毕业设计化工类论文(塔设计)
- 格式:doc
- 大小:947.50 KB
- 文档页数:59
精馏塔毕业论文精馏塔毕业论文精馏塔是化学工程领域中一种重要的设备,广泛应用于石油化工、化学制药、食品加工等行业。
在精馏塔的设计和操作中,涉及到许多理论和实践问题,因此,本文将探讨精馏塔的原理、设计和优化方法,以及一些实际应用案例。
一、精馏塔的原理精馏塔是一种用于分离液体混合物的设备,其基本原理是利用不同组分的挥发性差异,在塔内进行蒸馏和冷凝,从而实现分离。
在精馏塔内,液体混合物被加热至沸腾,产生蒸汽,然后通过填料层或板层进行传质和传热,最终在冷凝器中冷却并分离为不同的组分。
二、精馏塔的设计精馏塔的设计是一个复杂的过程,需要考虑许多因素,如物料性质、操作条件、分离效率等。
常见的设计方法包括理论计算方法和经验公式方法。
在理论计算方法中,常用的有McCabe-Thiele图、Ponchon-Savarit图等,这些图形方法可以帮助工程师快速估算精馏塔的塔板数、回流比等参数。
而在经验公式方法中,常用的有Fenske方程、Underwood方程等,这些公式基于实验数据和经验公式,适用于一些常见的分离系统。
三、精馏塔的优化精馏塔的优化是为了提高分离效率、节约能源和降低成本。
常见的优化方法包括改变操作条件、优化塔板结构和填料选型等。
改变操作条件是一种常见的优化方法,例如调整回流比、塔顶温度和塔底温度等,可以改善分离效果。
此外,优化塔板结构也是一种重要的方法,例如改变塔板孔径、增加塔板数目等,可以提高传质和传热效率。
填料选型也是一个关键的优化因素,合适的填料可以提高液体和气体的接触面积,从而提高分离效率。
四、精馏塔的实际应用精馏塔在许多领域都有广泛的应用。
以石油化工行业为例,精馏塔被用于原油分馏、石油化学产品的提纯等过程。
在化学制药行业,精馏塔用于药物的纯化和提纯。
在食品加工行业,精馏塔则用于酒精的提纯和饮料的生产。
总结精馏塔作为一种重要的分离设备,在化学工程领域具有广泛的应用。
其设计和优化是一个复杂而关键的过程,需要考虑多个因素。
汽提塔的毕业设计汽提塔(Distillation Column)是化工工艺中常见的设备,用于分离混合物中的组分。
它是一种通过蒸馏过程将液体混合物中的不同组分分离的装置。
在化工工艺中,汽提塔的设计是非常重要的,因为它直接影响着生产过程的效率和经济性。
在我的毕业设计中,我选择了汽提塔的设计作为研究对象。
我的目标是设计一个高效、节能的汽提塔,以提高分离过程的效率和降低能源消耗。
为了实现这个目标,我将从以下几个方面展开研究。
首先,我将对汽提塔的结构进行优化。
汽提塔的结构包括塔板、填料和塔壳等部分。
我将通过对不同结构参数的优化设计,寻找最佳的结构组合,以提高传质和传热效率。
同时,我也将考虑塔板和填料的材料选择,以及塔壳的绝热设计,以减少能量损失。
其次,我将研究汽提塔的操作条件对分离效果的影响。
汽提塔的操作条件包括进料温度、进料流量、塔顶温度等参数。
我将通过模拟和实验研究,探究不同操作条件下汽提塔的分离效果,并找出最佳的操作条件组合。
这将有助于提高汽提塔的分离效率,减少废品产生。
此外,我还将研究汽提塔的控制策略。
汽提塔的控制策略包括塔顶压力控制、进料流量控制、温度控制等。
我将通过建立数学模型和仿真实验,研究不同控制策略对汽提塔操作的影响。
通过优化控制策略,可以提高汽提塔的稳定性和响应速度,从而提高生产效率。
最后,我将对汽提塔的能量消耗进行优化。
汽提塔的能量消耗主要来自于加热和冷却过程。
我将通过研究不同加热和冷却方式的能量消耗情况,找出最佳的能量供应方式。
同时,我也将考虑废热回收和能量再利用等技术,以降低能源消耗和环境影响。
通过以上研究,我希望能够设计出一个高效、节能的汽提塔,为化工工艺提供更好的分离解决方案。
同时,我也希望通过毕业设计的实践,提升自己的工程设计能力和创新思维。
汽提塔的设计是一个复杂而有挑战性的任务,我相信通过不断学习和努力,我能够完成一个出色的毕业设计,并为化工行业的发展做出贡献。
目录1 前言 (1)1.1石油是极其复杂的混合物 (1)1.2常压蒸馏塔 (1)2设计说明书 (4)2.1原油评价与加工方案的确定 (4)2.1.1沈北原油的一般性质分析: (4)2.1.2加工方案的确定 (5)2.2常压塔的设计 (6)2.2.1操作压力 (6)2.2.2操作温度 (7)2.2.3汽提蒸馏用量 (7)2.2.4回流方式 (7)3初馏塔设计部分 (8)3.1设计数据及换算 (8)3.2工艺计算 (10)4常压塔设计部分 (15)4.1基本数据处理 (15)4.2产品收料及物料平衡 (21)4.3汽提水蒸气用量 (22)4.4塔板形式和塔板数 (22)4.5塔顶及侧线温度假设与各回流热分配 (23)4.6侧线及塔顶温度核算 (24)4.7全塔汽、液相负荷 (30)参考文献 (45)致谢 (46)1 前言1.1 石油是极其复杂的混合物石油炼厂中的第一个生产装置都是蒸馏装置,人们通过蒸馏装置将石油分割成我们所需要的各种馏分。
所谓原油的一次加工是指就原油蒸馏而言,借助于蒸馏,我们可以将原油分割成各种半成品馏分油,也可以将原油分割成一些二次重整加工的原料。
在一些二次加工的装置中,蒸馏过程也是不可缺少的组成部分。
蒸馏过程是炼油厂中一种最基本的,也是最重要的一种工艺。
蒸馏过程和设备设计是否合理,操作是否良好,对炼厂生产影响甚大。
因此,必须彻底了解蒸馏工艺的本质规律,掌握其影响因素和设计方法,对炼油工艺的专业人员来说是相当重要的。
1.2 常压蒸馏塔原油的常压蒸馏就是原油在常压(或稍高于常压)下进行的蒸馏,所用的蒸馏设备叫做原油常压精馏塔,它具有以下工艺特点:(1)常压塔是一个复合塔原油通过常压蒸馏要切割成汽油、煤油、轻柴油、重柴油和重油等四、五种产品馏分。
按照一般的多元精馏办法,需要有n-1个精馏塔才能把原料分割成n个馏分。
而原油常压精馏塔却是在塔的侧部开若于侧线以得到如上所述的多个产品馏分,就像n个塔叠在一起一样,故称为复合塔。
(能源化工行业)化工常压塔毕业设计摘要本设计为年产200万吨大庆原油的常压设计。
石油是现代工业的血液,我国的工业生产和经济运行都离不开石油,但是又不能直接作为产品使用,必须经过加工炼制过程,连制成多种在质量上符合使用要求的石油产品,才能投入使用。
原油常减压蒸馏作为原油的一次加工工艺,在原油加工总流程中占有重要作用,在炼厂具有举足轻重的地位,其运行的好坏直接影响到后续的加工过程。
其中重要的分离设备—常压塔的设计,是能否获得高收率、高质量油的关键。
近年来常减压蒸馏技术和管理经验不断创新,装置节能消耗显著,产品质量提高。
但与国外先进水平相比,仍存在较大的差距。
为了更好地提高原油的生产能力,本着投资少,能耗低,效益高的思想对大庆原油进行常压蒸馏设计。
设计的基本方案:设计了一个常压一段汽化蒸馏装置,此装置由一台管式加热炉、一个常压塔以及若干台换热器(完善的换热流程应达到要求:充分利用各种余热;换热器的换热强度较大;原油流动压力降较小。
)、冷凝冷却器、机泵等组成,在常压塔外侧为侧线产品设汽提塔。
流程简单,投资和操作费用较少。
原油通过这样的常压蒸馏,一般可得到350—370℃以前的几个馏分,可用作汽油、煤油(航空或灯用、)柴油等产品,也可分别作为重整化工(如轻油裂解)等装置的原料。
蒸余的塔底重油可作钢铁或其它工业的燃料。
在某些特定的情况下也可以作催化裂化或加氢裂化装置的原料。
