人工智能搜索策略
- 格式:ppt
- 大小:620.50 KB
- 文档页数:96
浅谈人工智能中的启发式搜索策略
一、启发式策略
启发式策略是指在解决复杂问题时,根据人的经验和技巧来寻求最优解的方法。
它是人工智能领域中的一种和规划技术,可以解决形式化的各种问题。
启发式策略广泛应用于机器学习、图形图计算、机器人控制和计算机图形学等多种领域。
启发式策略包括:A*算法、B*树算法、启发式和动态规划等。
A*算法是一种非常有效的启发式方法,它采用了一个启发函数来估计待访问节点的最优价值,从而可以根据最小价值节点而进行,的效果比较好。
B*树算法是一种静态的启发式方法,该算法在每一步都可以通过比较不同节点价值来确定最优路径,从而更有效地出最优路径。
启发式和动态规划都是一种在状态空间中采取其中一种方法或策略以获得最优解的技术,两者最大的不同点在于,启发式依赖于当前状态,动态规划则更倾向于最终目标。
二、应用
启发式策略广泛应用于人工智能领域,它可以用来解决各种形式化问题,如游戏、自然语言处理问题等。
人工智能第三版课件第3章搜索的基本策略搜索引擎是当今互联网时代不可或缺的工具,而人工智能技术在搜索引擎中起着举足轻重的作用。
本文将介绍《人工智能第三版课件》中第3章的内容,讨论搜索的基本策略。
基于这些策略,搜索引擎能够更加高效、准确地满足用户的信息需求。
1. 初始搜索空间在进行搜索之前,需要建立一个初始的搜索空间,即包含可能相关信息的一组文档或网页。
这个搜索空间的建立可以通过爬虫程序和抓取技术来收集网络上的信息,并将其存储在搜索引擎的数据库中。
2. 关键词匹配搜索引擎通过用户输入的关键词与搜索空间中的文档进行匹配,以找到与用户需求相关的内容。
关键词匹配可以使用词频、倒排索引等算法来实现。
其中,词频是指对于一个给定的关键词,在搜索空间中出现的频率;倒排索引则是一种将关键词与对应的文档进行关联的索引结构。
3. 分析用户意图搜索引擎还需要通过分析用户的搜索历史、点击行为等数据来了解用户的真实意图。
这可以通过机器学习算法来实现,例如基于用户行为的推荐系统。
通过了解用户的意图,搜索引擎可以更加准确地推荐相关内容。
4. 搜索结果排序搜索引擎会对匹配到的文档进行排序,以便将最相关的结果显示在前面。
排序算法通常通过计算文档与用户查询的相似度来实现。
相似度计算可以使用向量空间模型、BM25等算法。
5. 反馈与迭代搜索引擎不断根据用户的反馈进行迭代,以提供更好的搜索结果。
用户的反馈可以包括点击率、停留时间等指标,这些指标可以通过机器学习算法来进行分析和预测。
搜索引擎可以根据用户的反馈来调整排序算法,从而不断改进搜索结果的准确性和相关性。
综上所述,搜索引擎的基本策略包括建立初始搜索空间、关键词匹配、分析用户意图、搜索结果排序以及反馈与迭代。
这些策略通过人工智能技术的应用,使得搜索引擎能够更加智能化地满足用户的信息需求。
未来随着人工智能技术的不断发展,搜索引擎将会变得更加准确、个性化,并为用户提供更多智能化的服务。
第七章搜索策略搜索是人工智能中的一个基本问题,是推理不可分割的一部分,它直接矢系到智能系统的性能与运行效率,因而尼尔逊把它列入人工智能研究的四个核心问题之一。
第七章搜索策略•7 • "I基本概念・73与/或图的搜索第略♦7」博弈树a索24第七章搜索策略]• 7.1吐木概念・7.2欢态空{11册搜宓览术• 73 I 刀或图的牠索策略X 7.1. 1什么是搜索根据问题的实际情况不断寻找可利用的知识,从而构造一条代价较少的推理路线,从而使问题匮8 满得到解决的过程称为搜索。
