略,28.(1)245x= (2)12x= (3)185x=29.4,15,2630.宽为 4m,长为 5 m。
备战年中考数学考前模拟测试题新课标集团标准化工作小组 [Q8QX9QT-X8QQB8Q8-NQ8QJ8-M8QMN]2011年中考模拟试卷数学卷考生须知:本试卷满分120分, 考试时间100分钟. 答题前, 在答题纸上写姓名和准考证号.必须在答题纸的对应答题位置上答题,写在其他地方无效. 答题方式详见答题纸上的说明.考试结束后, 试题卷和答题纸一并上交. 试 题 卷一. 仔细选一选 (本题有10个小题, 每小题3分, 共30分)下面每小题给出的四个选项中, 只有一个是正确的. 注意可用多种不同方法来选取正确答案.1.如图,数轴上点A 所表示的数的倒数是( ▲ )A. 2-B. 2C. 12D. 12-2.化简()2222a a --(a≠0)的结果是(▲ )A. 0B. 22a C. 24a - D. 26a - 3.下列判断正确的是( ▲ )A. “打开电视机,正在播NBA 篮球赛”是必然事件B. “掷一枚硬币正面朝上的概率是21”表示每抛掷硬币2次就必有1次反面朝上 C. 一组数据2,3,4,5,5,6的众数和中位数都是5D. 甲组数据的方差S 甲2=,乙组数据的方差S 乙2=,则乙组数据比甲组数据稳定 4.直角三角形两直角边和为7,面积为6,则斜边长为( ▲ ) A. 5 B. C. 7 D.5.下列图形中,既是轴对称图形,又是中心对称图形的是( ▲ ) A. B. C. D.6.已知()0332=++++m y x x 中,y 为负数,则m 的取值范围是(▲ )A. m >9B. m <9C. m >-9D. m <-97.一个圆锥,它的左视图是一个正三角形,则这个圆锥的侧面展开图的圆心角度数是( ▲ )A. 60°B. 90°C. 120°D. 180°8.一种原价均为m 元的商品,甲超市连续两次打八折;乙超市一次性打六折;丙超市第一次打七折,第二次再打九折;若顾客要购买这种商品,最划算应到的超市是( ▲ )A. 甲或乙或丙B. 乙C. 丙D. 乙或丙第1题第9题 第12A B C D E O 第15题 9.如图,在菱形ABCD 中,DE ⊥AB ,3cos 5A =,BE=2,则tan ∠DBE 的值是( ▲ )A .12 B .2 C .52 D .5510.如图,在矩形ABCD 中,BC=8,AB=6,经过点B 和点D 的两个动圆均与AC 相切,且与AB 、BC 、AD 、DC 分别交于点G 、H 、E 、F ,则EF+GH 的最小值是( ▲ ) A .6 B .8 C . D .10二. 认真填一填 (本题有6个小题, 每小题4分, 共24分) 要注意认真看清题目的条件和要填写的内容, 尽量完整地填写答案. 11. 已知点A (1,k -+2)在双曲线k y x =上.则k 的值为 . 12. 如图,已知OB 是⊙O 的半径,点C 、D 在⊙O 上,∠DCB =40°,则∠OBD = ▲度.13. “五·一”假期,某公司组织全体员工分别到西湖、动漫节、宋城旅游,购买前往各地的车票种类、数量如图所示.若公司决定采用随机抽取的方式把车票分配给员工,则员工小王抽到去动漫节车票的概率为 ▲ .14. 如图是小明设计用手电来测量某古城墙高度的示意图,点P 处放一水平的平面镜,光线从点A 出发经平面镜反射后刚好射到古城墙CD 的顶端C 处,已知AB ⊥BD ,CD ⊥BD ,且测得AB=1.2米,BP=1.8米,PD=12米, 那么该古城墙的高度是 ▲ 米.15. 如图,在半圆O 中,直径AE=10,四边形ABCD 是平行四边形,且顶点A 、B 、C 在半圆上,点D 在直径AE 上,连接CE ,若AD=8,则CE 长为 .16. 如图,在第一象限内作射线OC ,与x 轴的夹角为30o ,在射线OC 上取一点A ,过点A 作AH ⊥x 轴于点H .在抛物线y=x2(x >0)上取点P ,在y 轴上取点Q ,使得以P ,O ,Q 为顶点的三角形与△AOH 全等,则符合条件的点A 的坐标是 .三. 全面答一答 (本题有8个小题, 共66分)解答应写出文字说明, 证明过程或推演步骤, 那么把自己能写出的解答写出一部分也可以. 17. (本小题满分6分)在下面三小题中任选其中两小题完成(1)已知2=+b a ,求代数式b a 2-(2)分解因式(3)已知 ,求分式 的值 18.(本小题满分6分)解不等式组:3265212x x x x -<+⎧⎪⎨-+>⎪⎩,并把解集在数轴上表示出来.AG B H C FDE 第10题A D C 第14题图第13题 西湖 动漫节第16题19. (本小题满分6分)如图, CD 切⊙O 于点D ,连结OC , 交⊙O于点B ,过点B 作弦AB ⊥OD ,点E 为垂足,已知⊙O 的半径为10,sin ∠COD=54.求:(1)弦AB 的长; (2)CD 的长;20. (本小题满分8分)已知正比例函数x a y )3(1+=(a <0)与反比例函数x a y 32-=的图象有两个公共点,其中一个公共点的纵坐标为4. (1)求这两个函数的解析式;(2)在坐标系中画出它们的图象(可不列表); (3)利用图像直接写出当x 取何值时,21y y >.21. (本小题满分8分)学生小明、小华到某电脑销售公司参加社会实践活动,了解到2010年该公司经销的甲、己两种品牌电脑在第一季度三个月(即一、二、三月份)的销售数量情况.