计算方法习题集及答案第四版
- 格式:pdf
- 大小:188.58 KB
- 文档页数:14
《计算方法》习题答案第一章 数值计算中的误差1.什么是计算方法?(狭义解释)答:计算方法就是将所求的的数学问题简化为一系列的算术运算和逻辑运算,以便在计算机上编程上机,求出问题的数值解,并对算法的收敛性、稳定性和误差进行分析、计算。
2.一个实际问题利用计算机解决所采取的五个步骤是什么?答:一个实际问题当利用计算机来解决时,应采取以下五个步骤: 实际问题→建立数学模型→构造数值算法→编程上机→获得近似结果4.利用秦九韶算法计算多项式4)(53-+-=x x x x P 在3-=x 处的值,并编程获得解。
解:400)(2345-+⋅+-⋅+=x x x x x x P ,从而所以,多项式4)(53-+-=x x x x P 在3-=x 处的值223)3(-=-P 。
5.叙述误差的种类及来源。
答:误差的种类及来源有如下四个方面:(1)模型误差:数学模型是对实际问题进行抽象,忽略一些次要因素简化得到的,它是原始问题的近似,即使数学模型能求出准确解,也与实际问题的真解不同,我们把数学模型与实际问题之间存在的误差称为模型误差。
(2)观测误差:在建模和具体运算过程中所用的一些原始数据往往都是通过观测、实验得来的,由于仪器的精密性,实验手段的局限性,周围环境的变化以及人们的工作态度和能力等因素,而使数据必然带有误差,这种误差称为观测误差。
(3)截断误差:理论上的精确值往往要求用无限次的运算才能得到,而实际运算时只能用有限次运算的结果来近似,这样引起的误差称为截断误差(或方法误差)。
(4)舍入误差:在数值计算过程中还会用到一些无穷小数,而计算机受机器字长的限制,它所能表示的数据只能是一定的有限数位,需要把数据按四舍五入成一定位数的近似的有理数来代替。
这样引起的误差称为舍入误差。
6.掌握绝对误差(限)和相对误差(限)的定义公式。
答:设*x 是某个量的精确值,x 是其近似值,则称差x x e -=*为近似值x 的绝对误差(简称误差)。
《管理运筹学》第四版第3章线性规划问题的计算机求解课后习题解析第一篇:《管理运筹学》第四版第3章线性规划问题的计算机求解课后习题解析《管理运筹学》第四版课后习题解析第3章线性规划问题的计算机求解1.解:⑴甲、乙两种柜的日产量是分别是4和8,这时最大利润是2720⑵每多生产一件乙柜,可以使总利润提高13.333元⑶常数项的上下限是指常数项在指定的范围内变化时,与其对应的约束条件的对偶价格不变。
比如油漆时间变为100,因为100在40和160之间,所以其对偶价格不变仍为13.333 ⑷不变,因为还在120和480之间。
2.解:⑴不是,因为上面得到的最优解不为整数解,而本题需要的是整数解⑵最优解为(4,8).解:⑴农用车有12辆剩余⑵大于300 ⑶每增加一辆大卡车,总运费降低192元4.解:计算机得出的解不为整数解,平移取点得整数最优解为(10,8)5.解:圆桌和衣柜的生产件数分别是350和100件,这时最大利润是3100元相差值为0代表,不需要对相应的目标系数进行改进就可以生产该产品。
最优解不变,因为C1允许增加量20-6=14;C2允许减少量为10-3=7,所有允许增加百分比和允许减少百分比之和(7.5-6)/14+(10-9)/7〈100%,所以最优解不变。
6.解:(1)x1=150,x2=70;目标函数最优值103 000。
(2)1、3车间的加工工时数已使用完;2、4车间的加工工时数没用完;没用完的加工工时数为2车间330小时,4车间15小时。
(3)50,0,200,0。
含义:1车间每增加1工时,总利润增加50元;3车间每增加1工时,总利润增加200元;2车间与4车间每增加一个工时,总利润不增加。
(4)3车间,因为增加的利润最大。
(5)在400到正无穷的范围内变化,最优产品的组合不变。
(6)不变,因为在[0,500]的范围内。
(7)所谓的上限和下限值指当约束条件的右边值在给定范围内变化时,约束条件1的右边值在[200,440]变化,对偶价格仍为50(同理解释其他约束条件)。
p2.例1 设x ,y 为实数,x y <.证明:存在有理数r 满足 x r y <<.证 由于x y <,故存在非负整数n ,使得n n x y <.令 ()12n n r x y =+ , 则r 为有理数,且有n n x x r y y ≤<<≤ ,即得x r y <<. p3.1.实数具有阿基米德性,即对任何,a b R ∈, 若0b a >>,则存在正整数n ,使得na b >. 证明:+,a b R ∀∈,n N +∃∈, 使得nb a >, 设012.n a a a a a = ,0a k N =∈ ,则1+110k a k +≤<,设012n b b b b b =,p b 为第一个不为0的正整数,令+110p k n +=,则+110k nb a >>,即nb a >.2.实数集R 具有稠密性,即任何两个不相等的实数之间必有另一个实数,且既有有理数,也有无理数。
