北师大版数学高二必修5第三章4.2、4.3简单线性规划及其应用作业
- 格式:doc
- 大小:339.00 KB
- 文档页数:8
3.4.2简单的线性规划一、教学目标:1.了解线性规划的意义及线性约束条件、线性目标函数、可行解、可行域、最优解等概念;2.能根据条件建立线性目标函数;3.了解线性规划问题的图解法,并会用图解法求线性目标函数的最大值、最小值.二、教学重、难点:线性规划问题的图解法;寻求线性规划问题的最优解.三、教学过程:(一)复习练习:1.画出下列不等式表示的平面区域:(1)()(233)0x y x y -+-<; (2)|341|5x y +-<.(二)新课讲解:1.引例:设2z x y =+,式中变量,x y 满足条件4335251x y x y x -≤-⎧⎪+≤⎨⎪≥⎩,求z 的最大值和最小值.问题:能否用不等式的知识来解决以上问题?(否)那么,能不能用二元一次不等式表示的平面区域来求解呢?怎样求解?由题意,变量,x y 所满足的每个不等式都表示一个平面区域,不等式组则表示这些平面区域的公共区域。
由图知,原点(0,0)不在公共区域内,当0,0x y ==时,20z x y =+=,即点(0,0)在直线0l :20x y +=上,作一组平行于0l 的直线l :2x y t +=,t R ∈,可知:当l 在0l 的右上方时,直线l 上的点(,)x y满足20x y +>,即0t >,而且,直线l 往右平移时,t 随之增大。
由图象可知,当直线l 经过点(5,2)A 时,对应的t 最大,当直线l 经过点(1,1)B 时,对应的t 最小,所以,max 25212z =⨯+=,min 2113z =⨯+=.2.有关概念在上述引例中,不等式组是一组对变量,x y 的约束条件,这组约束条件都是关于,x y 的一次不等式,所以又称为线性约束条件。
2z x y =+是要求最大值或最小值所涉及的变量,x y 的解析式,叫目标函数。
又由于2z x y =+是,x y 的一次解析式,所以又叫线性目标函数.一般地,求线性目标函数在线性约束条件下的最大值或最小值的问题,统称为线性规划问题。
4.3简单线性规划的应用一、非标准1.有5辆6吨的汽车,4辆4吨的汽车,需x辆6吨汽车y辆4吨汽车,要运送最多的货物,完成这项运输任务的线性目标函数为()A.z=6x+4yB.z=5x+4yC.z=x+yD.z=4x+5y答案:A2.已知点(x,y)构成的平面区域如图阴影部分所示,z=mx+y(m为常数)在平面区域内取得最大值的最优解有无数多个,则m的值为()A.-B.C.D.解析:观察平面区域可知直线y=-mx+z与直线AC重合,则-m=k AC==-,解得m=.答案:B3.在“家电下乡”活动中,某厂要将100台洗衣机运往邻近的乡镇,现有4辆甲型货车和8辆乙型货车可供使用,每辆甲型货车运输费用400元,可装洗衣机20台;每辆乙型货车运输费用300元,可装洗衣机10台,若每辆车至少运一次,则该厂所花的最少运输费用为()A.2 000元B.2 200元C.2 400元D.2 800元解析:设需甲型货车x辆,乙型货车y辆,由题意知,作出其可行域如图,描出阴影内部整点及部分边界整点.可知目标函数z=400x+300y,在点A处取最小值z=400×4+300×2=2 200(元).答案:B4.如图,目标函数z=ax-y的可行域为四边形OACB(含边界),若C是该目标函数z=ax-y的最优解,则a的取值范围是()A. B.C. D.解析:最优解为C点,则目标函数表示的直线斜率在直线BC与AC的斜率之间.因为k BC=-,k AC=-,所以a∈.答案:B5.某公司招收男职员x名,女职员y名,x和y需满足约束条件则z=10x+10y 的最大值是()A.80B.85C.90D.95解析:先画出满足约束条件的可行域,如图阴影部分所示.由解得但x∈N,y∈N,结合图知当x=5,y=4时,z max=90,选C.答案:C6.若直线y=2x上存在点(x,y)满足约束条件则实数m的最大值为. 解析:由约束条件作出其可行域如图:由图可知当直线x=m过直线y=2x与x+y-3=0的交点(1,2)时m取得最大值,此时x=m=1. 答案:17.某公司租赁甲、乙两种设备生产A,B两类产品,甲种设备每天能生产A类产品5件和B类产品10件,乙种设备每天能生产A类产品6件和B类产品20件.已知设备甲每天的租赁费为200元,设备乙每天的租赁费为300元.现该公司至少要生产A类产品50件,B类产品140件,则所需租赁费最少为元.解析:设甲种设备需要生产x天,乙种设备需要生产y天,此时该公司所需租赁费为z元, 则z=200x+300y.又因为即画出该不等式组表示的平面区域,如图阴影部分所示.解即点A(4,5).由z=200x+300y,得直线y=-x+过点A(4,5)时,z=200x+300y取得最小值,为2 300元.答案:2 3008.设不等式组表示的平面区域为D.若指数函数y=a x的图像上存在区域D上的点,则a的取值范围是.解析:画出可行域如图阴影部分,易知a∈(0,1)时不合题意,故a>1.两直线的交点为A(2,9).由图像可知,当y=a x通过该交点A时,a取最大值,∴f(2)=a2=9,∴a=3.故a∈(1,3].答案:(1,3]9.某养鸡场有1万只鸡,用动物饲料和谷物饲料混合喂养.