第1节 定积分的元素法
- 格式:ppt
- 大小:293.00 KB
- 文档页数:10
二、元素法 1. 能用定积分计算的量,应满足下列三个条件 (1) U 与变量人的变化区间[a ,b ]有关; (2) U 对于区间[a ,b ]具有可加性; (3) U 部分量A U .可近似地表示成f (& i) •电i 。
2. 写出计算U 的定积分表达式步骤 (1) 根据问题,选取一个变量x 为积分变量,并确定它的变化区间[a , b ]; (2) 设想将区间[a ,b ]分成若干小区间,取其中的任一小区间任,x + d ], 求出它所对应的部分量A U 的近似值 A U 机f (x )dx ( f (x )为[a ,b ]上一连续函数) 则称f (x ')dx 为量U 的元素,且记作dU = f (x )dx 。
(3) 以U 的元素dU 作被积表达式,以[a , b ]为积分区间,得 U = f f (x )dx a 这个方法叫做元素法,其实质是找出U 的元素dU 的微分表达式 dU = f (x )dx (a < x < b ) 因此,也称此法为元素法。
课后作业教学后记 教学过程二、 体积1. 旋转体的体积求由曲线y = f (x ),直线x = a , x = b 及x 轴所围的曲边梯形绕x 轴旋转 一周而成的旋转体体积。
V =兀卜平2(y )dy 例5求y = x 3, x = 1及x 轴所围图形分别绕x 、y 轴旋转一周而成的旋转体体 积。
例6求y = sin x 和它在x = y 处的切线及x =兀所围图形绕x 轴旋转而成的 旋转体体积。
2. 截面积为已知的立体的体积 某立体的垂直于x (或y )轴的截面面积为已知,体积V = j b A(x)dx a 例7求以半径为R 的圆为底,平行且等于底圆直径的线段为顶,高为h 的正劈 锥体的体积。
三、 平面曲线的弧长 1. 直角坐标情形 s — j b %:1 + (y 心dx a 例8求y — ln x 对应于13 < x 〈胰一段弧长。
课时计划 ( 教案 )课时计划 ( 教案 )课时计划 ( 教案 )课时计划 ( 教案 )课时计划 ( 教案 )课 时 计 划 ( 教 案 ) 一、()()=n y f x 型的微分方程 解法: 积分n 次 1)1()(C dx x f y n +=⎰-, 21)2(])([C dx C dx x f y n ++=⎰⎰-, …… 例1 求微分方程y '''=e 2x cos x 的通解.。
例2 求微分方程x x y cos sin -=''满足初始条件1)0(,2)0(='=y y 的特解。
二、),(y x f y '=''型的微分方程 解法: 设y '=p 则方程化为 p '=f (x , p ). 设p '=f (x , p )的通解为p =(x ,C 1), 则 ),(1C x dx dy ϕ=. 原方程的通解为21),(C dx C x y +=⎰ϕ. 例3 求微分方程 (1x 2)y ''=2xy 满足初始条件 y |x =0=1, y '|x =0=3的特解. 例4设由一质量分布均匀,柔软的细绳,其两端固定,求它在自身重力作用下的曲线方程.三、),(y y f y '=''型的微分方程 解法: 设y '=p ,有dy dp p dx dy dy dp dx dp y =⋅==''. 原方程化为 ),(p y f dydp p =. 设方程),(p y f dy dp p =的通解为y '=p =(y , C 1), 则原方程的通解为21),(C x C y dy +=⎰ϕ. 例5 求微分yy ''y '2=0的通解。
四、习题讲解329P Ex2(5)(6),4五、课堂小结、布置作业课时计划 ( 教案 )课时计划 ( 教案 )课时计划 ( 教案 )。