小明用直方图表示甲品牌电脑在第一季度每个月的销售量的分布情况,见图①;小华用扇形统计图表示乙品牌电脑每个月的销售量与该品牌电脑在第一季度的销售总量的比例分布情况,见图②.根据上述信息,回答下列问题:(1)这三个月中,甲品牌电脑在哪个月的销售量最大 ▲ 月份;(2)已知该公司这三个月中销售乙品牌电脑的总数量比销售甲品牌电脑的总数量多50台,求乙品牌电脑在二月份共销售了多少台(3)若乙品牌电脑一月份比甲品牌电脑一月份多销售42台,那么三月份乙品牌电脑比甲品牌电脑多销售(少销售)多少台 22. (本小题满分10分)如图1,点P 、Q 分别是边长为4cm 的等边ABC 边AB 、BC 上的动点,点P 从顶点A ,点Q 从顶点B 同时出发,且它们的速度都为1cm/s ,(1)连接AQ 、CP 交于点M ,则在P 、Q 运动的过程中,∠CMQ 变化吗若变化,则说明理由,若不变,则求出它的度数; (2)何时PBQ 是直角三角形(3)如图2,若点P 、Q 在运动到终点后继续在射线AB 、BC 上运动,直线AQ 、CP 交点为M ,则∠CMQ 变化吗若变化,则说明理由,若不变,则求出它的度数; 23.某商场将进价50量倍数p ;第19题B C第22题图试通过计算,请你判断商场为赚得更大的利润应选择哪种方案请说明你判断的理由! 24. (本小题满分12分)如图,在平面直角坐标系xoy 中,矩形ABCD 的边AB 在x 轴上,且AB=3,BC=32,直线y=323-x 经过点C ,交y 轴于点G 。
(1)点C 、D 的坐标分别是C ( ),D ((2)求顶点在直线y=323-x 上且经过点C 、D 的抛物 线的解析式;(3)将(2)中的抛物线沿直线y=323-x 平移,平移后的抛物线交y 轴于点F ,顶点为点E (顶点在y 轴右侧)。
平移后是否存在这样的抛物线,使⊿EFG 为等腰三角形若存在,请求出此时抛物线的解析式;若不存在,请说 明理由。
2011年中考模拟试卷数学答题卷 考生须知:本试卷满分120分, 考试时间100分钟. 答题前, 在答题纸上写姓名和准考证号.必须在答题纸的对应答题位置上答题,写在其他地方无效. 答题方式详见答题纸上的说明.考试结束后, 试题卷和答题纸一并上交. 试 题 卷一. 仔细选一选 (本题有10个小题, 每小题3分, 共30分)下面每小题给出的四个选项中, 只有一个是正确的. 注意可用多种不同方法来选取正确答案. 二. 认真填一填(本题有6个小题, 每小题4分, 共24分)要注意认真看清题目的条件和要填写的内容, 尽量完整地填写答案. 11._______ _____; _______; 13.____ ____________; ; ______; ________ .三. 全面答一答 (本题有8个小题, 共66分)解答应写出文字说明, 证明过程或推演步骤. 如果觉得有的题目有点困难, 那么把自己能写出的解答写出一部分也可以. 17.(本题6分) 18.(本题6分) 19.(本题6分) 20.(本题8分) 21.(本题8分)(1) (2) (3)22.(本题10分) (1) (2) (3) 23.(本题10分) 24.(本题12分)(1)C ( ), D ( );(2)(3)2011年中考模拟试卷数学卷参考答案及评分标准 考生须知: 本试卷满分120分, 考试时间100分钟. 答题前, 在答题纸上写姓名和准考证号.说明.考试结束后, 试题卷和答题纸一并上交. 试 题 卷一二11. 1 12. 50 13. 2114. 8 15. 10 16. (33,31)(332,32)(3,3)(23,2) (对一个得1分)三. 全面答一答 (本题有8个小题, 共66分) 17.(本小题满分6分) (1)2=+b ab b a b a b b a 4))((422++-=+-∴ b b a b b a 4224)(2+-=+-= 422)(222=⨯=+=+=b a b a(2))16(232244-=-a a )4)(4(222-+=a a )2)(2)(4(22+-+=a a a…… 1′…… 1′…… 1′…… 1′ …… 1′…… 1′(3)32=y x ,不妨设k y k x 3,2== 81623422=+-=+-∴k k k k y x y x18. (本小题满分6分) 解:由(1)得:4<x 由(2)得:0>x不等式组的解为:40<<x 在数轴上表示为:19. (本小题满分6分) (1)OD AB ⊥B BE COD BE AB 0sin ,2=∠=∴16,85410=∴=⨯=∴AB BE(2)∵CD 切⊙O 于D ,∴OD CD ⊥∴54sin ==∠OC CD COD ,不妨设k CD 4=,则k OD k CO 3,5==∴310,103===k k OD∴3404==k CD20. (本小题满分8分)(1) ∵交点纵坐标为4,∴⎩⎨⎧=-=+x a x a 434)3(,解得5,521=-=a a (舍去)x 8-=(2)(3)当-<x 21. ((1)二(2)二月份共销售乙品牌电脑:()150%3050120180150=⨯+++ (台) …… 1′…… 2′…… 2′…… 1′ …… 1′…… 2′…… 1′…… 2′…… 1′…… 2′ …… 2′…… 2′…… 2′ …… 3′(3)三月份乙品牌电脑比甲品牌电脑多销售: 108120%38%32)42150(=-⨯÷+(台) 22. (本小题满分10分)(1)060=∠CMQ 不变。