PKPM 软件计算结果分析详细说明
- 格式:pdf
- 大小:238.26 KB
- 文档页数:13
结构设计pkpm软件SATWE计算结果分析分析与设计参数定义一.总信息1.墙元细分最大控制长度:墙元细分时需要的一个参数,对于尺寸较大的剪力墙,小墙元的边长不得大于给定的限制Dmax,程序限定1.0≤Dmax≤5.0,隐含值Dmax=2.0,Dmax=2.0.对一般工程,Dmax=2.0对于框支剪力墙结构,Dmax=1.5或者1.02.对搜有楼层强制采用刚性楼板假定当计算结构位移比时,需要选择此项。
除了位移比计算,其他的结构分析,设计不应选择此项。
3.墙元侧向节点信息这是墙元刚度矩阵凝聚计算的一个控制参数,若选“出口”墙元的变形协调性好,分析结果符合剪力墙的实际,但计算量较大。
若选“内部”,这时带洞口的墙元两侧边中部的节点为变形不协调点,是对剪力墙的一种简化模拟,精度略逊于前者,但效率高,实用性好,计算量比前者少。
多层结构—(剪力墙较少,工程规模相对较小)选---出口高层结构—内部4.模拟施工加载3计算竖向力,采用分层刚度分层加载模型,与模拟施工加载1类似,只是在分层加载时去掉了没有用的刚度,使其更接近于施工过程。
计算恒载。
5.考虑偶然偏心如果考虑偶然偏心,程序将自动增加计算4个地震工况,分别是质心沿Y正、负向偏移5%的X地震和质心沿X正、负向偏移5%的Y 地震。
6.考虑双向地震作用若考虑,程序自动对X,Y的地震作用效应Sx,Sy进行修改。
Sx←sign(Sx)√Sx2+(0.85Sy)2Sy←sign(Sy)√Sy2+(0.85Sx)27.计算振型个数一般计算振型数应大于9 ,多塔结构多一些。
但是一个规则的两层结构,采用刚性楼板假定,每块刚性楼板只有三个有效动力自由度,整个结构共有6个有效动力自由度,系统自身只有6个特征值,最多取6个8.活荷质量折减系数计算重力荷载代表值时的活荷载组合值系数,缺省取值与荷载组合中的活荷载组合值系数相同(一般为0.5),如果用户需要,也可以自己修改。
9.周期折减系数为了充分考虑框架结构和框架-剪力墙结构的填充墙刚度对计算周期的影响。
PKPM计算分析PKPM是国内常用的工程结构计算软件,是一款专业的钢结构计算分析软件,主要用于对钢结构进行受力分析和设计计算。
PKPM包括了许多功能模块,如结构建模、受力分析、稳定性分析、设计计算和结果输出等。
下面将对PKPM的计算分析进行详细介绍。
首先,PKPM的计算分析的第一步是进行结构建模。
用户可以根据实际情况,选择合适的构件材料、截面形状和连接方式等进行构件的绘制。
PKPM提供了多种绘图工具,使得用户可以方便地进行结构的建模。
在完成结构建模后,就可以进行受力分析。
PKPM通过有限元法对结构进行受力分析,将结构分割成多个小单元,对每个小单元进行受力计算,并计算出整个结构的受力情况。
在进行受力分析时,用户需要设置相应的受力边界条件,如约束条件、外荷载等。
受力分析完成后,可以进行稳定性分析。
稳定性分析是评价结构是否可以抵抗弯曲、扭转、屈曲等稳定性失稳形式的能力。
PKPM可以根据结构的几何形状和结构的材料特性进行稳定性分析,评估结构的稳定性。
接下来,可以进行设计计算。
设计计算是根据结构要求和材料特性,计算出结构构件的尺寸和截面形状等。
PKPM根据国家规范和设计准则进行设计计算,计算出结构构件的尺寸和截面形状,满足结构的安全要求。
最后,PKPM可以输出计算结果。
结果输出包括受力分析结果、稳定性分析结果和设计计算结果等。
用户可以根据需要选择输出结果,可以以图形形式和表格形式展示计算结果,便于用户进行结果分析和评估。
总的来说,PKPM计算分析是一种专业的钢结构计算软件,主要用于对钢结构进行受力分析和设计计算。
PKPM具有结构建模、受力分析、稳定性分析、设计计算和结果输出等功能,可以方便地进行工程结构计算分析。
通过PKPM计算分析,可以帮助用户评估结构的受力情况、稳定性和设计尺寸,确保结构的安全和可靠。
PKPM2024版SATWE计算结果分析SATWE(拼装结构自由度七杆架)是PKPM软件中的一种计算模块,用于分析和设计拼装结构。
而PKPM2024版则是PKPM软件的早期版本,其计算模块相对较简单。
本文将对PKPM2024版SATWE计算结果进行分析,并对其存在的问题进行讨论。
首先,需要明确SATWE计算模块的基本原理和应用范围。
SATWE是基于静力学原理,通过对各个杆件进行应力和变形计算,判断构件的稳定性,并进行极限承载力和刚度分析。
SATWE适用于开展拼装结构的结构分析、验算和设计。
在PKPM2024版中,SATWE计算模块的算法相对较为简单,仅考虑静力学原理,并未考虑材料的非线性特性和构件的几何非线性。
这导致计算结果存在一定的偏差,可能与实际情况存在较大差异。
另外,PKPM2024版SATWE计算模块对于拼装结构的复杂性和多样性处理能力较弱。
该版本中的计算模块主要针对简单和常见的拼装结构进行分析,对于非常规的结构形式和载荷情况处理能力有限。
这可能导致计算结果在一些情况下不准确或不适用。
此外,PKPM2024版SATWE计算模块在计算结果的输出和可视化方面也存在一些不足。
该版本的计算结果输出界面较为简单,仅提供了基本的计算参数和结果,缺乏对结果的详细解释和分析。
同时,该版本的可视化功能也较为有限,无法直观展示结构的应力、变形等信息。
为了克服上述问题,建议在进行拼装结构分析时,尽量使用更新版本的PKPM软件,如PKPM2024版或更高版本。
这些更新版本的软件在算法、计算能力和结果展示方面都有较大的改进和提升。
此外,使用其他专业的结构分析软件也是一个不错的选择,如ANSYS、ABAQUS等。
PKPM软件计算结果审查分析Senegal 2011-20/11计算机的后处理结果,即最终打印结果指内力图、配筋图和详细的内力及配筋表(按构件编号依次输出),有抗震计算时还输出中间分析结果(如自震周期、振型、位移、底部总剪力等)设计人应认真对最终打印结果进行分析,确认无误或无异常情况后再绘制施工图,必要时应将最终确定的构件编号、构件截面和配筋数量、规格绘制成简单的平面图,供校核审定和归档用。
对最终打印结果不进行分析,盲目采用其配筋直接绘制施工图的做法是不可取的,往往会造成不良的严重后果,既对工程不负责任、有不利于提高自己的设计水平。
一、计算结果合理性判定1、对重力荷载作用下计算结果的分析审查重力荷载作用下的内力图是否符合受力规律;可以利用结构底层检查竖向内外力的平衡,即底层柱、墙在重力荷载作用下的轴力之和应等于总重量;如果结构对称、荷载对称,其结构内力图必然对称,即检查其对称性。
当以上三者出现异常情况时,需要返回原始数据进行检查。
2、对风荷载作用下计算结果的分析审查风荷载作用下的内力图和位移是否符合受力规律;可以利用结构底层检查侧向内外力的平衡,即底层柱、墙在风荷载作用下的剪力之和应等于全部风力值(需注意局部坐标与整体坐标的方向);如果结构沿竖向的刚度变化较均匀、且风荷载沿高度的变化也较均匀时,其结构的内力和位移沿高度的变化也应该是均匀的,不应有大正大负、大出大进等突变。
3、对水平地震荷载作用下计算结果的分析水平地震荷载作用下,可以利用其结果进行如同风荷载作用下的渐变性分析,但不能进行对称性分析,也不能利用结构底层进行内外力平衡的分析(因为振型组合后的内力与地震作用力不再平衡)。
水平地震荷载作用下,对其计算结果的分析重点如下。
3.1.结构的自振周期对一般的工程,结构的自振周期在考虑折减系数后应控制在一定的范围内。
如结构的基本自振周期(即第一周期)大致为:框架结构T1≈ ( 0.12~0.15) n框-剪和框-筒结构T1≈ ( 0.08~0.12) n剪力墙和筒中筒结构 T1≈(0.04~0.06)n式中,n为建筑物的总层数。
一自振周期的评定 (1)二振型曲线的评定 (3)三地震力的评定 (3)四水平位移的特征 (5)五几个重要的比值 (6)1轴压比 (6)2位移比 (6)3周期比 (7)4刚度比 (7)5剪重比 (8)6刚重比 (8)7有效质量比 (9)一自振周期的评定结构基本自振周期的计算方法有三种:能量法,等效质量法,顶点位移法。
但是有钢筋混凝土框架的经验公式值:第一振型T1=(0.12-0.15)n,第二振型T2=(1/3-1/5) T1,第三振型T3=(1/5-1/7) T1。