证 若a b <,则存在n N +∈,使)(112b a n <- ,)(2b a n<- , 设k 是满足k a n ≤ 的最大正整数,即+1k a n >,0ka n -≤ , 于是122k k k k ab a b n n n n n ++<<=+<+-≤ ,则1k n + ,2k n+ 是a 与b 之间的有理数,14k n nπ++ 是a 与b 之间的无理数。
.4P1.设a 为有理数,x 为无理数,证明:(1)a x +是无理数;(2)当a 0≠时,ax 是无理数.分析:根据有理数集对加、减、乘、除(除数不为0)四则运算的封闭性,用反证法证. 证明:(1)假设a x +是有理数,则()a x a x +-=是有理数,这与题设x 是无理数相矛盾,故a x +是无理数.(2)假设ax 是有理数,则当0a ≠时,axx a=是有理数,这与题设x 为无理数相矛盾,故ax 是无理数.8.设p 为正整数.证明:若p .分析:本题采用反证法,联想到互质、最大公约数以及辗转相除法的有关知识点,可得结论.证明:用反证法.为有理数,则存在正整数m 、n mn=,且m 与n 互质.于是2m 22,(),pn m n pn ==⋅可见n 能整除2m ,由于m 与n 互质,从而它们的最大公约数为1,由辗转相除法知:存在整数u 、v 使1mu mv +=,则2m u mnv m +=.因n 既能整除2m u 又能整除mnv ,故能整除其和,于是n 能整除m ,这样1n =,所以2p m =.这与p 不是完全平方数相矛盾.小结:本题证明过程比较独特,先假设有理数为互质的两个数的商,利用这两个数与p 之间的关系,运用辗转相除法得出结论,注意知识点之间的内在联系.P7定理1.1(确界原理) 设s 为非空数集.若s 有上界,则s 必有上确界;若s 有下界,则s 必有下确界.证 我们只证明关于上确界的结论,后一结论可类似地证明.为叙述的方便起见,不妨设s 含有非负数.由于s 有上界,故可找到非负整数n ,使得 1) 对于任何x S ∈有1x n <+; 2) 存在0a S ∈,使0a n ≥.再对半开区间[),1n n +作10等分,分点为.1,.2,.9n n n ,则存在0,1,2,…,9中的一个数1n ,使得1) 对于任何x S ∈有1110.n x n <+; 2) 存在1a S ∈,使11.a n n ≥. 再对半开区间111.10,.n n n n ⎡⎫⎪⎢⎣⎭+作10 等分,则存在0,1,2,…,9中的一个数2n ,使得 1) 对于任何x S ∈有1221.10n n n x +<; 2) 存在2a S ∈,使212.a n n n ≥.继续不断地10等分在前一步骤所得到的半开区间,可知对任何1,2,k =,存在0,1,2,…,9中的一个数k n ,使得1) 对于任何x S ∈有121.10k kx n n n n <+; (1) 2) 存在k a S ∈,使12.k k a n n n n ≥.将上述步骤无限地进行下去,得到实数12.kn n n n η=.以下证明sup S η=.为此只需证明:(i )对一切x S ∈有x η≤;(ii )对任何αη<,存在a S '∈使a α<'.倘若结论(i )不成立,即存在x S ∈使x η>,则可找到x 的k 位不足近似k x ,使121.10k k k kx n n n n η>=+,从而得121.10k kx n n n n >+, 但这与不等式(1)相矛盾.于是(i )得证.现设αη<,则存在k 使η的k 位不足近似k k ηα>,即12.k k n n n n α>.根据数η的构造,存在a S '∈使k a η'≥,从而有k k >a ηαα≥≥'即得到<a α'. 这说明(ii )成立 P.130例3 用数列的柯西收敛准则证明确界原理.证 设S 为非空有上界数集,由实数的阿基米德性,对任何正数α,存在整数k α,使得k ααλα=为S 的上界,而(1)k ααλαα-=-不是S 的上界,即存在'αS ∈,使得'(1).k ααα>-分别取1,1,2,,n nα==则对每一个正整数n ,存在相应的,n λ使得n λ为S 的上界,而1n nλ-不是S 的上界,故存在',S α∈使得 1'n nαλ>- (6)又对正整数,m m λ是S 的上界,故有'm λα≥.结合(6)式得1n m nλλ-<;同理有1m n mλλ-<.从而得 11||max{,}.m n m nλλ-<于是,对任给的0,ε>存在0N >,使得当,m n N >时有||m n λλε-<由柯西收敛准则,数列{}n λ收敛.记lim n n λλ→∞=. (7)现在证明λ就是S 的上确界,首先,对任何S α∈和正整数n 有n αλ≤,由(7)式得,αλ≤即λ是S 的一个上界.其次,对任何0,δ>由1n→∞()n →∞及(7)式,对充分大的n 的同时有 1,.22n n δδλλ<>- 又因1n n λ-不是S 的上界。