关键词:原油;常压设计;换热;常压塔AbstractThis is mainly on the annual production of 2,000,000 tons of crude oil in Daqing atmospheric design.Oil is one important source of energy, China's industrial production and economic operation can not be separated from oil,But as the product can not be directly used, Refining the process must go through processing, and even made a variety of quality in line with the requirements of the use of petroleum products, can be put into use.Atmospheric and vacuum distillation of crude oil as a crude oil processing technology, the total flow of crude oil processed in an important role, In the refinery plays a decisive role in its operation will have a direct impact on the follow-up process.One of the important separation equipment - atmospheric tower design is the availability of high-yield, high-quality oil in the key.In recent years atmospheric and vacuum distillation technology and management experience continuous innovation, significant consumption of energy-savmpared with fing devices, improving product quality. However, cooreign advanced level, there are still large gaps.To better enhance the production capacity of crude oil, in a small investment, low energy consumption and high efficiency ofthe thinking of the Daqing oil for atmospheric distillation design.The basic design of the programme: design a section of vaporizationatmosphericdistillation unit,This device from a furnace official, a Taiwan atmospheric tower and a number of heat exchangers(Improve the heat transfer process should meet the requirements: the best use of waste heat; heat exchanger greater intensity of the heat exchanger; flow of oil pressure drop smaller.) Condensate cooler, Pump and other components, in the atmospheric tower adjacent to the lateral line products based stripper.Simple processes, investment and operational costs less.Crude oil through the atmospheric distillation, 350-370 ℃ before the general availability of several fractions,Can be used as gasoline, kerosene (aviation or lamp), diesel and other products, Also can be re-engineering as a chemical (such as naphtha cracking) of raw materials and other devices. I steamed the bottom of heavy oil for steel or other industrial fuel. In certain circumstances can also be FCC or hydrocracking unit of raw materials.Key words:oil pressure;Atmospheric design;Heat exchanger;Atmospheric tower目录前言 (1)一、物料衡算 (4)1.1 基准数据的处理 (4)1.1.1 基准数据 (4)1.1.2 数据处理 (5)1.1.3 求平衡汽化曲线各点温度 (6)1.2 各种馏出产品的性质 (7)1.2.1 各种馏出产品的基础数据 (7)1.2.2 各馏出产品的性质 (9)1.3 物料衡算 (10)二、塔的工艺参数的选取 (12)2.1 原油精馏塔计算草图求取 (12)2.1.1 确定蒸汽用量 (12)2.1.2 塔板型适合塔板数 (12)2.1.3 精馏塔计算草图: (12)2.1.4 操作压力的确定 (12)2.2 汽化段和塔底温度的确定 (13)2.2.1 汽化段温度 (13)2.2.2 进料在汽化段中的焓 (14)2.2.3.塔底温度 (14)三、塔顶及侧线温度的假设与回流热分配 (15)3.1 全塔回流热 (15)3.1.1 假设塔顶及各侧线温度 (15)3.1.2 全塔回流热 (15)3.1.3 流热分配 (15)3.2 侧线及塔顶温度的校 (16)3.2.1 柴油抽出板(第22层)温度 (16)3.2.2 煤油抽出板(第10层)温度 (17)3.2.3 塔顶温度 (18)四、塔设备的设计计算 (20)4.1 全塔气液负荷的分布计算 (20)4.1.1 塔顶(第一块板上方)的气液负荷 (20)4.1.2 第一层板下方的气液负荷 (20)4.1.3 常一线抽出口下方(即第10层下方)的气液负荷 (21)4.1.4 中段循环回流入口板上方的气液相负荷 (22)4.1.5 中段循环回流抽出板下方的气液相负荷 (23)4.1.6 煤油抽出板上方的气液相负荷 (24)4.1.7 柴油抽出板上方的气液相负荷 (24)4.1.8 汽化段气液相负荷 (25)4.2 各段气液相负荷列表 (26)五、常压塔和塔板主要工艺尺寸计算 (27)5.1 塔径的初算 (27)5.1.2 适宜的气体操作速度Wa (28)5.1.3 气相空间截面积Fa (28)5.1.4 计算降液管内液体流速Vd (28)5.1.5 计算降液管面积Fd (28)5.1.6 计算塔横截面和塔径 (29)5.1.7 采用塔径及相应的设计空塔气速 (29)5.1.8 液相的表面张力:(260.6℃时) (29)5.2 浮阀数及开孔率的计算 (29)5.2.1 浮阀的选取 (30)5.2.2 浮阀数及开孔率的计算 (30)5.3 溢流堰及降液管的决定 (30)5.3.1 决定液体在塔板上的流动型式 (30)5.3.2 决定溢流堰 (30)5.3.3 溢流堰高度及塔板上清夜层高度的决定 (31)5.3.4 液体在降液管的停留时间及流速 (31)5.3.5 降液管底缘距塔板高度 (31)5.4 水力学计算 (31)5.4.1 塔板压力降 (31)5.4.2 雾沫夹带 (31)5.4.3 泄漏 (32)5.4.4 淹塔情况 (32)5.4.5 降液管的负荷 (32)5.5 塔板的负荷性能图 (32)5.5.1 雾沫夹带线 (32)5.5.4 漏液线 (33)5.5.5 液相负荷下限线 (34)六、塔的内部工艺结构 (35)6.1 板式塔的部工艺结构 (35)6.1.1 塔顶 (35)6.1.2 进口 (35)6.1.3 抽出盘及出口 (36)6.1.4 人孔 (36)6.1.5 塔底 (36)6.1.6 塔裙 (37)6.1.7 封头 (37)6.2 塔高H (37)七、换热过程 (38)7.1 换热方案的确定 (38)7.1.1 换热的意义 (38)7.1.2 换热方案 (38)7.2 换热设备的选取和计算 (38)7.2.1 换热设备的计算 (38)7.2.2 中段回流作为热源 (40)7.2.3 重油作热源 (40)7.2.4 冷后重油作为作热源 (40)7.2.5 柴油作为热源 (41)7.2.6 塔顶冷凝器的计算 (41)7.2.7 中段回流冷却 (42)7.2.8各段换热所用的换热器型号列表如下 (42)7.3 热源利用率计算 (43)7.3.1 热源利用率计算: (43)7.3.2 原油提供热量计算 (43)7.3.3 热量利用率计算 (43)八、讨论 (44)致谢 (47)附录 (47)参考文献大庆原油常压设计前言中国炼油工业迅速发展,据美国《油气杂志》世界炼油特别报告统计,2005年中国原油年加工能力达3.12亿吨,超过俄罗斯和日本,成为仅次于美国的世界炼油大国。
填料精馏塔设计毕业论文目录前言 (1)第一章文献综述 (2)1.1甲醇 (2)1.1.1 甲醇的来源 (2)1.1.2 苯的性质[3] (3)1.2 水 (4)1.2.1 水的来源 (4)1.2.2 甲苯的性质 (5)1.3 精馏的介绍及精馏原理 (6)1.4 精馏塔的介绍 (7)1.5精馏技术的进展 (8)第二章设计部分 (9)2.1 设计任务 (9)2.2 设计方案的确定 (10)2.2.1 装置流程的确定 (10)2.2.2 操作压力的选择 (11)2.2.3 进料热况的选择 (11)2.2.4 加热方式的选择 (12)2.2.5 回流比的选择 (12)2.3精馏塔的工艺计算 (13)2.3.1精馏塔的物料衡算 (13)2.3.2理论板层数NT的求取 (14)2.3.3实际板层数的求取 (15)2.3.4精馏塔的工艺条件及有关物性数据的计算 (15)2.3.5精馏塔的塔体工艺尺寸计算 (19)2.3.6塔板主要工艺尺寸的计算 (20)2.3.7筛板的流体力学验算 (22)2.3.8 塔板负荷性能图 (24)第三章结论 (29)致谢 (31)参考文献 (32)附录 (33)前言化工操作单元中甲醇-水混合液的筛板分离塔是最常见的分离操作之一。
根据资料显示:甲醇沸点80.1度,而水是100度,两样物质化学性质相近,故只能采用沸点不同进行分离,可将混合物置于水浴中,进行蒸馏,这种方法只能得到的纯度不可能达到百分之九十九,故可参考酒精和水分离方法,当用普通的蒸馏方法提纯达到97.6%(体积分数)之前,挥发系数K大于1,但到了97.6%这个点时,挥发系数K就会等于1,这时酒精再也不能从混合液中挥发出来,于是就再下不能往下得到纯度更高的酒精溶液,同样,甲苯和苯混合物中,当用常规方法提取苯达到一定浓度时,即苯的纯度达到了像97.6%这样的这个点时,就再也不能往下提纯了,只有用负压精蒸的方法才能进行分离,才能得到更高浓度。
乙醇精馏塔设计毕业论文目录摘要................................................. 错误!未定义书签。
Abstract .............................................. 错误!未定义书签。
第一章绪论 (1)1.1 设计的目的和意义 (1)1.2 产品的性质及用途 (1)1.2.1 物理性质 (1)1.2.2 化学性质 (2)1.2.3 乙醇的用途 (2)第二章工艺流程的选择和确定 (3)2.1 粗乙醇的精馏 (3)2.1.1 精馏原理 (3)2.1.2 精馏工艺和精馏塔的选择 (3)2.2 乙醇精馏流程 (5)第三章物料和能量衡算 (7)3.1 物料衡算 (7)3.1.1 粗乙醇精馏的物料平衡计算 (7)3.1.2 主塔的物料平衡计算 (8)3.2 主精馏塔能量衡算 (9)3.2.1 带入热量计算 (9)3.2.2 带出热量计算 (10)3.2.3 冷却水用量计算 (10)第四章精馏塔的设计 (11)4.1 主精馏塔的设计 (11)4.1.1 精馏塔全塔物料衡算及塔板数的确定 (11)4.1.2 求最小回流比及操作回流比 (12)4.1.3 气液相负荷 (12)4.2 求操作线方程 (12)4.3 图解法求理论板 (13)4.3.1 塔板、气液平衡相图 (13)4.3.2 板效率及实际塔板数 (14)4.4 操作条件 (14)4.4.1 操作压力 (14)4.4.2 混合液气相密度 (15)4.4.3 混合液液相密度 (16)4.4.4 表面力 (16)4.5 气液相流量换算 (19)第五章塔径及塔的校核 (21)5.1 塔径的计算 (21)5.2 溢流装置 (23)5.2.1 堰长 (23)5.2.2 出口堰高 (23)5.2.3 弓形降液管的宽度和横截面积 (23)5.2.4 降液管底隙高度 (24)5.3 塔板布置 (24)5.4 浮阀数目与排列 (24)5.5 气相通过浮阀塔板的压降 (26)5.6 淹塔 (27)5.7 塔板负荷性能图 (28)5.7.1 雾沫夹带线 (28)5.7.2 液泛线 (29)5.7.3 液相负荷上限线 (30)5.7.4 漏液线 (30)5.7.5 液相负荷下限线 (31)第六章塔附件设计 (34)6.1 接管设计 (34)6.2 壁厚 (35)6.3 封头 (35)6.4 裙座 (35)6.5 塔高的计算 (35)6.5.1 塔的顶部空间高度 (35)6.5.2 塔的底部空间高度 (36)6.5.3 塔立体高度 (36)第七章总结 (37)致谢 (38)参考文献.............................................. 错误!未定义书签。
化工常压塔毕业设计化工常压塔毕业设计毕业设计是每个化工专业学生必须完成的重要任务,它是将在大学期间所学的理论知识与实践经验相结合的机会。
在化工领域中,常压塔是一种常见的设备,广泛应用于石油、化工、制药等行业。
因此,我选择了化工常压塔作为我的毕业设计主题。
首先,我将介绍常压塔的基本原理和结构。
常压塔是一种用于物质分离和纯化的装置,其工作原理是利用不同物质的沸点差异,通过加热和冷却来实现分离。
常压塔通常由塔体、填料、进出料口、塔板等组成。
填料的作用是增加接触面积,促进物质之间的传质传热,从而提高分离效果。
塔板则用于分隔塔体,使物质在塔内进行适当的停留时间,以实现分离。
接下来,我将探讨常压塔设计中需要考虑的因素。
首先是物料性质,包括物料的物理性质和化学性质。
物料的物理性质如沸点、密度、粘度等对常压塔的设计和操作有重要影响。
化学性质如反应性、腐蚀性等则需要考虑材料的选择和防腐措施。
其次是操作条件,如温度、压力、流量等。
这些条件会影响到常压塔的热力学和动力学性能,需要在设计中合理考虑。
此外,还需要考虑设备的安全性和可靠性,包括防爆、防漏等方面的设计。
在设计过程中,我将运用化工工程的基本原理和计算方法。
首先是物料平衡的计算,通过对进出料的质量和能量平衡进行计算,确定物料的流量和温度。