详见《高层建筑混凝土结构技术规程》4.2.3,调入PKPM电算结果:考虑扭转耦联时的振动周期(秒)、X,Y 方向的平动系数、扭转系数有计算的结果知结构的第一振型周期分别为0.7854,0.2524,0.1443,0.1022,0.0841第二振型周期分别为0.7441,0.2421,0.1408,0.1016,0.0831第三振型周期分别为0.6340,0.2065,0.1200,0.0862,0.0709 具体分析见如下结果:计算出的经验值为0.6~0.75 0.15~0.1875 0.1~0.125,由上分析知道所算的结果与理论相差并不是很远,所以结构的构件尺寸基本合理。
二振型曲线的评定有经验知识知在正常的计算下,对于比较均匀的结构,振型曲线应是比较连续光滑的曲线,不应有大的凹凸曲折。
第一振型无零点;第二振型在(0.7-0.8)H处有一个零点;第三振型分别在(0.4-0.5)H及(0.8-0.9)H处有两个零点。
调入PKPM电算结果:第一振型曲线第二振型曲线第三振型曲线上面的图片是一层楼中X方向第一、第二、第三振型投影仅为电算结果中的一个代表由该图知各振型曲线基本光滑,与经验基本一致,说明结构的布局,构件的选取以及荷载的输入基本正确。
三地震力的评定根据目前许多工程的计算结果,截面尺寸、结构布置都比较正常的结构,其底部剪力约在下述范围内:7度,II类场地土:F EK≈(0.03-0.06)G调入PKPM的电算结果:********************************************************** 各层的质量、质心坐标信息 **********************************************************层号塔号质心 X 质心 Y 质心 Z 恒载质量活载质量(m) (m) (t) (t)5 1 21.792 12.079 16.800 414.2 12.34 1 21.672 12.015 13.500 685.1 54.93 1 21.672 12.015 10.200 685.1 54.92 1 21.672 12.015 6.900 685.1 54.91 1 21.680 12.016 3.600 689.8 54.9活载产生的总质量 (t): 231.930恒载产生的总质量 (t): 3159.396结构的总质量 (t): 3391.326恒载产生的总质量包括结构自重和外加恒载结构的总质量包括恒载产生的质量和活载产生的质量活载产生的总质量和结构的总质量是活载折减后的结果 (1t = 1000kg)。
结构设计pkpm软件SATWE计算结果分析SATWE软件计算结果分析一、位移比、层间位移比控制规范条文:新高规的4.3.5条规定,楼层竖向构件的最大水平位移和层间位移角,A、B级高度高层建筑均不宜大于该楼层平均值的1.2倍;且A级高度高层建筑不应大于该楼层平均值的1.5倍,B级高度高层建筑、混合结构高层建筑及复杂高层建筑,不应大于该楼层平均值的1.4倍。
高规4.6.3条规定,高度不大于150m的高层建筑,其楼层层间最大位移与层间之比(即最大层间位移角)Δu/h应满足以下要求:结构休系Δu/h限值框架 1/550框架-剪力墙,框架-核心筒 1/800筒中筒,剪力墙 1/1000框支层 1/1000名词释义:(1)位移比:即楼层竖向构件的最大水平位移与平均水平位移的比值。
(2)层间位移比:即楼层竖向构件的最大层间位移角与平均层间位移角的比值。
其中:最大水平位移:墙顶、柱顶节点的最大水平位移。
平均水平位移:墙顶、柱顶节点的最大水平位移与最小水平位移之和除2。
层间位移角:墙、柱层间位移与层高的比值。
最大层间位移角:墙、柱层间位移角的最大值。
平均层间位移角:墙、柱层间位移角的最大值与最小值之和除2。
控制目的:高层建筑层数多,高度大,为了保证高层建筑结构具有必要的刚度,应对其最大位移和层间位移加以控制,主要目的有以下几点:1.保证主体结构基本处于弹性受力状态,避免混凝土墙柱出现裂缝,控制楼面梁板的裂缝数量,宽度。
2.保证填充墙,隔墙,幕墙等非结构构件的完好,避免产生明显的损坏。
3.控制结构平面规则性,以免形成扭转,对结构产生不利影响。
结构位移输出文件(WDISP.OUT)Max-(X)、Max-(Y)----最大X、Y向位移。
(mm)Ave-(X)、Ave-(Y)----X、Y平均位移。
(mm)Max-Dx ,Max-Dy : X,Y方向的最大层间位移Ave-Dx ,Ave-Dy : X,Y方向的平均层间位移Ratio-(X)、Ratio-(Y)---- X、Y向最大位移与平均位移的比值。
PKPM软件计算结果分析详细说明一、位移比、层间位移比控制规范条文:《高规》JGJ3-2010中第3.4.5条规定,楼层竖向构件的最大水平位移和层间位移角,A、B级高度高层建筑均不宜大于该楼层平均值的1.2倍;且A级高度高层建筑不应大于该楼层平均值的1.5倍,B级高度高层建筑、混合结构高层建筑及复杂高层建筑,不应大于该楼层平均值的1.4倍。
《高规》JGJ3-2010的第3.7.3条规定,高度不大于150m的高层建筑,其楼层层间最大位移与层间之比(即最大层间位移角)Δu/h应满足以下要求:结构休系Δu/h限值框架 1/550 框架-剪力墙,框架-核心筒 1/800 筒中筒,剪力墙 1/1000 框支层 1/1000《抗规》GB50011-2010中第3.4.4条第1款第一条:“扭转不规则时,应计入扭转影响,且楼层竖向构件最大的弹性水平位移和层间位移分别不宜大于楼层两端弹性水平位移和层间位移平均值的1.5倍,当最大层间位移远小于规范限值时,可适当放宽。
”名词释义:(1)位移比:即楼层竖向构件的最大水平位移与平均水平位移的比值。
(2)层间位移比:即楼层竖向构件的最大层间位移角与平均层间位移角的比值。
其中:最大水平位移:墙顶、柱顶节点的最大水平位移。
平均水平位移:墙顶、柱顶节点的最大水平位移与最小水平位移之和除2。
层间位移角:墙、柱层间位移与层高的比值。
最大层间位移角:墙、柱层间位移角的最大值。
平均层间位移角:墙、柱层间位移角的最大值与最小值之和除2。
控制目的:高层建筑层数多,高度大,为了保证高层建筑结构具有必要的刚度,应对其最大位移和层间位移加以控制,主要目的有以下几点:1.保证主体结构基本处于弹性受力状态,避免混凝土墙柱出现裂缝,控制楼面梁板的裂缝数量,宽度。
2.保证填充墙,隔墙,幕墙等非结构构件的完好,避免产生明显的损坏。
3.控制结构平面规则性,以免形成扭转,对结构产生不利影响。
结构位移输出文件(WDISP.OUT)Max-(X)、Max-(Y)----最大X、Y向位移。
第一节结构整体性能控制I、轴压比一、规X要求轴压比:柱( 墙)轴压比N/(fcA) 指柱( 墙) 轴压力设计值与柱( 墙) 的全截面面积和混凝土轴心抗压强度设计值乘积之比。
它是影响墙柱抗震性能的主要因素之一,为了使柱墙具有很好的延性和耗能能力,规X采取的措施之一就是限制轴压比。
规X对墙肢和柱均有相应限值要求,见10 版高规6.4.2和7.2.13。
抗震设计时,钢筋混凝土柱轴压比不宜超过表6.的规定;对于Ⅳ类场地上较高的高层建筑,其轴压比限值应适当减小。
二、电算结果的判别与调整要点:混凝土构件配筋、钢构件验算输出文件〔WPJ*.OUT〕Uc --- 轴压比(N/Afc)1.抗震等级越高的建筑结构,其延性要求也越高,因此对轴压比的限制也越严格。
对于框支柱、一字形剪力墙等情况而言,如此要求更严格。
抗震等级低或非抗震时可适当放松,但任何情况下不得小于1.05。
2.限制墙柱的轴压比,通常取底截面(最大轴力处)进展验算,假如截面尺寸或混凝土强度等级变化时,还验算该位置的轴压比。
SATWE验算结果,当计算结果与规X不符时,轴压比数值会自动以红色字符显示。
3.需要说明的是,对于墙肢轴压比的计算时,规X取用重力荷载代表值作用下产生的轴压力设计值〔即恒载分项系数取1.2,活载分项系数取1.4〕来计算其名义轴压比,是为了保证地震作用下的墙肢具有足够的延性,防止受压区过大而出现小偏压的情况,而对于截面复杂的墙肢来说,计算受压区高度非常困难,故作以上简化计算。
4.试验证明,混凝土强度等级,箍筋配置的形式与数量,均与柱的轴压比有密切的关系,因此,规X针对情况的不同,对柱的轴压比限值作了适当的调整〔抗规6.3.6条注〕。
5.当墙肢的轴压比虽未超过上表中限值,但又数值较大时,可在墙肢边缘应力较大的部位设置边缘构件,以提高墙肢端部混凝土极限压应变,改善剪力墙的延性。
