第五章2014典型环节资料
- 格式:ppt
- 大小:4.74 MB
- 文档页数:111
登录注册主页关于我们控制理论教学制冷机仿真热工设备仿真论坛博客联系我们您当前的位置:主页> 控制理论教学> 控制理论教程> 第二章> 2.3习题演练控制系统实验控制理论教程学生作业档案教师办公室典型作业展示常见问题第一章自动控制的基本概念第二章控制系统的数学描述第三章控制系统的时域分析第四章控制系统的频域分析第五章过程控制2.3 控制系统的典型环节2.3 控制系统的典型环节自动控制系统是由不同功能的元件构成的。
从物理结构上看,控制系统的类型很多,相互之间差别很大,似乎没有共同之处。
在对控制系统进行分析研究时,我们更强调系统的动态特性。
具有相同动态特性或者说具有相同传递函数的所有不同物理结构,不同工作原理的元器件,我们都认为是同一环节。
所以,环节是按动态特性对控制系统各部分进行分类的。
应用环节的概念,从物理结构上千差万别的控制系统中,我们就发现,他们都是有为数不多的某些环节组成的。
这些环节成为典型环节或基本环节。
经典控制理论中,常见的典型环节有以下六种。
2.3.1 比例环节比例环节是最常见、最简单的一种环节。
比例环节的输出变量y(t)与输入变量x(t)之间满足下列关系(2.24)比例环节的传递函数为(2.25)式中K为放大系数或增益。
杠杆、齿轮变速器、电子放大器等在一定条件下都可以看作比例环节。
例10 图2.10 是一个集成运算放大电路,输入电压为,输出电压为,为输入电阻,为反馈电阻。
我们现在求取这个电路的传递函数。
解从电子线路的知识我们知道这是一个比例环节,其输入电压与输出电压的关系是(2.26)按传递函数的定义,可以得到(2.27)式中,可见这是一个比例环节。
如果我们给比例环节输入一个阶跃信号,他的输出同样也是一个阶跃信号。
阶跃信号是这样一种函数(2.28)式中为常量。
当时,称阶跃信号为单位阶跃信号。
阶跃输入下比例环节的输出如图2.11 所示。
比例环节将原信号放大了K倍。
自动控制原理第五章线性系统的频域分析法1、基本内容和要点(l)频率特性系统的稳态频率响应,频率响应的物理概念及数学定义;求取频率特性的分析法和实验法。
(2)典型环节的频率特性比例、惯性、积分、微分、振荡、延迟环节的频率特性和对数频率特性。
非最小相位环节的频率特性。
(3)反馈控制系统的开环频率特性研究系统开环频率特性的意义。
单环系统开环对数频率持性的求取与绘制。
最小相位系统开环对数幅频特性与相频特性间的对应关系。
(4)奈奎斯特稳定判据幅角定理。
S平面与F平面的映射关系。
根据开环频率特性判别闭环系统稳定性的奈氏判据。
奈氏判据在多环系统中的应用和推广。
系统的相对稳定性。
相角与增益稳定裕量。
(5)二阶和高阶系统的频率域性能指标与时域性指标。
系统频率域性能指标。
二阶和高阶系统暂态响应性能指标与频率域性能指标间的解析关系及近似关系。
(6)系统的闭环频率特性开环频率特性与闭环频率特性间的解析关系。
用等M圆线从开环频率特性求取闭环频率特性。
用尼氏图线从开环对数频率特性求取闭环频率特性。
2、重点(l)系统稳态频率响应和暂态时域响应的关系。
(2)系统开环频率特性的绘制,最小相位系统开环频率特性的特点。
(3)奈奎斯特稳定判据和稳定裕量。
5-1引言第三章,时域分析,分析系统零、极点与系统时域指标的关系;典型二阶系统极点或和n与时域指标tp、和t、tr及稳态误差等的关系,及高阶系统的近似指标计算;第四章,根轨迹分析,研究系统某一个参数变化对系统闭环极点的影响;本章讨论系统零、极点对系统频率域指标的关系,频域指标又分开环频域指标和闭环频域指标,它们都是在频域上评价系统性能的参数。
频域分析是控制理论的一个重要分析方法。
5-2频率特性1.频率特性的基本概念理论依据定理:设线性定常系统G()的输入信号是正弦信号某(t)某int,在过度过程结束后,系统的稳态输出是与输入同频率的正弦信号,其幅值和相角都是频率的函数,即为c(t)Y()in[t()]。