每天每只鸡平均吃混合饲料0.5 kg,其中动物饲料不能少于谷物饲料的.动物饲料每千克0.9元,谷物饲料每千克0.28元,饲料公司每周仅保证供应谷物饲料50 000 kg,问饲料怎样混合,才使成本最低?解:设每周需用谷物饲料x kg,动物饲料y kg,每周总的饲料费用为z元,那么而z=0.28x+0.9y,如图,作出不等式组所表示的平面区域,即可行域.作一组平行直线0.28x+0.9y=t.其中经过可行域内的点A时,z最小,又直线x+y=35 000和直线y=x的交点A.即x=,y=时,饲料费用最低.答:谷物饲料和动物饲料应按5∶1的比例混合,此时成本最低.10.要将两种大小不同的钢板截成A,B,C三种规格,每张钢板可同时截得三种规格的小钢板的块数如下表所示:钢板类型A规格B规格C规格规格类型第一种钢板 2 1 1第二种钢板 1 2 3今需要A,B,C三种规格的成品分别为15,18,27块,问各截这两种钢板多少张可得所需的三种规格成品,且使所用钢板张数最少?解:设需截第一种钢板x张,第二种钢板y张,可得且x,y都是整数,求目标函数z=x+y取最小值时的x,y.作可行域如图所示,平移直线z=x+y可知直线经过点,此时x+y=,但都不是整数,所以可行域内的点不是最优解.首先在可行域内打网格,其次描出A附近的所有整点,接着平移直线l:x+y=0,会发现当移至B(3,9),C(4,8)时,即z取得最小值12.故本题有两种截法:第一种截法是截第一种钢板3张、第二种钢板9张;第二种截法是截第一种钢板4张、第二种钢板8张.两种方法最少要截两种钢板共12张.答:截第一种钢板3张、第二种钢板9张,或截第一种钢板4张、第二种钢板8张时,所用钢板张数最少.。
4.2简单线性规划一、非标准1.设变量x,y满足约束条件则目标函数z=3x-2y的最小值为()A.-5B.-4C.-2D.3解析:由约束条件可得可行域:对于目标函数z=3x-2y,可化为y=x-z,要使z取最小值,可知过点A时取得.由即A(0,2),所以z=3×0-2×2=-4.答案:B2.设变量x,y满足约束条件则z=x-3y的最小值为()A.-2B.-4C.-6D.-8解析:作出可行域.令z=0,则l0:x-3y=0,平移l0在点M(-2,2)处z取到最小,最小值为-8.答案:D3.已知在平面直角坐标系xOy上的区域D由不等式组给定.若M(x,y)为D上的动点,点A的坐标为(,1),则z=的最大值为()A.4B.3C.4D.3解析:画出可行域,而z=x+y,∴y=-x+z.令l0:y=-x,将l0平移到过点(,2)时,截距z有最大值,故z max=+2=4.答案:C4.已知x,y满足则点P(x,y)到直线x+y=-2的距离的最小值为()A. B.2C. D.解析:不等式组所表示的可行域如图阴影部分.其中点P(1,1)到直线的距离最短,其最小值为=2,故选B.答案:B5.若点(x,y)位于曲线y=|x-1|与y=2所围成的封闭区域,则2x-y的最小值为.解析:由y=|x-1|=及y=2画出可行域如图阴影部分.令2x-y=z,则y=2x-z,画直线l0:y=2x并平移到过点A(-1,2)的直线l,此时-z最大,即z最小=2×(-1)-2=-4.答案:-46.若变量x,y满足约束条件则z=x+2y的最小值为.解析:根据得可行域如图,根据z=x+2y得y=-,平移直线y=-,在M点z取得最小值.由此时z min=4+2×(-5)=-6.答案:-67.若实数x,y满足则z=3x+2y的最小值为.解析:上述不等式组所表示的可行域如图阴影部分.令t=x+2y,则当直线y=-x+t经过原点O(0,0)时,t取最小值,也即t有最小值为0,则z=3x+2y有最小值为30=1.答案:18.如果实数x,y满足不等式组则(x+2)2+(y+1)2的最小值为.解析:画出不等式组表示的平面区域,如图阴影部分.表示可行域内的点D(x,y)与定点M(-2,-1)间的距离.显然当点P在点A(1,2)时|PM|最小,这时|PM|=3,故(x+2)2+(y+1)2的最小值是18.答案:189.求z=5x-8y的最大值,使式中的x,y满足约束条件解:作出满足不等式组的可行域,如图阴影部分.作直线l0:5x-8y=0,平移直线l0,由图可知,当平移到直线经过A点时,z取最大值.解方程组得A(6,0),所以z max=5×6-8×0=30.10.已知-4≤a-b≤-1,-1≤4a-b≤5,求9a-b的取值范围.解:如图所示,令a=x,b=y,z=9a-b,即已知-4≤x-y≤-1,-1≤4x-y≤5,求z=9x-y的取值范围,画出不等式表示的可行域如图阴影部分.由z=9x-y,得y=9x-z,当直线过点A时z取最大值,当直线过点B时z取最小值.由得A(3,7),由得B(0,1),即z max=9×3-7=20,z min=-1,所以9a-b的取值范围是[-1,20].。