当为一级抗震(9度)时的墙肢轴压比大于0.3,一级(8度)大于0.2,二级大于0.1时,应设置约束边缘构件,否如此可设置构造边缘构件,程序对底部加强部位与其上一层所有墙肢端部均按约束边缘构件考虑。
PKPM计算结果分析及调整方法摘要:PKPM是目前在国内设计行业应用最为普遍的CAD系统,拥有用户上万家,市场占有率达90%以上,它紧跟行业需求和规范更新,及时满足了我国建筑行业快速发展的需要,显著提高了设计效率和质量。
在该程序使用过程中,设计人员应注意对计算机的后处理结果和中间计算结果认真分析并做相应调整,不能盲目直接采用和出图,这既有利于保证设计项目的产品质量也有利于提高设计人员的专业水平。
关键词: PKPM计算结果,分析,调整1、对输入的各种参数和原始数据进行检查比较,核对模型与分析图进行整体分析。
包括系统总信息,楼层信息,各层等效尺寸,层塔属性,工况信息等。
核查结构质量分布,楼层质量沿高度宜均匀分布,楼层质量不宜大于相邻下部楼层的1.5倍。
2、审查重力荷载作用下的内力图是否符合受力规律;可以利用结构底层检查竖向内外力的平衡,即底层柱、墙在重力荷载作用下的轴力之和应等于总重量;如果结构对称、荷载对称,其结构内力图必然对称,即检查其对称性。
3、复核风荷载作用下的内力图和位移是否符合受力规律;如果结构沿竖向的刚度变化较均匀、且风荷载沿高度的变化也较均匀时,其结构的内力和位移沿高度的变化也应该是均匀的,不应有大的突变。
4、核查立面规则性的相关数据。
高规3.5.3条规定,A级高度高层建筑的楼层抗侧力结构的层间受剪承载力不宜小于其相邻上一层受剪承载力的80%,不应小于其相邻上一层受剪承载力的65%;B级高度高层建筑的楼层抗侧力结构的层间受剪承载力不应小于其相邻上一层受剪承载力的75%。
5、抗震分析和调整方法5.1、轴压比:柱(墙)轴压比N/(fcA)是指柱(墙)轴压力设计值与柱(墙)的全截面面积和混凝土轴心抗压强度设计值乘积之比。
主要为控制结构的延性,为了使墙柱具有很好的延性和耗能能力,规范采取的措施之一就是限制轴压比,规范对墙肢和柱均有相应限值要求,见抗规6.3.6和6.4.5。
定义。
轴压比不满足情况下,可以增大该墙、柱截面或提高该楼层墙、柱混凝土强度。
计算机的后处理结果,即最终打印结果指内力图、配筋图和详细的内力及配筋表(按构件编号依次输出),有抗震计算时还输出中间分析结果(如自震周期、振型、位移、底部总剪力等)设计人应认真对最终打印结果进行分析,确认无误或无异常情况后再绘制施工图,必要时应将最终确定的构件编号、构件截面和配筋数量、规格绘制成简单的平面图,供校核审定和归档用。
对最终打印结果不进行分析,盲目采用其配筋直接绘制施工图的做法是不可取的,往往会造成不良的严重后果,既对工程不负责任、有不利于提高自己的设计水平。
一、整体分析一、对重力荷载作用下计算结果的分析审查重力荷载作用下的内力图是否符合受力规律;可以利用结构底层检查竖向内外力的平衡,即底层柱、墙在重力荷载作用下的轴力之和应等于总重量;如果结构对称、荷载对称,其结构内力图必然对称,即检查其对称性。
当以上三者出现异常情况时,需要返回原始数据进行检查。
二、对风荷载作用下计算结果的分析审查风荷载作用下的内力图和位移是否符合受力规律;可以利用结构底层检查侧向内外力的平衡,即底层柱、墙在风荷载作用下的剪力之和应等于全部风力值(需注意局部坐标与整体坐标的方向);如果结构沿竖向的刚度变化较均匀、且风荷载沿高度的变化也较均匀时,其结构的内力和位移沿高度的变化也应该是均匀的,不应有大正大负、大出大进等突变。
三、对水平地震荷载作用下计算结果的分析水平地震荷载作用下,可以利用其结果进行如同风荷载作用下的渐变性分析,但不能进行对称性分析,也不能利用结构底层进行内外力平衡的分析(因为振型组合后的内力与地震作用力不再平衡)。
水平地震荷载作用下,对其计算结果的分析重点如下。
1.结构的自振周期对一般的工程,结构的自振周期在考虑折减系数后应控制在一定的范围内。
如结构的基本自振周期(即第一周期)大致为:框架结构T1≈ ( 0.12~0.15) n框-剪和框-筒结构T1≈ ( 0.08~0.12) n剪力墙和筒中筒结构T1≈(0.04~0.06)n式中,n为建筑物的总层数。
学习笔记PMCAD中--进入建筑模型与荷载输入:板荷:点《楼面恒载》会有对话框出来,选上自动计算现浇楼板自重,然后在恒载和活载项输入数值即可,一般恒载要看楼面的做法,比如有抹灰,找平,瓷砖,吊顶什么的,在民用建筑中可以输2.0,活载就是查荷载规范。
梁间荷载:PKPM中梁的自重是自己导入的,所以梁间荷载是指梁上有隔墙或者幕墙或者女儿墙之内在建模时不建的构建,把他们折算成均布荷载就行。
比如,一根梁上有隔墙,墙厚200mm,层高3000mm,梁高500mm,如果隔墙自重为11KN/m3,那么恒载为11*(3000-500)*200+墙上抹灰的自重什么的即可。
结构设计pkpm软件SATWE计算结果分析SATWE软件计算结果分析一、位移比、层间位移比控制规范条文:新高规的4.3.5条规定,楼层竖向构件的最大水平位移和层间位移角,A、B级高度高层建筑均不宜大于该楼层平均值的1.2倍;且A级高度高层建筑不应大于该楼层平均值的1.5倍,B级高度高层建筑、混合结构高层建筑及复杂高层建筑,不应大于该楼层平均值的1.4倍。
高规4.6.3条规定,高度不大于150m的高层建筑,其楼层层间最大位移与层间之比(即最大层间位移角)Δu/h应满足以下要求:结构休系Δu/h限值框架1/550框架-剪力墙,框架-核心筒1/800筒中筒,剪力墙1/1000框支层1/1000 名词释义:(1)位移比:即楼层竖向构件的最大水平位移与平均水平位移的比值。
(2)层间位移比:即楼层竖向构件的最大层间位移角与平均层间位移角的比值。
其中:最大水平位移:墙顶、柱顶节点的最大水平位移。
平均水平位移:墙顶、柱顶节点的最大水平位移与最小水平位移之和除2。
层间位移角:墙、柱层间位移与层高的比值。
最大层间位移角:墙、柱层间位移角的最大值。
平均层间位移角:墙、柱层间位移角的最大值与最小值之和除2。
控制目的:高层建筑层数多,高度大,为了保证高层建筑结构具有必要的刚度,应对其最大位移和层间位移加以控制,主要目的有以下几点:1.保证主体结构基本处于弹性受力状态,避免混凝土墙柱出现裂缝,控制楼面梁板的裂缝数量,宽度。
计算文件分析基本情况:框剪结构(带转换层,地上十二层(38m,地下一层,其他基本情况如下: ///////////////////////////////////////////////////////////////////////////| 公司名称: || || 建筑结构的总信息|| SA TWE 中文版|| 文件名: WMASS.OUT || ||工程名称: 设计人: ||工程代号: 校核人: 日期:2006/ 5/25 |///////////////////////////////////////////////////////////////////////////总信息..............................................结构材料信息: 钢砼结构混凝土容重(kN/m3: Gc = 27.00钢材容重(kN/m3: Gs = 78.00水平力的夹角(Rad: ARF = 0.00地下室层数: MBASE= 1竖向荷载计算信息: 按模拟施工加荷计算方式风荷载计算信息: 计算X,Y两个方向的风荷载地震力计算信息: 计算X,Y两个方向的地震力特殊荷载计算信息: 不计算结构类别: 框架-剪力墙结构裙房层数: MANNEX= 0转换层所在层号:MCHANGE= 2墙元细分最大控制长度(m DMAX= 2.00墙元侧向节点信息: 出口节点是否对全楼强制采用刚性楼板假定否采用的楼层刚度算法层间剪力比层间位移算法结构所在地区全国风荷载信息..........................................修正后的基本风压(kN/m2: WO = 0.45地面粗糙程度: B 类结构基本周期(秒: T1 = 0.49体形变化分段数: MPART= 3各段最高层号: NSTi = 1 2 13各段体形系数: USi = 1.30 1.30 1.30地震信息............................................