其次是传质传热的计算,通过对填料和塔板的传质传热特性进行分析,确定填料的选择和塔板的布置。
最后是设备的尺寸和参数的确定,包括塔体的高度、直径、塔板的数量和间距等。
这些计算需要结合实际情况和经验进行,以确保设计的合理性和可行性。
除了设计,我还将进行常压塔的模拟和优化。
通过利用化工软件进行模拟,可以对设计方案进行验证和改进。
模拟可以帮助我了解塔内流体的分布和传质传热情况,优化填料和塔板的布置,提高分离效率。
同时,我还将考虑能源消耗和环境影响等方面,寻找节能减排的途径,提高工艺的可持续性。
最后,我将进行实验验证和结果分析。
通过在实验室中搭建小型常压塔进行实验,可以验证设计方案的可行性和有效性。
7万吨/年环氧乙烷精馏塔设计摘要根据北京化工大学毕业设计要求,并结合生产实际,选择浮阀塔精馏分离环氧乙烷水溶液为设计课题。
选用F1型单溢流浮阀塔为分离设备,以质量守恒定律、物料衡算和热力学定律为依据,对精馏塔及其辅助设备进行了工艺和设备的设计参数计算,得出精馏塔采用F1型单溢流浮阀塔,溢流管为弓形降液管,设计确定全塔高度21m,塔板总数为31块,塔顶温度可设为45℃,塔釜温度可设为146℃,精馏段塔径为4m,,, 阀孔数为1403个,;,,, 阀孔数为809个,。
并通过塔板校核验算,认为设计的精馏塔符合要求;气液负荷性能图也说明该装置操作弹性合理。
关键词:环氧乙烷;精馏;回流比;工艺设计;校核目录第1章前言 (4)环氧乙烷概述 (4)环氧乙烷生产方法 (5)氯醇法 (5)直接氧化法 (5)设计任务及目标 (6)第2章设计内容框架 (7)第3章设计简介 (8)精馏原理 (8)装置流程的确定 (8)操作压力的选择 (8)浮阀标准 (9)第4章精馏塔设计参数确定 (10)物料衡算 (10)精馏塔的物料衡算 (10)精馏塔塔顶、塔釜、进料板温度的计算 (11)塔顶温度的求取 (12)塔釜温度的求取 (12)进料板温度的确定 (13)回流比、操作线方程、实际板数的确定 (13)相对挥发度 (14)最小回流比的求取 (14)适宜回流比 (14)操作线方程 (14)理论板的计算和实际塔板数的确定 (14)实际塔板数的确定 (16)塔径的计算 (16)精馏段 (16)提馏段 (17)塔高的计算 (18)塔板结构尺寸及溢流装置的确定 (19)堰长 (19)溢流堰高 (19)弓形降液管的宽度和面积:Wd 和Af (20)降液管底隙高度:ho (21)塔板的布置 (21)塔板分布 (21)浮阀的数目与排列 (22)鼓泡区面积 (22)阀孔分布 ......................................................... 22 孔速及动能因数:0u 和0F ............................ 错误!未定义书签。
化工常压塔毕业设计引言化工常压塔是化工工程中常用的设备之一,广泛应用于化学工艺过程中的物质分离、纯化和反应等操作。
在化工领域,常压塔的设计与优化是一个重要的研究方向,对于提高生产效率、降低能耗和保护环境具有重要意义。
本文将介绍化工常压塔的毕业设计内容,包括设计目的、设计流程、设计参数和实施方案。
设计目的本次毕业设计的目的是设计一个高效、节能的化工常压塔,以满足某化工厂某项特定工艺操作的需求。
该常压塔需要具备较高的分离效果、较低的压降、合理的结构和操作参数。
通过优化设计,实现工艺操作的稳定性和可持续发展。
设计流程1.工艺分析:首先,进行工艺分析,确定化工过程中的物质分离、纯化或反应等操作。
考虑原料特性、产品要求和工艺条件等因素,确定设计的基本要求。
2.塔床设计:根据物质分离的需求和操作条件,选择合适的塔床类型。
根据传质与传质的要求,确定塔床板间距、开孔率和塔板类型。
通过计算和模拟,确定塔床的高度和板间流动参数。
3.填料选择:根据物料特性、传质效果和操作要求,选择适合的填料材料。
考虑填料的表面积、孔隙率和形状等因素,确定填料层的高度和数量。
4.塔壳设计:根据操作压力、温度和塔内操作条件等因素,选择合适的材料和厚度,设计符合安全标准的塔壳结构。
5.流体力学分析:通过计算和模拟,确定塔床和填料层的流体力学性能,包括塔床液体和气体的流量、压降和分布等参数。
6.操作参数确定:根据设计结果和操作要求,确定塔床液体和气体的操作参数,如进料流量、温度、压力和分离效果等。
7.实施方案:根据前面的设计结果和参数,制定实施方案,包括材料采购、设备安装和调试等工作。
设计参数在本次毕业设计中,需要确定以下设计参数:1.塔高:根据分离要求和塔床板间距,确定塔的总高度。
2.塔床类型:根据传质和操作要求,选择塔床的类型。
3.塔床板间距:根据物料特性和传质效果,确定塔床板的间距。
4.塔床液体和气体流量:根据操作要求和塔床板的流体力学性能,确定塔床液体和气体的流量。
常减压装置中常压塔设计摘要塔设备是化工,石油化工和炼油生产中最重要的设备之一。
塔设备是大部分机械专业理论学习的重点设备,也是化工厂中常见的设备。
随着石油,化工生产的迅速发展,塔设备在石油化工生产中投入所占的比例越来越大,占到大概百分之五十的比例。
塔设备的性能,整个装置的产品产量,质量,生产能力和消耗定额,以及三废处理和环境保护方面都有重要意义。
因此选择沥青装置常压塔设计。
本文是以专业知识为基础,对六十万吨每年氧化沥青装置常压塔进行的设计计算,该塔可以在常压,一百五十摄氏度温度下工作。
该塔设备为浮阀塔,优点是生产能力高,操作弹性大,气液流动阻力较小,塔板效率较高,但浮阀装卸清洗较困难,造价高,总体来讲综合性能较好,可以在工业上得到普遍应用。
塔设备的设计具有很强的综合性,尤其在塔的高度较高时,要注意考虑高振型以及横风向风振对塔设备的影响。
当前板式塔应该以处理能力为第一目标,传质效率为第二目标,开发的重点集中在降液管结构改进,塔板空间合理利用,气液分散结构优化以及降低成本等方面的改进。
关键词: 常压塔;沥青装置;浮阀Design of atmospheric towerAbstractTower equipment in chemical, petrochemical and oil refining production is one of the most important equipment .Tower equipment is key equipment which learned by most mechanical engineering, but also common equipment in chemical factory. With the rapid development of petroleum, chemical production, tower equipment in petrochemical production input accounted for an increasingly large proportion about fifty percent. Performance, the entire device product yield, quality, production and consumption, and waste treatment and environmental protection of tower equipment has important significance. So asphalt unit atmospheric distillation tower design is the choice.This paper is based on the professional knowledge as the basis, to design and calculate