2021年高中数学 3.4.2 简单线性规划课后巩固练习北师大版必修5一、选择题(每小题4分,共16分)1.(2011·山东高考)设变量x,y满足约束条件,则目标函数z=2x+3y+1的最大值为( )(A)11 (B)10 (C)9 (D)8.52.(2011·浙江高考)若实数x,y满足不等式组则3x+4y的最小值是( )(A)13 (B)15 (C)20 (D)283.(2011·贵阳高二检测)若实数x、y满足不等式组则目标函数z=x+y的最大值是( )(A)3 (B)5 (C) (D)74.已知x、y满足不等式组且z=2x+y的最大值是最小值的3倍,则a=( )(A)0 (B) (C) (D)1二、填空题(每小题4分,共8分)5.已知点P(x,y)在不等式组表示的平面区域上运动,则z=x-y的取值范围是________.6.(2011·湖南高考)设m>1,在约束条件下,目标函数z=x+5y的最大值为4,则m的值为________.三、解答题(每小题8分,共16分)7.已知-1<x+y<4且2<x-y<3,求z=2x-3y的取值范围.8.设变量x,y满足约束条件求z=(x- )2+y2的取值范围.【挑战能力】(10分)设O为坐标原点,A(1,1),若点B(x,y)满足,试求的最大值.答案解析1.【解析】选B.画出平面区域表示的可行域如图所示,由目标函数z=2x+3y+1得直线y=-,当直线过点A (3,1)时,目标函数z=2x+3y+1取得最大值为10,故选B.2.独具【解题提示】先画出可行域,求出区域定点的坐标,通过平移直线3x+4y=0,观察可得.【解析】选A.x+2y-5=0与2x+y-7=0的交点为(3,1),通过直线平移可知(3,1)即为最优解,此时3x+4y 取得最小值13.3.【解析】选D.作可行域如图:y=-x+z,过点A时z取最大值.由得,点A坐标为(5,2).故z max=5+2=7.4. 【解析】选B.依题意可知a<1.作出可行域如图所示,z=2x+y在A点和B点处分别取得最小值和最大值.由得A(a,a),由得B(1,1),∴z max=3,z min=3a.∴a=.5.【解析】可行域为如图阴影部分,其中A(2,0),C(0,1),z=x-y在A处取最大值z=2-0=2,在C处取最小值z=0-1=-1,∴z的取值范围为[-1,2].答案:[-1,2]6.独具【解题提示】画出可行域,观察图形,可知直线y=-过直线的交点时,取最大值.【解析】画出可行域,可知z=x+5y在点()处取最大值为4,解得m=3.答案:37.【解析】画出可行域(如图),将目标函数z=2x-3y变形为y=,它表示与y=x平行、截距是-的一族平行直线,当它经过点A时,截距-最大,此时z最小(取不到);当它经过点B时,截距-最小,此时z最大(取不到).由⇒A(3,1)由⇒B(1,-2)∴过点A时,z=2×3-3×1=3过点B时,z=2×1-3×(-2)=8∴z=2x-3y的取值范围是(3,8).所以目标函数z=2x-3y的取值范围是(3,8).独具【方法技巧】目标函数z=ax+by的最值与b取值的关系线性目标函数z=ax+by取最大值时的最优解与b的正负有关,当b>0时,最优解是将直线ax+by=0在可行域内向上平移到端点(一般是两直线交点)的位置得到的;当b<0时,则是向下方平移,过可行域的端点时取得的.8.独具【解题提示】目标函数z的几何意义是可行域内的点到点(,0)距离的平方.【解析】由作出可行域,如图阴影部分所示.z=(x-)2+y2表示可行域内的任意一点与点(,0)距离的平方.因此(x-)2+y2的最小值为点(,0)到直线x+2y-1=0距离的平方,则z min=.z的最大值为点(,0)到点A、点B、点D距离平方中的最大值,则由计算知z max=,∴z的取值范围是[, ]. 【挑战能力】【解析】不等式x2+y2-2x-2y+1≥0⇔(x-1)2+(y-1)2≥1先作出不等式组表示的平面区域,如图阴影部分所示.=(1,1)·(x,y)=x+y,令z=x+y,化为y=-x+z则将直线y=-x向右上方平移时,z随之增大,当平移至通过可行域内的点B(2,2)时,z最大,∴z max=2+2=4,即的最大值为4.32154 7D9A 続Qw24733 609D 悝30899 78B3 碳A40191 9CFF 鳿" _31261 7A1D 稝35449 8A79 詹B23309 5B0D 嬍37681 9331 錱。
简单线性规划 教学目标一、知识与技能 1.掌握线性规划的意义以及约束条件、目标函数、可行解、可行域、最优解等基本概念;2.运用线性规划问题的图解法,并能应用它解决一些简单的实际问题.二、.过程与方法1.培养学生观察、联想以及作图的能力,渗透集合、化归、数形结合的数学思想,提高学生“建模”和解决实际问题的能力;2.结合教学内容,培养学生学习数学的兴趣和“用数学”的意识,激励学生创新.三、情感,态度与价值观1.通过本节教学着重培养学生掌握“数形结合”的数学思想,尽管侧重于用“数”研究“形”,但同时也用“形”去研究“数”,培养学生观察、联想、猜测、归纳等数学能力;2.结合教学内容,培养学生学习数学的兴趣和“用数学”的意识,激励学生勇于创新.教学重点、难点重点: 简单线性规划问题的求解,线性目标函数的几何意义难点:简单线性规划问题的求解教学过程导入新课师 前面我们学习了二元一次不等式A x+B y+C >0在平面直角坐标系中的平面区域的确定方法,请同学们回忆一下.(生回答)推进新课问题提出 设x , y 满足条件求z=2x+y 的最大值和最小值.师 如何将上述不等式组表示成平面上的区域?生 (板演)师 这样,上述问题就转化为:当x 、y 满足上述不等式组时,z 的最大值是多少? 