振型组合方法(CQC耦联;SRSS非耦联 CQC计算振型数: NMODE= 15地震烈度: NAF = 6.00场地类别: KD = 3设计地震分组: 一组特征周期TG = 0.45多遇地震影响系数最大值Rmax1 = 0.04罕遇地震影响系数最大值Rmax2 = 0.50 框架的抗震等级: NF = 3 剪力墙的抗震等级: NW = 4 活荷质量折减系数: RMC = 0.50 周期折减系数: TC = 0.80 结构的阻尼比(%: DAMP = 5.00 是否考虑偶然偏心: 是是否考虑双向地震扭转效应: 否斜交抗侧力构件方向的附加地震数= 0活荷载信息..........................................考虑活荷不利布置的层数不考虑柱、墙活荷载是否折减不折算传到基础的活荷载是否折减折算------------柱,墙,基础活荷载折减系数-------------计算截面以上的层数---------------折减系数1 1.002---3 0.854---5 0.706---8 0.659---20 0.60> 20 0.55调整信息........................................中梁刚度增大系数:BK = 1.50 梁端弯矩调幅系数:BT = 0.85梁设计弯矩增大系数:BM = 1.10 连梁刚度折减系数:BLZ = 0.70 梁扭矩折减系数:TB = 0.40全楼地震力放大系数:RSF = 1.00 0.2Qo 调整起始层号:KQ1 = 0 0.2Qo 调整终止层号:KQ2 = 0 顶塔楼内力放大起算层号:NTL = 13 顶塔楼内力放大:RTL = 1.50配筋信息........................................梁主筋强度(N/mm2: IB = 300柱主筋强度(N/mm2: IC = 300墙主筋强度(N/mm2: IW = 210 梁箍筋强度(N/mm2: JB = 210柱箍筋强度(N/mm2: JC = 210墙分布筋强度(N/mm2: JWH = 210 梁箍筋最大间距(mm: SB = 100.00柱箍筋最大间距(mm: SC = 100.00墙水平分布筋最大间距(mm: SWH = 200.00墙竖向筋分布最小配筋率(%: RWV = 0.30单独指定墙竖向分布筋配筋率的层数: NSW = 0 单独指定的墙竖向分布筋配筋率(%: RWV1 = 0.60 设计信息........................................结构重要性系数: RWO = 1.00柱计算长度计算原则: 有侧移梁柱重叠部分简化: 不作为刚域是否考虑P-Delt 效应:否柱配筋计算原则: 按单偏压计算钢构件截面净毛面积比: RN = 0.85梁保护层厚度(mm: BCB = 30.00柱保护层厚度(mm: ACA = 30.00荷载组合信息........................................恒载分项系数: CDEAD= 1.20活载分项系数: CLIVE= 1.40风荷载分项系数: CWIND= 1.40水平地震力分项系数: CEA_H= 1.30竖向地震力分项系数: CEA_V= 0.50特殊荷载分项系数: CSPY = 0.00活荷载的组合系数: CD_L = 0.70风荷载的组合系数: CD_W = 0.60活荷载的重力荷载代表值系数: CEA_L = 0.50地下信息..........................................回填土对地下室约束相对刚度比: Esol = 3.00回填土容重(kN/m3: Gsol = 18.00回填土侧压力系数: Rsol = 0.50外墙分布筋保护厚度(mm: WCW = 35.00室外地平标高(m: Hout = -0.40地下水位标高(m: Hwat = -0.60室外地面附加荷载(kN/m2: Qgrd = 0.00人防设计等级: Mars = 6人防地下室层数: Mair = 1地下室顶板竖向等效荷载(kN/m2 QE1 = 60.00地下室外围墙的人防水平人防等效(kN/m2 QE2 = 55.00 正负零以下解除回填土约束的层数MMSOIL = 0剪力墙底部加强区信息.................................剪力墙底部加强区层数IWF= 4剪力墙底部加强区高度(m Z_STRENGTHEN= 12.50********************************************************* * 各层的质量、质心坐标信息********************************************************** 层号塔号质心X 质心Y质心Z 恒载质量活载质量(m (m (t (t13 1 35.468 16.118 38.600 124.9 2.312 1 35.481 16.257 35.700 544.4 14.311 1 35.454 16.394 32.800 734.1 57.210 1 35.466 16.384 29.900 724.2 57.29 1 35.475 16.420 27.000 715.0 56.78 1 35.475 16.420 24.100 715.0 56.77 1 35.475 16.420 21.200 715.0 56.76 1 35.475 16.420 18.300 715.0 56.75 1 35.475 16.420 15.400 715.0 56.74 1 35.475 16.420 12.500 715.0 56.73 1 35.475 16.420 9.600 715.0 56.72 1 35.484 16.736 6.700 1102.6 60.41 1 35.471 16.338 3.200 1174.4 65.6活载产生的总质量(t: 653.857恒载产生的总质量(t: 9409.759结构的总质量(t: 10063.616恒载产生的总质量包括结构自重和外加恒载结构的总质量包括恒载产生的质量和活载产生的质量活载产生的总质量和结构的总质量是活载折减后的结果(1t = 1000kg ********************************************************* * 各层构件数量、构件材料和层高********************************************************** 层号塔号梁数柱数墙数层高累计高度(混凝土 (混凝土 (混凝土 (m (m1 1 114(30 79(30 75(30 3.200 3.2002 1 220(30 68(30 38(30 3.500 6.7003 1 182(30 85(30 35(30 2.900 9.6004 1 182(30 85(30 35(30 2.900 12.5005 1 182(30 85(30 35(30 2.900 15.4006 1 182(30 85(30 35(30 2.900 18.3007 1 182(30 85(30 35(30 2.900 21.2008 1 182(30 85(30 35(30 2.900 24.1009 1 182(30 85(30 35(30 2.900 27.00010 1 183(30 85(30 35(30 2.900 29.90011 1 203(30 85(30 35(30 2.900 32.80012 1 206(30 85(30 35(30 2.900 35.70013 1 63(30 24(30 14(30 2.900 38.600********************************************************* * 风荷载信息********************************************************** 层号塔号风荷载X 剪力X 倾覆弯矩X 风荷载Y剪力Y倾覆弯矩Y 13 1 55.94 55.9 162.2 102.70 102.7 297.812 1 59.95 115.9 498.3 148.75 251.4 1027.011 1 57.16 173.1 1000.2 142.00 393.4 2168.010 1 54.35 227.4 1659.6 135.19 528.6 