题型一
题型二
题型三
1 ≤ ������ + ������ ≤ 5, 正解:解法一:作出二元一次不等式组 -1 ≤ ������-������ ≤ 3 所表示的平面区域(如图中的阴影部分所示)即可行域. 考虑 z=2x-3y,把它变形为 y= 3 ������ − 3 ������, 得到斜率为 3 , 且随z 变 化的一组平行直线.− ������是直线在y 轴上的 截距,当直线截距最大时,z 的值最小,当然直 线要与可行域相交,即在满足约束条件时目 标函数 z=2x-3y 取得最小值;当直线截距最 小时,z 的值最大,当然直线要与可行域相交, 即在满足约束条件时目标函数 z=2x-3y 取 得最大值.
解析:不等式组表示的平面区域如 图阴影部分所示.作出直线y=ax(a>0),并平移该直线,当直线在y轴 上的截距最大时,z最大.又目标函数仅 在点(3,1)处取最大值. 故-a<-1,即a>1. 答案:(1,+∞)
题型一
������ + ������ ≥ 0, 【变式训练 2】 (1)变量 x,y 满足约束条件 ������-2������ + 2 ≥ 0, ������������-������ ≤ 0, ( D.2 ).
1 3 2 1 2
题型一
题型二
题型三
由图可见,当直线 z=2x-3y 经过可行域上的点 A 时,截距最大,即 z 最小. ������-������ = -1, 得点A 的坐标为(2,3), ������ + ������ = 5, ∴zmin=2x-3y=2×2-3×3=-5. 当直线 z=2x-3y 经过可行域上的点 B 时,截距最小,即 z 最大. 解方程组 ������-������ = 3, ������ + ������ = 1, 得点 B 的坐标为(2,-1), ∴zmax=2x-3y=2×2-3×(-1)=7. ∴-5≤2x-3y≤7. ∴2x-3y 的取值范围是[-5,7]. 解方程组