of six hundred thousand tons per year of asphalt oxidation device atmospheric tower, which at atmospheric pressure, one hundred and fifty degrees Celsius temperature. The tower equipment for the float valve tower, has the advantages of high production capacity, high operating flexibility, which gas-liquid flow resistance is small and the plate efficiency is higher, but handling and cleaning float valve is more difficult and costs more, generally speaking, the float valve tower, which comprehensive performance is good, can be widely applied in industry. Tower equipment design has the very strong comprehensive, especially in the height of the tower is high, and paying attention to high vibration mode and crosswind vibration that has a influence on tower equipment is a must. The current tower should take to processing capacity as the first goal, the mass transfer efficiency as second goal, focus in improvement of structure of down comer plate, reasonable use in plate space, optimization of gas-liquid dispersion structure, cost reduction and other improvements.Keywords: atmospheric tower;device for asphalt;float valv目录1.说明部分 (1)1.1 塔设备在化工生产中的作用和地位 (1)1.2 设计概述 (1)1.3 对塔设备的要求 (2)1.4 塔设备的分类 (3)1.5 塔设备的构造 (3)1.6 板式塔的分类 (5)1.7 塔选型 (6)1.8 选材 (8)2.设计计算部分 (8)2.1 设计条件 (8)2.2 设备材料的选取,设计参数的确定 (8)2.3 筒体和封头的强度计算 (9)2.3.1 筒体厚度 (9)2.3.2 封头厚度 (9)2.3.3 水压试验校核 (9)2.4 塔器质量计算 (10)2.5 塔的自振周期计算 (11)2.6 地震载荷 (12)2.7 风载荷和风弯矩的计算 (15)2.7.1 顺风向风载荷计算 (15)2.7.2 横风向风载荷计算 (17)2.7.2.1 横风向风振判别 (17)2.7.2.2 横风向塔顶振幅 (18)2.7.2.3 塔体横风向弯矩 (18)2.7.2.4 塔体顺风向弯矩 (20)2.7.3 塔体组合风弯矩 (22)2.8 最大弯矩 (23)2.9 圆筒应力校核 (24)2.10 裙座壳轴向应力的校核 (26)2.11 基础环设计 (28)2.12 地脚螺栓 (29)2.13 筋板 (29)2.14 盖板 (30)2.15 裙座与塔壳对接焊缝 (31)2.16 开孔和开孔补强设计 (31)3.结论 (36)参考文献 (37)谢辞 (38)1.说明部分1.1 塔设备在化工生产中的作用和地位塔设备是化学工业、石油工业、石油化工等生产中最重要的设备之一。
精馏是分离液体混合物最常用的一种操作,在化工、炼油的工业中广泛应用。
塔设备是化工、石油化工、生物化工、制药等生产过程中广泛采用的气液传质设备,主要用于蒸馏和吸收传质单元操作过程。
根据塔内气液接触构件的结构形式,可分为板式塔和填料塔。
传统的设计中,蒸馏过程多选用板式塔,而吸收过程多选用填料塔。
近年来,随着塔设备设计水平的提高及新型塔构件的出现,这种传统已逐渐打破。
对于一个具体的分离过程,设计中选用何种塔型,应根据生产能力、分离效率、塔压降、操作弹性、结构制造及造价等要求,并结合维修等因素综合考虑。
生产能力而言,单位塔截面积上,填料塔的生产能力一般均高于板式塔;对于分离效率,一般情况下,填料塔具有较高的分离效率,在减压、常压和低压(压力小于0.3MPa)操作下,填料塔的分离效率明显优于板式塔,在高压操作下,板式塔的分离效率略优于填料塔;压力将方面,通常填料塔的压降高于板式塔的五倍左右;操作弹性方面,一般来说,填料塔可根据实际情况需要确定操作弹性,而板式塔一般操作弹性较小;对于结构、制造机造价方面,一般来说,填料塔的结构较板式塔的简单,故制造、维修也较为方便,但填料塔的造价通常高于板式塔。
由以上综合考虑,本设计采用板式塔作为水和乙醇的精馏塔。
板式塔内设置一定数量的塔板,气体以鼓泡或喷射形式穿过板上的液层,进行传质与传热。
在正常操作下,气相为分散相,气相组成呈阶梯变化,属逐级接触逆流操作过程。
第1章设计任务书 (5)1.1、任务 (5)1.1.1、设计题目 (5)1.1.2、设计条件 (5)1.1.3、设计任务 (5)第2章设计方案确定及工艺流程说明 (6)2.1、操作条件的确定 (6)2.1.1、操作压力的选择 (6)2.1.2、进料状态的选择 (6)2.1.3、加热方式的选择 (6)2.1.4、热能利用 (7)2.1.5、回流比的选择 (7)2.2、确定设计方案的原则 (7)2.3、工艺流程的说明 (8)第3章筛板式精馏塔的工艺设计 (8)3.1、精馏塔的工艺计算 (8)3.1.1、乙醇和水的汽液平衡组成 (8)3.1.2、物料衡算与操作线方程 (11)3.2、精馏段物料衡算 (15)3.2.1、物料衡算 (15)3.2.2、气液负荷的计算 (17)3.3、塔和塔板主要工艺尺寸计算 (17)3.3.1、塔板横截面的布置计算 (17)3.3.2、筛板能校塔流体力学校核 (20)3.4、塔板负荷性能图 (22)3.4.1 、过量液沫夹带线 (23)2.4.2、溢流液泛线 (23)2.4.3、液相上限线 (24)2.4.4、漏液线(气相负荷下限线) (24)2.4.5、液相下限线 (25)2.4.6 、操作线 (25)3.5、提馏段物性衡算 (26)3.5.1、物料衡算 (26)2.5.2、气液负荷的计算 (28)3.6 、塔和塔板主要工艺尺寸计算 (29)3.6.1 、塔板横截面的布置计算 (29)3.6.2 、筛板能校塔流体力学校核 (31)3.7 、塔板负荷性能图 (34)3.7.1 、过量液沫夹带线 (34)3.7.2、溢流液泛线 (35)3.7.3、液相上限线 (35)3.7.4、漏液线(气相负荷下限线) (36)3.7.5、液相下限线 (36)3.7.6、操作线 (37)3.8、塔高的确定及塔的其它工艺条件 (37)3.8.1、塔高的设计计算 (38)第4张精馏塔的附属设备及选型 (39)4.1、辅助设备的选型 (39)4.1.1、直接蒸汽加热 (39)4.1.2、冷凝器 (40)4.1.3、馏出液冷却器 (41)4.1.4、釜液冷却器 (42)4.2、塔的主要接管尺寸的选取 (43)4.2.1、塔顶蒸气管路 (43)4.2.2、塔顶冷凝水管路 (43)4.2.3、塔顶液相回流管路 (44)4.2.4、加料管路 (44)4.2.5、塔釜残液流出管 (45)4.2.6、冷却水出口管路 (45)4.2.7、塔顶馏出液管路 (46)4.3、输送泵的选取 (47)4.3.1、釜液泵的选型 (47)4.3.2、馏出液冷却水泵的选型 (48)第5章设计结果概要及汇总表 (48)5.1全塔工艺设计结果总汇 (48)5.2、符号一览表 (52)参考文献 (54)。