3701.19 1 51.49 278.9 2468.4 128.26 656.9 5606.18 1 48.55 327.4 3418.0 121.10 778.0 7862.37 1 45.49 372.9 4499.5 113.61 891.6 10448.06 1 42.23 415.2 5703.4 105.63 997.2 13340.05 1 38.70 453.9 7019.6 96.94 1094.2 16513.14 1 35.41 489.3 8438.5 88.89 1183.1 19944.03 1 34.00 523.3 9956.0 85.63 1268.7 23623.22 1 39.13 562.4 11924.4 98.95 1367.6 28410.01 1 0.00 562.4 13724.1 0.00 1367.6 32786.5============================================================ ===============各楼层等效尺寸(单位:m,m**2============================================================ ===============层号塔号面积形心X 形心Y等效宽B 等效高H 最大宽BMAX 最小宽BMIN1 1 602.17 35.48 15.97 47.99 16.70 47.99 16.702 1 564.36 35.49 16.69 43.56 14.48 43.56 14.483 1 535.55 35.48 16.22 42.83 13.83 42.83 13.834 1 535.55 35.48 16.22 42.83 13.83 42.83 13.835 1 535.55 35.48 16.22 42.83 13.83 42.83 13.836 1 535.55 35.48 16.22 42.83 13.83 42.83 13.837 1 535.55 35.48 16.22 42.83 13.83 42.83 13.838 1 535.55 35.48 16.22 42.83 13.83 42.83 13.839 1 535.55 35.48 16.22 42.83 13.83 42.83 13.8310 1 541.16 35.47 16.17 42.63 13.88 42.63 13.8811 1 540.87 35.49 16.16 42.62 13.88 42.62 13.8812 1 541.80 35.47 16.16 42.69 13.87 42.69 13.8713 1 51.12 35.47 19.58 43.29 6.24 43.29 6.24============================================================ ===============各楼层的单位面积质量分布(单位:kg/m**2============================================================ ===============层号塔号单位面积质量g[i] 质量比max(g[i]/g[i-1],g[i]/g[i+1]1 1 2059.15 1.002 1 2060.85 1.433 1 1440.96 1.004 1 1440.96 1.005 1 1440.96 1.006 1 1440.96 1.007 1 1440.96 1.008 1 1440.96 1.009 1 1440.96 1.0010 1 1443.96 1.0011 1 1462.99 1.4212 1 1031.27 0.7013 1 2488.76 2.41============================================================ =============== 计算信息============================================================ =============== Project File Name : 11计算日期: 2006. 5.25开始时间: 13:34:32可用内存: 784.00MB第一步: 计算每层刚度中心、自由度等信息开始时间: 13:34:32第二步: 组装刚度矩阵并分解开始时间: 13:34:47FALE 自由度优化排序Beginning Time : 13:34:52.31End Time : 13:34:56. 3Total Time (s : 3.72FALE总刚阵组装Beginning Time : 13:34:56. 3End Time : 13:34:58.96Total Time (s : 2.93VSS 总刚阵LDLT分解Beginning Time : 13:34:58.96End Time : 13:34:59.39Total Time (s : 0.43VSS 模态分析Beginning Time : 13:34:59.40End Time : 13:34:59.54Total Time (s : 0.14形成地震荷载向量形成风荷载向量形成垂直荷载向量VSS LDLT回代求解Beginning Time : 13:35: 7.78End Time : 13:35: 8.81Total Time (s : 1.03第五步: 计算杆件内力开始时间: 13:35:18结束日期: 2006. 5.25时间: 13:36:23总用时: 0: 1:51============================================================ =============== 各层刚心、偏心率、相邻层侧移刚度比等计算信息Floor No : 层号Tower No : 塔号Xstif,Ystif : 刚心的X,Y坐标值Alf : 层刚性主轴的方向Xmass,Ymass : 质心的X,Y坐标值Gmass : 总质量Eex,Eey : X,Y方向的偏心率Ratx,Raty : X,Y方向本层塔侧移刚度与下一层相应塔侧移刚度的比值Ratx1,Raty1 : X,Y方向本层塔侧移刚度与上一层相应塔侧移刚度70%的比值或上三层平均侧移刚度80%的比值中之较小者RJX,RJY,RJZ: 结构总体坐标系中塔的侧移刚度和扭转刚度============================================================ =============== Floor No. 1 Tower No. 1Xstif= 35.4675(m Ystif= 18.7028(m Alf = -0.2167(DegreeXmass= 35.4713(m Ymass= 16.3381(m Gmass= 1305.5305(tEex = 0.0002 Eey = 0.1309Ratx = 1.0000 Raty = 1.0000Ratx1= 142.0880 Raty1= 155.1798 薄弱层地震剪力放大系数= 1.00RJX = 7.0081E+08(kN/m RJY= 6.3129E+08(kN/m RJZ = 0.0000E+00(kN/m---------------------------------------------------------------------------Floor No. 2 Tower No. 1Xstif= 35.4528(m Ystif= 15.4350(m Alf = -0.2864(DegreeXmass= 35.4836(m Ymass= 16.7358(m Gmass= 1223.5151(tEex = 0.0018 Eey = 0.1091Ratx = 0.0101 Raty = 0.0092Ratx1= 4.5304 Raty1= 2.6543 薄弱层地震剪力放大系数= 1.00RJX = 7.0461E+06(kN/m RJY= 5.8116E+06(kN/m RJZ = 0.0000E+00(kN/m ---------------------------------------------------------------------------Floor No. 3 Tower