师 把z=2x+y 变形为2y x z =-+,这是斜率为-2,在y 轴上的截距为z 的直线.当z 变化时可以得到什么样的图形?在上图中表示出来.生 当z 变化时可以得到一组互相平行的直线.(板演)师 由于这些直线的斜率是确定的,因此只要给定一个点〔例如(1,2)〕,就能确定一条直线2y x z =-+,这说明,截距z 可以由平面内的一个点的坐标唯一确定.可以看到直线2y x z =-+与表示不等式组的区域的交点坐标满足不等式组,而且当截距z 最大时,z 取最大值,因此,问题转化为当直线2y x z =-+与不等式组确定的区域有公共点时,可以在区域内找一个点P ,使直线经过P 时截距z 最大.[合作探究]师 诸如上述问题中,不等式组是一组对变量x 、y 的约束条件,由于这组约束条件都是关于x 、y 的一次不等式,所以又可称其为线性约束条件.t=2x+y 是欲达到最大值或最小值所涉及的变量x 、y 的解析式,我们把它称为目标函数.由于t=2x+y 又是关于x 、y 的一次解析式,所以又可叫做线性目标函数.另外注意:线性约束条件除了用一次不等式表示外,也可用一次方程表示.一般地,求线性目标函数在线性约束条件下的最大值或最小值的问题,统称为线性规划问题.例如:我们刚才研究的就是求线性目标函数z=2x+y 在线性约束条件下的最大值和最小值的问题,即为线性规划问题.那么,满足线性约束条件的解(x,y)叫做可行解,由所有可行解组成的集合叫做可行域.在上述问题中,可行域就是阴影部分表示的三角形区域.其中可行解(5,2)和(1,1)分别使目标函数取得最大值和最小值,它们都叫做这个问题的最优解.课堂小结用图解法解决简单的线性规划问题的基本步骤:1.首先,要根据线性约束条件画出可行域(即画出不等式组所表示的公共区域).2.设t=0,画出直线l 0.3.观察、分析,平移直线l 0,从而找到最优解.4.最后求得目标函数的最大值及最小值.设计意图:这个问题是前两个问题的综合,这样设计,过渡自然,层层递进,学生分组合作探究,讨论做法,重点体现数与形的结合。
基础巩固某人有一栋楼房,室内面积共计,拟分割成两类房间作为旅游客房,大房间每间面积为,可住游客名,每名游客每天住宿费元;小房间每间面积为,可住游客名,每名游客每天住宿费元;装修大房间每间需要元,装修小房间每间需要元.如果他只能筹款元用于装修,且游客能住满客房,他应隔出大房间和小房间各多少间,才能获得最大效益?有一批钢管,长度都是,要截成和两种毛坯,且以这两种毛坯数量之比大于配套,问怎样截最合理?已知甲、乙两煤矿每年的产量分别为万吨和万吨,需经过东车站和西车站两个车站运往外地.东车站每年最多能运万吨煤,西车站每年最多能运万吨煤,甲煤矿运往东车站和西车站的运费价格分别为元吨和元吨,乙煤矿运往东车站和西车站的运费价格分别为元吨和元吨.煤矿应怎样编制调运方案,能使总运费最少?医院用甲、乙两种原料为手术后的病人配营养餐.甲种原料每含单位蛋白质和单位铁质,售价元;乙种原料每含单位蛋白质和单位铁质,售价元.若病人每餐至少需要单位蛋白质和单位铁质.试问:应如何使用甲、乙原料,才能既满足营养,又使费用最省?有一批同规格的钢条,每根钢条有两种切割方式,可截成长度为的钢条根,长度为的钢条根;或截成长度为的钢条根,长度为的钢条根.现长度为的钢条至少需要根,长度为的钢条至少需根,问:如何切割可使钢条用量最省?综合过关制定投资计划时,不仅要考虑可能获得的盈利,而且要考虑可能出现的亏损.某投资人打算投资甲、乙两个项目,根据预测,甲、乙项目可能的最大盈利率分别是和,可能的亏损率分别为和,投资人计划投资金额不超过万元,要求确保可能的资金亏损不超过万元,问投资人对甲、乙两个项目各投资多少万元,才能使可能的盈利最大?某运输公司接受了向抗洪救灾地区每天送至少支援物资的任务.该公司有辆载重的型卡车与辆载重为的型卡车,有名驾驶员,每辆卡车每天往返的次数为型卡车次,型卡车次;每辆卡车每天往返的成本费型为元,型为元.请为公司安排一下,应如何调配车辆,才能使公司所花的成本费最低?若只安排型或型卡车,所花的成本费分别是多少?能力提升某电脑用户计划使用不超过元的资金购买单价分别为元、元的单片软件和盒装磁盘,根据需要,软件至少买片,磁盘至少买盒,则不同的选购方式有多少种?参考答案分析:设大房间间,小房间间,然后列出,的关系式,写出目标函数,即可转化为求目标函数的最值问题.解:设隔出大房间间,小房间间,收益为元,则,满足(\\(+≤,+≤,≥,≥,))即(\\(+≤,+≤,≥,≥,))=+.作出可行域,如图所示的阴影部分.解方程组(\\(+=,+=,))得点的坐标为(,).由于点的坐标不是整数,而最优解(,)是整点,所以可行域内点(,)不是最优解.经验证:经过可行域内的整点,且使=+取得最大值的整点是()和(),此时=元,即应隔出小房间间,或大房间间、小房间间,可以获得最大利润.分析:先设出未知数,建立约束条件和目标函数后,再按求最优解是整数解的方法去求.解:设截的根,的根,根据题意,得(\\(+≤,<,>,>,))且,∈+.作出可行域,如图中的阴影部分.目标函数为=+,作一组平行直线+=,经过可行域内的点且和原点距离最远的直线为过()的直线,这时+=.由、为正整数,知()不是最优解.在可行域内找整点,使+=.可知点()、()、()、()、()均为最优解.即每根钢管截的根,的根,或截的根,的根,或截的根,的根,或截的根,的根,或截的根,的根最合理.解:设甲煤矿向东车站运万吨煤,乙煤矿向东车站运万吨煤,那么总运费=+(-)++(-)万元,即=--.其中、应满足(\\(≥,≥,-≥,-≥,+≤,-+(-(≤.))作出上面的不等式组所表示的平面区域,如图阴影部分所示.。