脱硫装置稳定塔设计摘要本次设计主要针对120万吨/年催化汽油加氢脱硫装置稳定塔。
加氢脱硫过程作为原油后续加工的一项重要的加工过程,脱硫装置稳定塔设备显得尤为重要。
因此严格要求该塔体在各个载荷工况下的强度必须合格。
本设计前部分对塔的各个结构件进行分析介绍,并且确定了该结构件的结构以及受力状态,确保该结构件适用于该塔体。
该塔采用的是浮阀塔塔盘,一共25块塔盘,塔径为1900/3000 mm,塔高为33047mm。
主要设计参数为:设计压力1.3MPa,设计温度275 ℃等。
承受的载荷有内压、地震载荷、风载荷,由于存在变径段,因此该塔需要对不同直径塔段及该塔段的封头的厚度进行计算和校核,同时设计计算该塔体的裙座。
进而对塔体的地震载荷,风载荷等进行稳定性校核。
在满足强度要求的同时,还需校核塔体的裙座,地脚螺栓,塔体与裙座的焊接处的强度,确保整个塔体的强度合格。
最后绘制了装配图和两张零部件图。
关键词:稳定塔,原油加工,厚度设计,强度校核The Design of Desulfurization Stability TowerAbstractThis design mainly aims at of the stability tower 1.2 million tons/year of catalytic gasoline hydrodesulphurization unit.Hydrogenation desulfurization process is an important process for subsequent processing of crude oil. The stability tower is particularly important. So the strength of the tower body must be qualified under various load conditions.We have introduced each structures of the tower and found the structure and stress state of the structure. The tower is flower valve tray. There are 25 pieces of tower tray and the diameter is 1900/3000mm, the height is 33047mm. For main design parameters, the design pressure is 1.3MPa. The design temperature is 275 ℃. Carry loads of internal pressure, seismic load and wind load, as the different diameter, so we should design the thickness of the different diameter of the tower and the shell cover, and then we should check it. At the same time, design and calculation of the tower body skirtThen we check the seismic load and the wind load of tower body. While the strength requirement is qualified, we still need to check the tower body skirt, anchor bolts, tower body and the skirt of the strength of the welds ensure that the whole tower body strength is qualified.Finally draw the two pieces of parts drawing and a piece of assembly drawing. Keywords:Stability Tower Crude Oil Processing Design of the Thickness Strength Check目录1 前言 (1)2稳定塔的工艺流程及结构简图 (4)2.1脱硫装置稳定塔的工艺流程及其简图 (4)2.2脱硫装置稳定塔的结构简图 (5)3塔内部结构件的说明介绍 (6)3.1塔体内部的材料选取,介质的物理性质及设计参数 (6)3.2封头 (6)3.3筒体 (6)3.4裙座 (7)3.5吊柱 (8)3.6人孔和手孔 (8)3.7开孔接管 (9)3.8稳定塔的内部结构件 (11)3.9塔内部的其他结构件 (14)3.10塔设备的振动及预防 (15)4塔设备的设计计算及强度校核 (17)4.1设计数据及设计主要依据 (17)4.2筒体的设计计算及强度校核 (17)4.3封头的设计计算及强度校核 (19)4.4塔体裙座的设计计算 (21)4.5地脚螺栓座 (25)4.6塔顶吊柱 (25)4.7塔式容器的质量计算 (26)4.8塔的基本自振周期的计算 (30)4.9地震力及地震弯矩的计算 (31)4.10风载荷及风弯矩的计算 (33)4.11偏心弯矩 (37)4.12最大弯矩 (37)4.13塔壳轴向应力的校核 (38)4.14裙座壳稳定性的校核 (40)4.15液压试验时应力校核 (42)4.16地脚螺栓座的设计及校核 (43)4.17裙座与塔壳连接处焊缝 (47)4.18开孔补强计算 (47)5结论 (55)参考文献 (56)谢辞 (57)1 前言在化工、炼油、医药、食品以及环境保护等工作部门,塔设备是一种重要的单元操作设备。
填料塔的设计范文
填料塔是一种常用的化工设备,主要用于气体的物质转移和反应过程中的质量传递。
设计一个填料塔需要考虑到塔的结构设计、填料的选择和布置、气液分布的优化以及安全性等因素。
首先,填料塔的结构设计是一个关键的环节。
塔的高度和直径直接影响着塔的流体力学性能和传质传热效果。
对于普通的填料塔来说,一般采用塔径比为3-6,高径比为10-20的设计参数。
此外,填料塔还应设计合理的进出料口,以便更好地控制进出料的速度和流量。
其次,填料的选择和布置也是填料塔设计的重要一环。
不同的物质需要选择不同的填料来达到预期的传质和传热效果。
常用的填料有旋流板、环状填料、网格填料、管状填料等。
填料的布置应考虑到填料与气相和液相之间的接触面积和流动的通路。
通常,填料的布置越密集,接触面积越大,传质传热效果越好。
气液分布的优化也是设计填料塔的一个关键问题。
不同物质的分布方式也会影响填料塔的传质效果。
常用的气液分布方式有平板液面、喷洒液面、液滴液面等。
优化气液分布的方式可以使得液相和气相更加均匀地流过填料床,提高传质传热效果。
填料塔的设计还需要考虑到其安全性能。
安全是设计的首要考虑因素之一、必须保证填料塔的结构稳定,能够承受内部和外部的力。
此外,还需要设置相应的安全装置,如压力传感器、温度传感器、液位控制器等,以及紧急停机装置,以保障塔的安全运行。