No. 1Xstif= 35.4520(m Ystif= 17.4620(m Alf = -0.1750(DegreeXmass= 35.4747(m Ymass= 16.4200(m Gmass= 828.3961(tEex = 0.0012 Eey = 0.0800Ratx = 0.3153 Raty = 0.5382Ratx1= 2.1014 Raty1= 2.0637 薄弱层地震剪力放大系数= 1.00RJX = 2.2218E+06(kN/m RJY= 3.1279E+06(kN/m RJZ = 0.0000E+00(kN/m ---------------------------------------------------------------------------Floor No. 4 Tower No. 1Xstif= 35.4521(m Ystif= 17.4563(m Alf = -0.1811(DegreeXmass= 35.4747(m Ymass= 16.4200(m Gmass= 828.3961(tEex = 0.0012 Eey = 0.0795Ratx = 0.6798 Raty = 0.6922Ratx1= 1.6283 Raty1= 1.7561 薄弱层地震剪力放大系数= 1.00RJX = 1.5104E+06(kN/m RJY= 2.1652E+06(kN/m RJZ = 0.0000E+00(kN/m---------------------------------------------------------------------------Floor No. 5 Tower No. 1Xstif= 35.4521(m Ystif= 17.4563(m Alf = -0.1811(DegreeXmass= 35.4747(m Ymass= 16.4200(m Gmass= 828.3961(t Eex = 0.0012 Eey = 0.0795Ratx = 0.8464 Raty = 0.8135Ratx1= 1.5059 Raty1= 1.6271 薄弱层地震剪力放大系数= 1.00 RJX =1.2785E+06(kN/m RJY= 1.7614E+06(kN/m RJZ = 0.0000E+00(kN/m ---------------------------------------------------------------------------Floor No. 6 Tower No. 1Xstif= 35.4521(m Ystif= 17.4563(m Alf = -0.1811(Degree Xmass= 35.4747(m Ymass= 16.4200(m Gmass= 828.3961(t Eex = 0.0012 Eey = 0.0795Ratx = 0.8953 Raty = 0.8606Ratx1= 1.4540 Raty1= 1.5736 薄弱层地震剪力放大系数= 1.00 RJX =1.1446E+06(kN/m RJY= 1.5159E+06(kN/m RJZ = 0.0000E+00(kN/m ---------------------------------------------------------------------------Floor No. 7 Tower No. 1Xstif= 35.4521(m Ystif= 17.4563(m Alf = -0.1811(Degree Xmass= 35.4747(m Ymass= 16.4200(m Gmass= 828.3961(t Eex = 0.0012 Eey = 0.0795Ratx = 0.9222 Raty = 0.8853Ratx1= 1.4538 Raty1= 1.5804 薄弱层地震剪力放大系数= 1.00 RJX =1.0555E+06(kN/m RJY= 1.3419E+06(kN/m RJZ = 0.0000E+00(kN/m ---------------------------------------------------------------------------Floor No. 8 Tower No. 1Xstif= 35.4521(m Ystif= 17.4563(m Alf = -0.1811(Degree Xmass= 35.4747(m Ymass= 16.4200(m Gmass= 828.3961(t Eex = 0.0012 Eey = 0.0795Ratx = 0.9319 Raty = 0.8956Ratx1= 1.5228 Raty1= 1.6066 薄弱层地震剪力放大系数= 1.00 RJX =9.8362E+05(kN/m RJY= 1.2018E+06(kN/m RJZ = 0.0000E+00(kN/m ---------------------------------------------------------------------------Floor No. 9 Tower No. 1Xstif= 35.4521(m Ystif= 17.4563(m Alf = -0.1811(Degree Xmass= 35.4747(m Ymass= 16.4200(m Gmass= 828.3961(t Eex = 0.0012 Eey = 0.0795Ratx = 0.9281 Raty = 0.8892Ratx1= 1.5785 Raty1= 1.6707 薄弱层地震剪力放大系数= 1.00 RJX =9.1288E+05(kN/m RJY= 1.0686E+06(kN/m RJZ = 0.0000E+00(kN/m ---------------------------------------------------------------------------Floor No. 10 Tower No. 1Xstif= 35.4490(m Ystif= 17.4545(m Alf = -0.1702(Degree Xmass= 35.4662(m Ymass= 16.3838(m Gmass= 838.6104(t Eex = 0.0010 Eey = 0.0821Ratx = 0.9050 Raty = 0.8551Ratx1= 1.7276 Raty1= 1.8632 薄弱层地震剪力放大系数= 1.00 RJX =8.2619E+05(kN/m RJY= 9.1376E+05(kN/m RJZ = 0.0000E+00(kN/m ---------------------------------------------------------------------------Floor No. 11 Tower No. 1Xstif= 35.4490(m Ystif= 17.4525(m Alf = -0.1700(Degree Xmass= 35.4544(m Ymass= 16.3942(m Gmass= 848.4893(t Eex = 0.0003 Eey = 0.0811Ratx = 0.8269 Raty = 0.7667Ratx1= 2.3127 Raty1= 2.5293 薄弱层地震剪力放大系数= 1.00RJX = 6.8318E+05(kN/m RJY= 7.0060E+05(kN/m RJZ = 0.0000E+00(kN/m---------------------------------------------------------------------------Floor No. 12 Tower No. 1Xstif= 35.4490(m Ystif= 17.4525(m Alf = -0.1700(DegreeXmass= 35.4805(m Ymass= 16.2566(m Gmass= 573.0540(tEex = 0.0017 Eey = 0.0917Ratx = 0.6177 Raty = 0.5648Ratx1= 5.1204 Raty1= 6.5880 薄弱层地震剪力放大系数= 1.00RJX = 4.2200E+05(kN/m RJY= 3.9571E+05(kN/m RJZ = 