,7」.1什么最搜索 ■ 7 |二状念I 间灰小 > 7J-3 U 咸 THJDidJ.«七章授索彙昭3茎本播念搜索分为盲目搜索利启发式搜索°肓仔如(或称非启发式搜索)是按预定的控制策略进 行搜索,在搜索过程中获得的中间信息不用来改进搜索策 略。
启笈式掇转(或称非盲目搜索)是在搜索中加入了与 问题有矢的启发性信息•用以指导搜索朝着最有希望的方 向前进,加速问题的求解过程井且找到最优解。
-7.1.2状态图表示法K 什么是状态图例题7.1设仆二个钱币,氏初始状态为(反、正、反),欲得的 目标状态为(正、正、正)或(反•反、反)。
目标状态问题是允许每次只能且必须H 转一个钱币,连翻三次, 问能否达到目标状态?初始状态/④止®®®®®®®【解】要求解这个问题■可通过引入一个3维变量将问题表示出来。
设3维变量为:其中:qi=O表示正,qjT表示反(iT,2,3)共有八种组合:Qo=( O3O5O) Q1 ={ 0,0,1)□2= (0,150) □3=(0,1,1)€>4=( 1)0,0)八5= (1 >0,1)Q6 = (lJ5O)Q7={1JJ)每个组合就视为一个芳点。
初始状态为Q5,目表状态为Q济Q?810dJ 图可得解有7个,a ah, aha ,haa , hbh, hcc . ebc , ccb其中:“表示a 的变化.b 表示蚯的变化,C 表示Cb 的变化•-7.1.2状态图表不法把这种描述得到的有向图称为状态(空间)图. 其屮的节点代表一种格局(或称为状态)•而两节点之 间的连线表示两节点之间的联系•它可视为某种操作、规 则、变换等。
⼈⼯智能习题作业搜索策略I习题答案第三章搜索策略课后习题及答案⼀、选择题:1. 启发式搜索中,通常OPEN表上的节点按照它们f函数值的_____顺序排列。
( D )A平均值 B 递减 C 最⼩ D递增2. 按尼尔逊(Nilsson)提出的有序搜索基本算法指出,⼀个节点的希望程度⼤,则f值_____。
( B )A 不变化B ⼩C ⼤D 为03. 如果重排OPEN表是依据f(x)=g(x)+h(x)进⾏的,则称该过程为_____。
( B )A A*算法B A算法 C有序搜索 D启发式搜索4. 在与或树和与或图中,我们把没有任何⽗辈节点的节点叫做_____。
( C )A 叶节点 B端节点 C根节点 D 起始节点5. 对于⼋数码问题:起始棋局 —> ⽬标局棋2 83 1 2 31 6 4 8 47 5 7 6 5取h(n)=W(n), W(n)⽤来计算对应于节点n的数据库中错放的棋⼦个数。
请问需要扩展多少个节点才能到达⽬标?( C )A 20B 13C 6D 116. α-β剪枝技术中,⼀个MIN节点的β值等于其后继节点当前()的最终倒推值。
( A )A 最⼩B 最⼤C 平均D α值7. α-β剪枝技术中,“或”节点n的α值如果不能降低其⽗节点的β值,则对节点n以下的分枝可停⽌搜索,并使节点n的倒推值为α。
这种剪枝称为_____。
( A )A β剪枝B α剪枝C α-β剪枝 D极⼩极⼤分析法8. 宽度优先搜索⽅法能够保证在搜索树中找到⼀条通向⽬标节点的_____途径(如果有路径存在时)。
( B )A 可⾏B 最短C 最长D 解答9. A*算法是⼀种_____。
( ABD )A 图搜索策略B 有序搜索算法C 盲⽬搜索D 启发式搜索10. 应⽤某个算法(例如等代价算法)选择OPEN表上具有最⼩f值的节点作为下⼀个要扩展的节点。
这种搜索⽅法的算法就叫做_____。
( C )A 盲⽬搜索B 深度优先搜索C 有序搜索算法D 极⼩极⼤分析法⼆、填空题:1. OPEN表⽤于存放未扩展的节点,CLOSED表存放_已扩展_的节点。