总之,填料塔的设计需要综合考虑结构设计、填料选择和布置、气液分布的优化以及安全性等因素。
通过合理的设计和优化,填料塔可以实现更好的传质和传热效果,提高化工生产的效率和质量。
精馏塔的设计(毕业设计)精馏塔尺⼨设计计算初馏塔的主要任务是分离⼄酸和⽔、醋酸⼄烯,釜液回收的⼄酸作为⽓体分离塔吸收液及物料,塔顶醋酸⼄烯和⽔经冷却后进⾏相分离。
塔顶温度为102℃,塔釜温度为117℃,操作压⼒4kPa。
由于浮阀塔塔板需按⼀定的中⼼距开阀孔,阀孔上覆以可以升降的阀⽚,其结构⽐泡罩塔简单,⽽且⽣产能⼒⼤,效率⾼,弹性⼤。
所以该初馏塔设计为浮阀塔,浮阀选⽤F1型重阀。
在⼯艺过程中,对初馏塔的处理量要求较⼤,塔内液体流量⼤,所以塔板的液流形式选择双流型,以便减少液⾯落差,改善⽓液分布状况。
4.2.1 操作理论板数和操作回流⽐初馏塔精馏过程计算采⽤简捷计算法。
(1)最少理论板数N m系统最少理论板数,即所涉及蒸馏系统(包括塔顶全凝器和塔釜再沸器)在全回流下所需要的全部理论板数,⼀般按Fenske ⽅程[20]求取。
式中x D,l,x D,h——轻、重关键组分在塔顶馏出物(液相或⽓相)中的摩尔分数;x W,l,x W,h——轻、重关键组分在塔釜液相中的摩尔分数;αav——轻、重关键组分在塔内的平均相对挥发度;N m——系统最少平衡级(理论板)数。
塔顶和塔釜的相对挥发度分别为αD=1.78,αW=1.84,则精馏段的平均相对挥发度:由式(4-9)得最少理论板数:初馏塔塔顶有全凝器与塔釜有再沸器,塔的最少理论板数N m应较⼩,则最少理论板数:。
(2)最⼩回流⽐最⼩回流⽐,即在给定条件下以⽆穷多的塔板满⾜分离要求时,所需回流⽐R m,可⽤Underwood法计算。
此法需先求出⼀个Underwood参数θ。
求出θ代⼊式(4-11)即得最⼩回流⽐。
式中——进料(包括⽓、液两相)中i组分的摩尔分数;c——组分个数;αi——i组分的相对挥发度;θ——Underwood参数;——塔顶馏出物中i组分的摩尔分数。
进料状态为泡点液体进料,即q=1。
取塔顶与塔釜温度的加权平均值为进料板温度(即计算温度),则在进料板温度109.04℃下,取组分B(H2O)为基准组分,则各组分的相对挥发度分别为αAB=2.1,αBB=1,αCB=0.93,所以利⽤试差法解得θ=0.9658,并代⼊式(4-11)得(3)操作回流⽐R和操作理论板数N0操作回流⽐与操作理论板数的选⽤取决于操作费⽤与基建投资的权衡。
精馏塔的毕业设计精馏塔的毕业设计精馏塔是一种常见的化工设备,广泛应用于石油、化工、制药等行业。
它通过不同物质的沸点差异,利用蒸馏原理将混合物分离成纯净的组分。
作为一个化工专业的毕业生,我选择了精馏塔作为我的毕业设计课题,旨在深入研究精馏塔的工作原理、优化设计和性能提升。
首先,我将对精馏塔的工作原理进行详细的研究。
精馏塔是基于不同物质的沸点差异来实现分离的。
在塔内,通过加热混合物,使其部分汽化,然后在塔内冷凝成液体。
通过塔内填料的作用,液体和气体进行充分的接触和传质,从而实现分离。
我将进一步研究不同类型的填料对分离效果的影响,以及操作参数的优化,如温度、压力和流速等。
其次,我计划设计一个高效的精馏塔。
在设计过程中,我将考虑多个因素,包括填料的选择、塔的尺寸和结构、加热和冷凝系统等。
我将使用计算机模拟软件进行仿真分析,以评估不同设计参数对分离效果的影响。
通过优化设计,我希望能够提高精馏塔的分离效率和能耗效益。
除了设计方面,我还将研究精馏塔的性能提升方法。
在实际应用中,精馏塔可能会遇到一些问题,如堵塞、泄漏和能量损失等。
我将探索不同的解决方案,如改进填料结构、优化流体动力学和热力学性能,以及引入新的材料和技术等。
通过这些改进措施,我希望能够提高精馏塔的稳定性、可靠性和经济性。
此外,我还将考虑精馏塔的应用领域扩展。
精馏塔在石油和化工行业中得到广泛应用,但在其他领域中也存在潜在的应用机会。
例如,在环保行业中,精馏塔可以用于废水处理和废气净化,实现有害物质的分离和回收利用。
在制药行业,精馏塔可以用于纯化药物和中间体,提高产品质量和纯度。
我将研究这些领域的需求和挑战,探索精馏塔在不同应用领域中的潜力。
总之,精馏塔的毕业设计是一个既具有挑战性又有实际应用价值的课题。
通过深入研究精馏塔的工作原理、优化设计和性能提升,我希望能够为精馏塔的发展和应用做出贡献。
我相信通过这个毕业设计,我将获得宝贵的专业知识和实践经验,为将来的工作打下坚实的基础。
大庆原油(3.0Mt/a)常减压蒸馏的工艺设计杨晓勇(石油化工学院化学工程与工艺9803班)摘要:本文对近年来蒸馏工艺研究现状及发展趋势进行了综述,介绍了蒸馏技术的基本原理及其技术特点、在工业中的应用范围、在国内外的发展状况和今后的研究方向,扼要分析了能源利用与环境保护问题。
从目前的能量系统综合与优化技术、余热回收技术及清洁能源的开发和利用等方面,简要叙述了节能与环保的最新措施及手段。
技术改造达到了扩大生产、节约能源、提高产品质量与回收率、稳定生产的目的。
本设计以原油的物性估算数据和塔板温度校正为基础。
以大庆原油为原料进行常减压蒸馏装置设计,其操作弹性好,生产灵活,在工业生产中具有较大的可行性。
关键词:蒸馏常减压蒸馏装置气液分布蒸馏是分离液体混合物的典型操作,这种操作是将液体混合物部分汽化,再利用各组分挥发度不同的特性以实现分离目的。
蒸馏在化学工业中应用十分广泛,其历史也最为悠久,它是分离进程中最重要的单元之一。
几乎所有炼油厂中原油的第一个加工装置即是蒸馏装置。
在炼油厂的各种二次加工装置中,蒸馏是不可缺少的组成部分。
目前,国内外大都采用初馏塔、常压塔、减压塔、常压炉、减压炉组成的三塔两炉工艺流程。
1 说明书1.1 原油加工方案的确定大庆原油属于高凝点、高含蜡量、低含硫量的原油,胶质含量较胜利、克拉玛依原油少得多,特性因数较高。
由大庆原油的综合评价结果确定燃料-润滑油型的加工方案。
1.2 原油蒸馏装置采用典型的三段汽化常减压蒸馏流程,即包括初馏塔、常压塔、减压塔。
1.3 常压塔设计常压塔设计主要是塔内部汽液负荷的计算。
汽液负荷可以通过热平衡进行逐板计算,各参数的确定采用了诸多经验数据,说明如下:1.3.1压力产品罐压力为1.15atm,冷凝冷却系统压力降取0.27 atm,则塔顶压力为1.42atm。
1.3.2温度塔顶温度是塔顶产品在其本身油汽分压下的露点温度。
侧线油品抽出温度是该层油气分压下未经汽提的油品泡点温度,汽化段温度就是进料的绝热闪蒸温度,塔底温度一般采用经验数值,比汽化段温度低5-10℃。
诚信声明本人声明:。
申请学位论文与资料若有不实之处,本人承担一切相关责任。
本人签名:日期:年月日毕业设计(论文)任务书设计题目:300万吨/年大庆原油常压塔设计函授站:专业:班级:学生姓名:指导教师:1.设计的主要任务及内容(1)根据原料油性质及产品方案确定产品收率,作出物料平衡;(2)决定气提方式,并确定气提蒸汽用量;(3)选择塔板型式,并确定各塔段的塔板数;(4)画出精馏塔的草图;(5)确定塔内各部位的压力及加热炉出口压力;(6)作全塔热平衡,算出全塔回流热,决定回流方式及中段回流数量和位置,合理分配回流热;(7)核算各侧线及塔顶温度;(8)作出全塔气、液相负荷分布图,并将上述工艺计算结果填在草图上;(9)塔板水利学核算;(10)加热炉的工艺计算(11)绘制塔的设备图和常减压蒸馏工艺流程图。