0.0000E+00(kN/m---------------------------------------------------------------------------Floor No. 13 Tower No. 1Xstif= 35.4679(m Ystif= 19.9288(m Alf = 0.0000(DegreeXmass= 35.4680(m Ymass= 16.1177(m Gmass= 129.5021(tEex = 0.0000 Eey = 0.2846Ratx = 0.2441 Raty = 0.1897Ratx1= 1.2500 Raty1= 1.2500 薄弱层地震剪力放大系数= 1.00RJX = 1.0302E+05(kN/m RJY= 7.5081E+04(kN/m RJZ = 0.0000E+00(kN/m---------------------------------------------------------------------------============================================================ ================ 高位转换时转换层上部与下部结构的等效侧向刚度比============================================================ ================ 采用的楼层刚度算法:层间剪力比层间位移算法转换层所在层号= 2转换层下部结构起止层号及高度= 2 2 3.50转换层上部结构起止层号及高度= 3 3 2.90X方向下部刚度= 0.7046E+07 X方向上部刚度= 0.2222E+07 X方向刚度比= 0.2613Y方向下部刚度= 0.5812E+07 Y方向上部刚度= 0.3128E+07 Y方向刚度比= 0.4460============================================================ ================ 抗倾覆验算结果============================================================ ================ 抗倾覆弯矩Mr 倾覆弯矩Mov 比值Mr/Mov 零应力区(%X风荷载2231607.3 15072.3 148.06 0.00Y风荷载1000071.9 36653.0 27.28 0.00X 地震2231607.3 38868.4 57.41 0.00Y地震1000071.9 41758.4 23.95 0.00============================================================ ================ 结构整体稳定验算结果============================================================ ================ X向刚重比EJd/GH**2= 8.64Y向刚重比EJd/GH**2= 9.87该结构刚重比EJd/GH**2大于2.7,可以不考虑重力二阶效应******************************************************************** *** 楼层抗剪承载力、及承载力比值********************************************************************* ** Ratio_Bu: 表示本层与上一层的承载力之比----------------------------------------------------------------------层号塔号X向承载力Y向承载力Ratio_Bu:X,Y----------------------------------------------------------------------13 1 0.1227E+04 0.3522E+04 1.00 1.0012 1 0.5557E+04 0.1029E+05 4.53 2.9211 1 0.6428E+04 0.1122E+05 1.16 1.0910 1 0.7212E+04 0.1259E+05 1.12 1.129 1 0.7921E+04 0.1374E+05 1.10 1.098 1 0.8752E+04 0.1485E+05 1.10 1.087 1 0.9566E+04 0.1577E+05 1.09 1.066 1 0.1028E+05 0.1663E+05 1.07 1.055 1 0.1089E+05 0.1731E+05 1.06 1.044 1 0.1139E+05 0.1780E+05 1.05 1.033 1 0.1200E+05 0.1813E+05 1.05 1.022 1 0.1749E+05 0.2225E+05 1.46 1.231 1 0.3169E+05 0.3612E+05 1.81 1.62============================================================ ========== 周期、地震力与振型输出文件(VSS求解器============================================================ ========== 考虑扭转耦联时的振动周期(秒、X,Y方向的平动系数、扭转系数振型号周期转角平动系数(X+Y 扭转系数1 1.0740 0.03 1.00 ( 1.00+0.00 0.002 0.9540 90.02 1.00 ( 0.00+1.00 0.003 0.8662 132.55 0.00 ( 0.00+0.00 1.004 0.3012 179.96 1.00 ( 1.00+0.00 0.005 0.2453 89.97 0.90 ( 0.00+0.90 0.106 0.2370 44.38 0.00 ( 0.00+0.00 1.007 0.2160 90.96 0.04 ( 0.00+0.04 0.968 0.2082 123.72 0.00 ( 0.00+0.00 1.009 0.2047 89.51 0.37 ( 0.00+0.37 0.6310 0.1497 179.99 0.97 ( 0.97+0.00 0.0311 0.1247 3.81 0.00 ( 0.00+0.00 1.0012 0.1217 177.88 0.01 ( 0.00+0.00 0.9913 0.1213 178.37 0.01 ( 0.01+0.00 0.9914 0.1196 179.72 0.33 ( 0.33+0.00 0.6715 0.1138 179.10 0.00 ( 0.00+0.00 1.00地震作用最大的方向= -0.409 (度============================================================ 仅考虑X 向地震作用时的地震力Floor : 层号Tower : 塔号F-x-x : X 方向的耦联地震力在X 方向的分量F-x-y : X 方向的耦联地震力在Y方向的分量F-x-t : X 方向的耦联地震力的扭矩振型 1 的地震力-------------------------------------------------------Floor Tower F-x-x F-x-y F-x-t(kN (kN (kN-m13 1 41.85 0.02 -7.5512 1 172.91 0.15 -15.0711 1 227.17 0.19 -14.3210 1 204.34 0.16 -8.689 1 179.55 0.13 -5.288 1 154.89 0.10 -3.787 1 128.26 0.07 -4.136 1 100.43 0.04 -6.085 1 72.41 0.01 -9.264 1 45.60 -0.01 -13.003 1 21.82 -0.02 -16.122 1 7.96 -0.02 -21.291 1 0.08 0.00 -0.08振型 2 的地震力------------------------------------------------------- Floor Tower F-x-x F-x-y