习 题 一3.已知函数y =4, 6.25,9x x x ===处的函数值,试通过一个二次插值函解:0120124, 6.25,9;2, 2.5,3y x x x y y y =======由题意 (1) 采用Lagrange插值多项式220()()j j j y L x l x y ==≈=∑27020112012010*********()|()()()()()()()()()()()()(7 6.25)(79)(74)(79)(74)(7 6.25)2 2.532.255 2.25 2.75 2.7552.6484848x y L x x x x x x x x x x x x x y y y x x x x x x x x x x x x ==≈------=++------------=⨯+⨯+⨯⨯-⨯⨯= 其误差为(3)25(3)25(3)2[4,9]2()(7)(74)(7 6.25)(79)3!3()83max |()|40.0117281|(7)|(4.5)(0.01172)0.008796f R f x x f x R ξ--=---==<∴<=又则(2)采用Newton插值多项式2()y N x =≈ 根据题意作差商表:224(7)2(74)()(74)(7 6.25) 2.64848489495N =+⨯-+-⨯-⨯-≈4. 设()()0,1,...,k f x x k n ==,试列出()f x 关于互异节点()0,1,...,i x i n =的Lagrange 插值多项式。
注意到:若1n +个节点()0,1,...,i x i n =互异,则对任意次数n ≤的多项式()f x ,它关于节点()0,1,...,i x i n =满足条件(),0,1,...,i i P x y i n ==的插值多项式()P x 就是它本身。
可见,当k n ≤时幂函数()(0,1,...,)kf x x k n ==关于1n +个节点()0,1,...,i x i n =的插值多项式就是它本身,故依Lagrange 公式有()00(),0,1,...,nn n k kk i j j j j j i j ii jx x x l x x x k n x x ===≠-=≡=-∑∑∏特别地,当0k =时,有()0001nn n ij j j i j ii jx x l x x x ===≠-=≡-∑∑∏而当1k =时有()000nnn ij j j j j i j ii jx x x l x x x x x ===≠⎛⎫- ⎪=≡ ⎪- ⎪⎝⎭∑∑∏ 5.依据下列函数表分别建立次数不超过3的Lagrange 插值多项式和Newton 插值多项式,并验证插值多项式的唯一性。
习题二包括题目: P36页 5(1)(4)5(4)习题三包括题目:P61页 1(1)(2); 3; 5; 6; 14;15(1) 1(1)(2)的解如下3题的解如下5,6题14题解如下14. 设22121212()(6)(233)f x x x x x x x =+++---, 求点在(4,6)T-处的牛顿方向。
解:已知 (1)(4,6)T x=-,由题意得121212212121212(6)2(233)(3)()2(6)2(233)(3)x x x x x x x f x x x x x x x x +++-----⎛⎫∇= ⎪+++-----⎝⎭∴ (1)1344()56g f x -⎛⎫=∇=⎪⎝⎭21212122211212122(3)22(3)(3)2(233)()22(3)(3)2(233)22(3)x x x x x x x f x x x x x x x x +--+--------⎛⎫∇= ⎪+--------+--⎝⎭∴ (1)2(1)1656()()564G x f x --⎛⎫=∇=⎪-⎝⎭(1)11/8007/400()7/4001/200G x --⎛⎫= ⎪--⎝⎭∴ (1)(1)11141/100()574/100d G x g -⎛⎫=-=⎪-⎝⎭15(1)解如下15. 