, [学生用书单独成册])[A.基础达标]1.不等式组⎩⎪⎨⎪⎧(x -y +3)(x +y )≥0,-32≤x ≤3表示的平面区域是( )A .矩形B .三角形C .直角梯形D .等腰梯形解析:选B.不等式组⎩⎪⎨⎪⎧(x -y +3)(x +y )≥0-32≤x ≤3⇔⎩⎪⎨⎪⎧x -y +3≥0-32≤x ≤3x +y≥0或⎩⎪⎨⎪⎧x -y +3≤0-32≤x ≤3x +y ≤0,那么利用不等式表示的区域可知,得到的区域为三角形,故选B.2.若x ,y ∈R ,且⎩⎪⎨⎪⎧x ≥1,x -2y +3≥0,y ≥x ,则z =x +2y 的最小值等于( )A .2B .3C .5D .9解析:选B.可行域如图阴影部分所示,则当直线x +2y -z =0经过点M (1,1)时,z =x +2y 取得最小值,为1+2=3.3.在△ABC 中,三个顶点分别为A (2,4),B (-1,2),C (1,0),点P (x ,y )在△ABC 的内部及其边界上运动,则y -x 的取值范围为( )A .[1,3]B .[-3,1]C .[-1,3]D .[-3,-1] 解析:选C.先画出三角形区域(如图),然后转化为一个线性规划问题,求线性目标函数z =y -x 的取值范围.由图求出其取值范围是[-1,3].4.直线2x +y =10与不等式组⎩⎪⎨⎪⎧x ≥0,y ≥0,x -y ≥-2,4x +3y ≤20表示的平面区域的公共点有( )A .0个B .1个C .2个D .无数个解析:选B.画出可行域如图阴影部分所示.因为直线过(5,0)点,故只有1个公共点(5,0).5.实数x ,y 满足不等式组⎩⎪⎨⎪⎧y ≥0,x -y ≥0,2x -y -2≥0,则W=y -1x +1的取值范围是( )A.⎣⎡⎦⎤-1,13B.⎣⎡⎦⎤-12,13C.⎣⎡⎭⎫-12,+∞D.⎣⎡⎭⎫-12,1 解析:选D.画出题中不等式组所表示的可行域如图所示,目标函数W =y -1x +1表示阴影部分的点与定点A (-1,1)的连线的斜率,由图可知点A (-1,1)与点(1,0)连线的斜率为最小值,最大值趋近于1,但永远达不到1,故-12≤W <1.6.如图中阴影部分的点满足不等式组⎩⎪⎨⎪⎧x +y ≤5,2x +y ≤6,x ≥0,y ≥0.在这些点中,使目标函数z =6x +8y取得最大值的点的坐标是________.解析:首先作出直线6x +8y =0,然后平移直线,当直线经过平面区域内的点(0,5)时截距最大,此时z 最大.答案:(0,5)7.已知实数x ,y 满足⎩⎪⎨⎪⎧x +2y -5≤0,x ≥1,y ≥0,x +2y -3≥0,则yx 的最大值为________.解析:画出不等式组⎩⎪⎨⎪⎧x +2y -5≤0,x ≥1,y ≥0,x +2y -3≥0对应的平面区域Ω如图阴影部分所示,y x=y -0x -0表示平面区域Ω上的点P (x ,y )与原点的连线的斜率.A (1,2),B (3,0), 所以0≤yx≤2.答案:28.在平面直角坐标系中,若不等式组⎩⎪⎨⎪⎧x +y -1≥0,x -1≤0,ax -y +1≥0(a 为常数)所表示的平面区域的面积等于2,则a 的值为________.解析:如图所示的阴影部分即为满足不等式组⎩⎪⎨⎪⎧x +y -1≥0,x -1≤0的可行域,而直线ax -y +1=0恒过点(0,1),故可看成直线绕点(0,1)旋转.当a >-1时,可行域是一个封闭的三角形区域,由12×(a +1)×1=2得a =3.答案:39.如果由约束条件⎩⎪⎨⎪⎧y ≥0,y ≤x ,y ≤2-x ,t ≤x ≤t +1所确定的平面区域的面积为S =f (t )(0<t <1),试求f (t )的表达式.解:由约束条件所确定的平面区域是五边形ABCEP (如图),其面积S =f (t )=S △OPD -S △AOB -S △ECD ,而S △OPD =12×1×2=1,S △OAB =12t 2,S △ECD =12(1-t )2所以S =f (t )=1-12t 2-12(1-t )2=-t 2+t +12(0<t <1).10.已知x ,y 满足约束条件⎩⎪⎨⎪⎧x ≥1,x -3y ≤-4,3x +5y ≤30.(1)求目标函数z =2x +y 的最大值和最小值;(2)求z=y +5x +5的取值范围.解:作出可行域如图所示.(1)作直线l :2x +y =0,并平移此直线,当平移直线过可行域内的A 点时,z 取最小值;当平移直线过可行域内的B 点时,z 取得最大值.解⎩⎪⎨⎪⎧x =1,x -3y =-4,得A ⎝⎛⎭⎫1,53. 解⎩⎪⎨⎪⎧x -3y =-4,3x +5y =30,得B (5,3). 所以z max =2×5+3=13,z min =2×1+53=113.(2)z =y +5x +5=y -(-5)x -(-5),可看作区域内的点(x ,y )与点D (-5,-5)连线的斜率,由图可知,k BD ≤z ≤k CD .