2.主要参考文献[1]葛维寰等.化工过程设计与经济.上海:上海科学技术出版社,1989[2]Mccabe W L,Smith J C,Unit Operations of ChemicalEngineering, 6thed.New York: McGraw Hill Inc, 2003[3]徐培泽.常减压蒸馏装置能耗现状与改进措施.金陵科技,2003,10(2):9~15 [4]张尤贵等.强化蒸馏技术应用.常减压蒸馏,2000,24,(5):6~8[5]Distillation breakthrough reduces tower height.Hydrocarbon Processing, 2002, 81(10):29[6]张尤贵等.强化蒸馏技术应用.常减压蒸馏,2000,24,(5):6~8[7]朱有庭,曲文海,于浦文.化工设备设计手册.下卷.北京:化学工业出版社,2005 [8]陈声宗.化工设计.北京:化学工业出版社,2006[9]侯芙生等.炼油工程师手册.北京:石油化工出版社,1995[10]J.H.Gary, G.E.Handwerk.Petroleum Refining-Technology and Economics,3rded.Marcel Dekker Inc,1994[11]倪进方.化工设计.上海:华东理工大学出版社,1994[12]路秀林,王者相等.塔设备.北京:化学工业出版社,2004[13]谭天恩,窦梅,周明华等.化工原理.下册.北京:化学工业出版社,2006 [14]陈新志,工热力学.北京:化学工业出版社,2005[15]戴咏川主编.石油化学.辽宁:辽宁石油化工大学,2003[16]陈钟秀主编.化工热力学.第二版.北京:化学工业出版社,2004[17]天津大学化工原理教研室编.化工原理.下册.天津:天津科学技术出版社,1989 [18]石油化工科学研究院研究发展部编.炼油工艺计算图表集.下册.北京:石油化工科学研究院,1982[19]林世雄主编.石油炼制工程.第三版.北京:石油工业出版社,2005[20]石油化学工业部石油化工规划设计院组织编写.管式加热炉工艺计算.北京:石油化学工业出版社,1976[21]抚顺石油学院穆文俊主编.管式加热炉.华中理工大学出版社,1990摘要本次设计主要是设计原油处理量能力为300万吨/年的常压塔,其次为塔板的设计和常压加热炉的设计部分设计。
摘要
本篇论文是分馏塔的常规设计。
塔设备在当今石油化工企业中成为重要装置之一。
设计将从以下几个方面进行论述:说明部分,设计计算部分,原理及XX塔体焊接工艺设计和外文翻译部分。
说明部分是确定钢材的选取,有关零件的结构尺寸和有关制造检验方法;而对XX塔体的焊接结构的设计,工艺,焊接方法及焊后处理为说明重点。
本设计过程均严格遵守GB150-2011《压力容器》和JB4710-2005《钢制塔式容器》进行,对该塔进行了强度、刚度、稳定性的校核。
此外,根据世纪的要求,还相应的完成了原部件图、总装图及外文翻译。
今后,随着科学技术的飞速发展,塔设备在石油化工企业中占有越来越重要的地位。
同时,将对塔设备有更高的要求,在设计方面要求更加合理,结构简单,使用方便。
所以,在未来,压力容器技术将会取得更大的进步以适应石油化工生产的需要。
关键词:常规设计,校核,安全
Abstract
This paper is the conventional design of fractionating tower. Tower equipment become one of the important devices in today's petrochemical enterprises. Design will be carried out on the following areas: Description of the calculation part and the part of theory and foreign language translation. That part is to determine the selection of steel, the size and structure of parts of the manufacturing test; on the head, cylinder, to strengthen the circle, wind load, earthquake load, natural cycles, such as group Block is a key part of the calculation.
The design process are strictly adhered to GB150-199《Steel Pressure Vessels》and JB4710-2005 《steel tower vessel》in the tower of strength, stiffness, stability of calibration.
Furthermore, in accordance with the requirements of the century, but also the completion of the corresponding parts of the original map, assembly plans and foreign language translation.
In the future, as the rapid development of science and technology, tower equipment, petro-chemical enterprises in the increasingly important position occupied. At the same time,the tower equipment will have greater demands, in terms of design requirements are more reasonable, simple structure and easy to use. Therefore, in the future, pressure vessel technology will achieve greater progress in order to adapt to the needs of petrochemical production.
II
Key words:Conventional Design,Checking,Safe
III
目录
1.说明部分 (1)
1.1塔设备在化工生产中的作用和地位 (1)
1.2设计概述 (3)
1.3对塔设备的要求 (4)
1.4塔设备的构造 (5)
1.5塔设备的发展及现状 (7)
1.6板式塔的分类 (14)
1.7板式塔的常用塔型及其选用 (17)
1.7.1泡罩塔 (17)
1.7.2筛板塔 (19)
1.7.3浮阀塔 (20)
1.7.4形塔及浮动舌形塔 (21)
1.7.5穿流式栅板塔 (22)
1.7.6其他类型塔盘 (23)
1.8塔型选择一般原则 (24)
1.8.1与物性有关的因素 (24)
1.8.2与操作条件有关的因素 (24)
1.8.3其他因素 (25)
1.9板式塔的强化 (26)
i
1.10选材 (27)
2.设计计算部分 (29)
2.1设计条件 (29)
2.2塔设备材料的选取 (29)
2.3圆筒、封头、裙座厚度计算 (30)
2.4塔设备的质量计算 (31)
2.5塔的自振周期 (34)
2.6载荷分析 (34)
2.6.1地震载荷计算 (34)
2.6.2风载荷计算 (39)
2.6.3最大弯矩 (42)
2.7应力校核 (43)
2.7.1圆筒应力校核 (43)
2.7.2群座壳轴向应力的校核 (44)
2.7.3液压试验时的应力校核(校核Ⅱ-Ⅱ截面) (46)
2.8基础环厚度计算 (47)
2.9地脚螺栓计算 (48)
2.10筋板 (48)
2.11盖板 (49)
2.12裙座与塔壳连接焊缝验算 (50)
ii。