用DFP 方法求下列问题的极小点(1)22121212min 353x x x x x x ++++解:取 (0)(1,1)T x=,0H I =时,DFP 法的第一步与最速下降法相同2112352()156x x f x x x ++⎛⎫∇= ⎪++⎝⎭, (0)(1,1)T x =,(0)10()12f x ⎛⎫∇= ⎪⎝⎭(1)0.07800.2936x -⎛⎫= ⎪-⎝⎭, (1)1.3760() 1.1516f x ⎛⎫∇= ⎪-⎝⎭以下作第二次迭代(1)(0)1 1.07801.2936x x δ-⎛⎫=-= ⎪-⎝⎭, (1)(0)18.6240()()13.1516f x f x γ-⎛⎫=∇-∇= ⎪-⎝⎭0110111011101T T T TH H H H H γγδδδγγγ=+- 其中,111011126.3096,247.3380T T TH δγγγγγ===111.1621 1.39451.3945 1.6734Tδδ⎛⎫= ⎪⎝⎭ , 01101174.3734113.4194113.4194172.9646T TH H γγγγ⎛⎫== ⎪⎝⎭所以10.74350.40560.40560.3643H -⎛⎫= ⎪-⎝⎭(1)(1)1 1.4901()0.9776dH f x -⎛⎫=-∇= ⎪⎝⎭令 (2)(1)(1)1xx d α=+ , 利用 (1)(1)()0df x d d αα+=,求得 10.5727α=-所以 (2)(1)(1)0.77540.57270.8535xx d⎛⎫=-= ⎪-⎝⎭ , (2)0.2833()0.244f x ⎛⎫∇= ⎪-⎝⎭以下作第三次迭代(2)(1)20.85340.5599x x δ⎛⎫=-= ⎪-⎝⎭ , (2)(1)2 1.0927()()0.9076f x f x γ-⎛⎫=∇-∇= ⎪⎝⎭22 1.4407T δγ=- , 212 1.9922T H γγ=220.72830.47780.47780.3135T δδ-⎛⎫=⎪-⎝⎭1221 1.39360.91350.91350.5988T H H γγ-⎛⎫= ⎪-⎝⎭所以22122121222120.46150.38460.38460.1539T T T TH H H H H δδγγδγγγ-⎛⎫=+-= ⎪-⎝⎭(2)(2)20.2246()0.1465d H f x ⎛⎫=-∇= ⎪-⎝⎭令 (3)(2)(2)2xxdα=+ , 利用(2)(2)()0df x d d αα+=,求得 21α=所以 (3)(2)(2)11x x d ⎛⎫=+=⎪-⎝⎭, 因为 (3)()0f x ∇=,于是停止 (3)(1,1)T x =-即为最优解。
1.1.1 给出以下表达式的值:a. ( 0 + 15 ) / 2b. 2.0e-6 * 100000000.1c. true && false || true && true答案:a.7,b.200.0000002 c.ture1.1.2 给出以下表达式的类型和值:a. (1 + 2.236)/2b. 1 + 2 + 3 + 4.0c. 4.1 >= 4d. 1 + 2 + "3"答案:a.1.618 b. 10.0 c.true d.331.1.3 编写一个程序,从命令行得到三个整数参数。
如果它们都相等则打印equal,否则打印not equal。
public class TestUqual{public static void main(String[] args){int a,b,c;a=b=c=0;StdOut.println("Please enter three numbers");a =StdIn.readInt();b=StdIn.readInt();c=StdIn.readInt();if(equals(a,b,c)==1){StdOut.print("equal");}else{StdOut.print("not equal");}}public static int equals(int a ,int b , int c){if(a==b&&b==c){return 1;}else{return 0;}}}1.1.4 下列语句各有什么问题(如果有的话)?a. if (a > b) then c = 0;b. if a > b { c = 0; }c. if (a > b) c = 0;d. if (a > b) c = 0 else b = 0;答案:a. if (a > b) c = 0; b. if (a > b) { c = 0; }1.1.5 编写一段程序,如果double 类型的变量x 和y 都严格位于0 和1 之间则打印true,否则打印false。