因为k BD =3-(-5)5-(-5)=45,k CD =275-(-5)1-(-5)=2615,所以z =y +5x +5的取值范围是⎣⎡⎦⎤45,2615. [B.能力提升]1.设O 为坐标原点,A (1,1),若点B (x ,y )满足⎩⎪⎨⎪⎧x 2+y 2-2x -2y +1≥0,1≤x ≤2,1≤y ≤2,则OA →·OB →取得最小值时,点B 的个数是( ) A .1 B .2C .3D .无数个解析:选B.如图,阴影部分为点B (x ,y )所在的区域.因为OA →·OB →=x +y , 令z =x +y ,则y =-x +z .由图可知,当点B 在C 点或D 点时,z 取最小值,故点B 的个数为2. 2.如图所示的坐标平面的可行域内(包括边界),若使目标函数z =ax +y (a >0)取得最大值的最优解有无穷多个,则a 的值为( )A.14B.35C .4 D.53解析:选B.由y =-ax +z 知当-a =k AC 时,最优解有无穷多个.因为k AC =-35,所以a =35. 3.若目标函数z =x +y +1在约束条件⎩⎪⎨⎪⎧x +y -2≤0x -y +2≤0y ≤n x ≥-3下取得最大值的最优解有无穷多个,则n 的取值范围是________. 解析:先根据⎩⎪⎨⎪⎧x +y -2≤0,x -y +2≤0,x ≥-3,作出如图所示阴影部分的可行域,欲使目标函数z =x +y +1取得最大值的最优解有无穷多个,需使目标函数对应的直线平移时达到可行域的边界直线x +y -2=0,且只有当n >2时,可行域才包含x +y -2=0这条直线上的线段BC 或其他部分.答案:(2,+∞)4.若实数x ,y 满足⎩⎪⎨⎪⎧x -y +1≥0,x +y ≥0,x ≤0.则z =3x +2y 的最小值是________.解析:由不等式组得可行域是以A (0,0),B (0,1),C (-0.5,0.5)为顶点的三角形,易知当x =0,y =0时,z ′=x +2y 取最小值0.所以z =3x +2y 的最小值是1.答案:15.设m 为实数,若⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫(x ,y )⎪⎪⎪⎩⎪⎨⎪⎧x -2y +5≥03-x ≥0mx +y ≥0⊆{(x ,y )|x 2+y 2≤25},求m 的取值范围.解:由题意知,可行域应在圆内,如图阴影部分所示,如果-m >0,则可行域取到x <-5的点,不能在圆内,故-m ≤0,即m ≥0.当mx +y =0绕坐标原点旋转时,直线过B 点时为边界位置,此时-m =-43,所以m =43.所以0≤m ≤43.6.实系数一元二次方程x 2+ax +2b =0有两个根,一个根在区间(0,1)内,另一个根在区间(1,2)内,求:(1)点(a ,b )对应的区域的面积; (2)b -2a -1的取值范围; (3)(a -1)2+(b -2)2的值域.解:方程x 2+ax +2b =0的两根在区间(0,1)和(1,2)上的几何意义分别是:函数y =f (x )=x 2+ax +2b 与x 轴的两个交点的横坐标分别在区间(0,1)和(1,2)内,由此可得不等式组⎩⎪⎨⎪⎧f (0)>0,f (1)<0,f (2)>0⇔⎩⎪⎨⎪⎧b >0,a +2b +1<0,a +b +2>0.由⎩⎪⎨⎪⎧a +2b +1=0,a +b +2=0,解得A (-3,1); 由⎩⎪⎨⎪⎧a +b +2=0,b =0,解得B (-2,0); 由⎩⎪⎨⎪⎧a +2b +1=0,b =0,解得C (-1,0).所以在如图所示的坐标平面aOb 内,满足约束条件的点(a ,b )对应的平面区域为△ABC (不包括边界).(1)△ABC 的面积为S △ABC =12×|BC |×h =12(h 为A 到Oa 轴的距离).(2)b -2a -1的几何意义是点(a ,b )和点D (1,2)连线的斜率. k AD =2-11+3=14,k CD =2-01+1=1.由图可知,k AD <b -2a -1<k CD.所以14<b -2a -1<1,即b -2a -1∈⎝⎛⎭⎫14,1.(3)因为(a-1)2+(b-2)2表示区域内的点(a,b)与定点(1,2)之间距离的平方,所以(a-1)2+(b-2)2∈(8,17).。
,[学生用书单独成册])[.基础达标].不等式组表示的平面区域是( ).矩形.三角形.等腰梯形.直角梯形解析:选.不等式组⇔或,那么利用不等式表示的区域可知,得到的区域为三角形,故选..若,∈,且则=+的最小值等于( )....解析:选.可行域如图阴影部分所示,则当直线+-=经过点(,)时,=+取得最小值,为+=..在△中,三个顶点分别为(,),(-,),(,),点(,)在△的内部及其边界上运动,则-的取值范围为( ).[,].[-,].[-,-].[-,]解析:选.先画出三角形区域(如图),然后转化为一个线性规划问题,求线性目标函数=-的取值范围.由图求出其取值范围是[-,]..直线+=与不等式组表示的平面区域的公共点有( ).个.个.个.无数个解析:选.画出可行域如图阴影部分所示.因为直线过(,)点,故只有个公共点(,)..实数,满足不等式组则=的取值范围是( )解析:选.画出题中不等式组所表示的可行域如图所示,目标函数=表示阴影部分的点与定点(-,)的连线的斜率,由图可知点(-,)与点(,)连线的斜率为最小值,最大值趋近于,但永远达不到,故-≤<..如图中阴影部分的点满足不等式组在这些点中,使目标函数=+取得最大值的点的坐标是.解析:首先作出直线+=,然后平移直线,当直线经过平面区域内的点(,)时截距最大,此时最大.答案:(,).已知实数,满足则的最大值为.解析:画出不等式组对应的平面区域Ω如图阴影部分所示,=表示平面区域Ω上的点(,)与原点的连线的斜率.(,),(,),所以≤≤.答案:.在平面直角坐标系中,若不等式组(为常数)所表示的平面区域的面积等于,则的值为.解析:如图所示的阴影部分即为满足不等式组的可行域,而直线-+=恒过点(,),故可看成直线绕点(,)旋转.当>-时,可行域是一个封闭的三角形区域,由×(+)×=得=.答案:.如果由约束条件所确定的平面区域的面积为=()(<<),试求()的表达式.解:由约束条件所确定的平面区域是五边形(如图),其面积=()=△-△-△,而△=××=,△。
[学业水平训练]1.设x ,y 满足⎩⎪⎨⎪⎧2x +y ≥4,x -y ≥-1,x -2y ≤2,则z =x +y ( )A .有最小值2,最大值3B .有最小值2,无最大值C .有最大值3,无最小值D .既无最小值,也无最大值解析:选B.由图像可知z =x +y 在点A 处取最小值,即z m in =2,无最大值.2.设变量x ,y 满足⎩⎪⎨⎪⎧x -y ≤10,0≤x +y ≤20,0≤y ≤15,则2x +3y 的最大值为( )A .20B .35C .45D .55解析:选D.作出可行域如图所示.令z =2x +3y ,则y =-23x +13z ,要使z 取得最大值,则需求直线y =-23x +13z 在y 轴上的截距的最大值,移动直线l 0:y =-23x ,可知当l 0过点C (5,15)时,z 取最大值,且z m ax=2×5+3×15=55,于是2x +3y 的最大值为55.故选D.3.(2013·高考课标全国卷Ⅱ)设x ,y 满足约束条件⎩⎪⎨⎪⎧x -y +1≥0,x +y -1≥0,x ≤3,则z =2x -3y 的最小值是()A.-7 B.-6C.-5 D.-3解析:选B.作出不等式组表示的可行域,如图(阴影部分).易知直线z=2x-3y过点C时,z取得最小值.由⎩⎪⎨⎪⎧x=3,x-y+1=0,得⎩⎪⎨⎪⎧x=3,y=4,∴z m in=2×3-3×4=-6,故选B.4.直线2x+y=10与不等式组⎩⎪⎨⎪⎧x≥0y≥0x-y≥-24x+3y≤20,表示的平面区域的公共点有()A.0个B.1个C.2个D.无数个解析:选B.画出可行域如图阴影部分所示.∵直线过(5,0)点,故只有1个公共点(5,0).5.已知实数x,y满足⎩⎪⎨⎪⎧y≥1,y≤2x-1,x+y≤m.如果目标函数z=x-y的最小值为-1,则实数m等于()A.7 B.5C.4 D.3解析:选B.画出x ,y 满足的可行域,可得直线y =2x -1与直线x +y =m 的交点使目标函数z =x -y 取得最小值,解⎩⎪⎨⎪⎧y =2x -1,x +y =m得x =m +13,y =2m -13,代入x -y =-1,得m +13-2m -13=-1,解得m =5.6.已知点P (x ,y )的坐标满足条件⎩⎪⎨⎪⎧x +y ≤4,y ≥x ,x ≥1,点O 为坐标原点,那么|PO |的最小值等于________,最大值等于________.解析:画出约束条件对应的可行域,如图阴影部分所示,∵|PO |表示可行域上的点到原点的距离,从而使|PO |取得最小值的最优解为点A (1,1);使|PO |取得最大值的最优解为B (1,3),∴|PO |m in =2,|PO |m ax =10.答案:2107.(2013·高考大纲全国卷)若x ,y 满足约束条件⎩⎪⎨⎪⎧x ≥0,x +3y ≥4,3x +y ≤4,则z =-x +y 的最小值为________.解析:由不等式组作出可行域,如图阴影部分所示(包括边界),且A (1,1),B (0,4),C (0,43).由数形结合知,直线y =x +z 过点A (1,1)时,z m in =-1+1=0.答案:08.某企业生产甲、乙两种产品,已知生产每吨甲产品要用A 原料3吨、B 原料2吨;生产每吨乙产品要用A原料1吨、B原料3吨.销售每吨甲产品可获得利润5万元、每吨乙产品可获得利润3万元.该企业在一个生产周期内消耗A原料不超过13吨、B原料不超过18吨,那么该企业可获得最大利润是________.解析:设该企业生产甲产品为x吨,乙产品为y吨,则该企业可获得利润为z=5x+3y,且⎩⎨⎧x≥0,y≥0,3x+y≤13,2x+3y≤18,联立⎩⎪⎨⎪⎧3x+y=13,2x+3y=18,解得⎩⎪⎨⎪⎧x=3,y=4.由图可知,最优解为P(3,4).故z的最大值为z=5×3+3×4=27(万元).答案:27万元9.已知x,y满足条件⎩⎪⎨⎪⎧y≤x,x+2y≤4,y≥-2,若r2=(x+1)2+(y-1)2(r>0),求r的最小值.解:作出不等式⎩⎨⎧y≤x,x+2y≤4,y≥-2所表示的平面区域如图:依据上图和r的几何意义可知:r的最小值是定点P(-1,1)到直线y=x的距离,即r m in=|1+1|2= 2.10.某工厂制造A种仪器45台,B种仪器55台,现需用薄钢板给每台仪器配一个外壳.已知钢板有甲、乙两种规格:甲种钢板每张面积2 m2,每张可作A种仪器外壳3个和B种仪器外壳5个.乙种钢板每张面积3 m2,每张可作A种仪器外壳6个和B种仪器外壳6个,问甲、乙两种钢板各用多少张才能用料最省?(“用料最省”是指所用钢板的总面积最小)解:设用甲种钢板x张,乙种钢板y张,依题意⎩⎪⎨⎪⎧x,y∈N,3x+6y≥45,5x+6y≥55,钢板总面积z=2x+3y.作出可行域如图所示中阴影部分的整点.由图可知当直线z=2x+3y过点P时,z最小.由方程组⎩⎪⎨⎪⎧3x+6y=45,5x+6y=55得⎩⎪⎨⎪⎧x=5,y=5.所以甲、乙两种钢板各用5张用料最省.[高考水平训练]1.若实数x,y满足不等式组⎩⎪⎨⎪⎧y≥0x-y≤42x-y-2≥0,则w=y-1x+1的取值范围是() A.[-1,13] B.[-12,13]C.[-12,2) D.[-12,+∞)解析:选C.把w=y-1x+1理解为一动点P(x,y)与定点Q(-1,1)连线斜率的取值范围,可知当x=1,y=0时,w m in=-12,且w<2.2.若实数x、y满足⎩⎪⎨⎪⎧x-y+1≥0,x+y≥0,x≤0.则z=3x+2y的最小值是________.解析:由不等式组,得可行域是以A (0,0),B (0,1),C (-0.5,0.5)为顶点的三角形,易知当x =0,y =0时,z ′=x +2y 取最小值0.∴z =3x +2y 的最小值为1.答案:1 3.某营养师要为某个儿童预订午餐和晚餐,已知1个单位的午餐含12个单位的碳水化合物,6个单位的蛋白质和6个单位的维生素C ;1个单位的晚餐含8个单位的碳水化合物,6个单位的蛋白质和10个单位的维生素C.另外,该儿童这两餐需要的营养中至少含64个单位的碳水化合物,42个单位的蛋白质和54个单位的维生素C.如果1个单位的午餐、晚餐的费用分别是2.5元和4元,那么要满足上述的营养要求,并且花费最少,应当为该儿童分别预订多少个单位的午餐和晚餐?解:法一:设需要预订满足要求的午餐和晚餐分别为x 个单位和y 个单位,所花的费用为z 元,则依题意,得z =2.5x +4y ,且x ,y 满足⎩⎪⎨⎪⎧x ≥0,y ≥0,12x +8y ≥64,6x +6y ≥42,6x +10y ≥54,即⎩⎪⎨⎪⎧x ≥0,y ≥0,3x +2y ≥16,x +y ≥7,3x +5y ≥27.作出可行域如图,则z 在可行域的四个顶点A (9,0),B (4,3),C (2,5),D (0,8)处的值分别是z A =2.5×9+4×0=22.5, z B =2.5×4+4×3=22, z C =2.5×2+4×5=25, z D =2.5×0+4×8=32.比较之,z B 最小,因此,应当为该儿童预订4个单位的午餐和3个单位的晚餐,就可满足要求.法二:设需要预订满足要求的午餐和晚餐分别为x个单位和y个单位,所花的费用为z 元,则依题意,得z=2.5x+4y,且x,y满足⎩⎪⎨⎪⎧x≥0,y≥0,12x+8y≥64,6x+6y≥42,6x+10y≥54,即⎩⎪⎨⎪⎧x≥0,y≥0,3x+2y≥16,x+y≥7,3x+5y≥27.作出可行域如图,让目标函数表示的直线2.5x+4y=z在可行域上平移,由此可知z=2.5x+4y在B(4,3)处取得最小值.因此,应当为该儿童预订4个单位的午餐和3个单位的晚餐,就可满足要求.4.已知实数x、y满足⎩⎪⎨⎪⎧x+y-3≥0,x-y+1≥0,x≤2,(1)若z=2x+y,求z的最大值和最小值;(2)若z=x2+y2,求z的最大值和最小值;(3)若z=yx,求z的最大值和最小值.解:不等式组⎩⎨⎧x+y-3≥0,x-y+1≥0,x≤2表示的平面区域如图阴影部分所示.由⎩⎪⎨⎪⎧x +y -3=0,x -y +1=0,得⎩⎪⎨⎪⎧x =1,y =2,∴A (1,2); 由⎩⎪⎨⎪⎧x =2,x -y +1=0,得⎩⎪⎨⎪⎧x =2,y =3,∴M (2,3); 由⎩⎪⎨⎪⎧x =2,x +y -3=0,得⎩⎪⎨⎪⎧x =2,y =1,∴B (2,1). (1)∵z =2x +y ,∴y =-2x +z ,当直线y =-2x +z 经过可行域内点M (2,3)时,直线在y 轴上的截距最大,z 也最大,此时z m ax =2×2+3=7.当直线y =-2x +z 经过可行域内点A (1,2)时,直线在y 轴上的截距最小,z 也最小,此时z m in =2×1+2=4.∴z 的最大值为7,最小值为4.(2)过原点(0,0)作直线l 垂直于直线x +y -3=0,垂足为N ,则直线l 的方程为y =x .由⎩⎪⎨⎪⎧y =x ,x +y -3=0,得⎩⎨⎧x =32,y =32,∴N ⎝⎛⎭⎫32,32. 点N ⎝⎛⎭⎫32,32在线段AB 上,也在可行域内.此时可行域内点M 到原点的距离最大,点N 到原点的距离最小.又|OM |=13,|ON |=92, 即92≤x 2+y 2≤13,∴92≤x 2+y 2≤13,∴z 的最大值为13,最小值为92.(3)∵k OA =2,k OB =12,∴12≤yx ≤2,∴z 的最大值为2,最小值为12.。