F-x-t(kN (kN (kN-m13 1 0.00 -0.05 -0.0112 1 0.00 -0.22 -0.0411 1 0.00 -0.28 -0.0510 1 0.00 -0.25 -0.049 1 0.00 -0.21 -0.048 1 0.00 -0.18 -0.037 1 0.00 -0.15 -0.036 1 0.00 -0.11 -0.025 1 0.00 -0.08 -0.024 1 0.00 -0.05 -0.013 1 0.00 -0.03 -0.012 1 0.00 -0.01 0.001 1 0.00 0.00 0.00Floor Tower F-x-x F-x-y F-x-t(kN (kN (kN-m 13 1 0.00 0.00 0.91 12 1 0.00 0.00 4.61 11 1 0.00 -0.01 6.08 10 1 0.00 -0.01 5.449 1 0.00 0.00 4.848 1 0.00 0.00 4.187 1 0.00 0.00 3.476 1 0.00 0.00 2.745 1 0.00 0.00 2.024 1 0.00 0.00 1.333 1 0.00 0.00 0.732 1 -0.01 0.00 0.401 1 0.00 0.00 0.00振型 4 的地震力-------------------------------------------------------Floor Tower F-x-x F-x-y F-x-t(kN (kN (kN-m 13 1 -40.76 0.07 -17.63 12 1 -130.13 -0.17 -78.97 11 1 -114.14 -0.10 -73.03 10 1 -36.43 0.04 -22.929 1 37.70 0.16 28.838 1 99.95 0.26 73.067 1 141.74 0.30 100.596 1 157.20 0.29 105.415 1 145.15 0.22 86.604 1 109.83 0.12 49.403 1 60.83 0.02 5.092 1 26.49 -0.05 -33.991 1 0.32 0.00 -0.08振型 5 的地震力-------------------------------------------------------Floor Tower F-x-x F-x-y F-x-t(kN (kN (kN-m 13 1 0.00 0.22 0.03 12 1 0.00 0.32 0.08 11 1 0.00 0.25 0.07 10 1 0.00 0.04 0.029 1 0.00 -0.14 -0.028 1 0.00 -0.28 -0.067 1 0.00 -0.38 -0.086 1 0.00 -0.40 -0.095 1 0.00 -0.37 -0.08振型 6 的地震力-------------------------------------------------------Floor Tower F-x-x F-x-y F-x-t(kN (kN (kN-m 13 1 -0.04 -0.11 48.35 12 1 -0.28 -0.11 127.17 11 1 -0.33 -0.09 110.81 10 1 -0.13 -0.01 35.579 1 0.03 0.06 -35.398 1 0.17 0.11 -95.367 1 0.32 0.14 -136.636 1 0.45 0.15 -154.115 1 0.57 0.13 -146.624 1 0.63 0.10 -117.573 1 0.62 0.06 -75.062 1 0.82 0.04 -46.441 1 0.01 0.00 -0.44振型7 的地震力-------------------------------------------------------Floor Tower F-x-x F-x-y F-x-t(kN (kN (kN-m 13 1 0.00 0.00 0.00 12 1 0.00 0.00 0.00 11 1 0.00 0.00 0.00 10 1 0.00 0.00 0.009 1 0.00 0.00 0.008 1 0.00 0.00 0.007 1 0.00 0.00 0.006 1 0.00 0.00 0.005 1 0.00 0.00 0.004 1 0.00 0.00 0.003 1 0.00 0.00 0.002 1 0.00 0.00 0.001 1 0.00 0.00 0.00振型8 的地震力-------------------------------------------------------Floor Tower F-x-x F-x-y F-x-t(kN (kN (kN-m 13 1 0.01 -0.01 -9.15 12 1 -0.02 0.01 9.38 11 1 -0.01 0.01 10.16 10 1 0.00 0.00 5.529 1 0.01 0.00 0.624 1 0.02 -0.01 -8.343 1 0.03 0.00 -5.492 1 0.06 0.00 -3.481 1 0.00 0.00 -0.03振型9 的地震力-------------------------------------------------------Floor Tower F-x-x F-x-y F-x-t(kN (kN (kN-m 13 1 0.00 -0.08 0.00 12 1 0.00 0.07 -0.01 11 1 0.00 0.08 -0.01 10 1 0.00 0.04 0.009 1 0.00 0.00 0.008 1 0.00 -0.03 0.017 1 0.00 -0.06 0.016 1 0.00 -0.07 0.015 1 0.00 -0.07 0.014 1 0.00 -0.06 0.013 1 0.00 -0.04 0.012 1 0.00 -0.02 0.001 1 0.00 0.00 0.00振型10 的地震力-------------------------------------------------------Floor Tower F-x-x F-x-y F-x-t(kN (kN (kN-m 13 1 39.00 -0.02 75.43 12 1 66.39 0.07 53.72 11 1 13.41 0.01 -7.79 10 1 -57.35 -0.05 -78.049 1 -92.01 -0.07 -104.518 1 -80.21 -0.02 -73.007 1 -28.42 0.07 2.416 1 38.52 0.16 85.615 1 89.44 0.19 135.224 1 101.55 0.13 126.003 1 71.67 0.01 63.772 1 38.34 -0.11 -6.251 1 0.53 0.00 0.33振型11 的地震力-------------------------------------------------------Floor Tower F-x-x F-x-y F-x-t(kN (kN (kN-m 13 1 -0.04 0.00 2.109 1 -0.02 0.00 -1.148 1 -0.04 0.00 -0.877 1 -0.03 0.00 -0.236 1 0.00 0.00 0.535 1 0.03 0.00 1.104 1 0.04 0.00 1.283 1 0.03 0.00 1.022 1 0.01 0.00 0.721 1 0.00 0.00 0.01振型12 的地震力-------------------------------------------------------Floor Tower F-x-x F-x-y F-x-t(kN (kN (kN-m 13 1 -0.15 0.01 -1.98 12 1 0.08 0.00 -0.53 11 1 0.09 0.00 0.36 10 1 0.03 -0.01 1.219 1 -0.04 -0.01 1.478 1 -0.09 -0.01 1.137 1 -0.07 0.00 0.336 1 -0.02 0.00 -0.595 1 0.05 0.01 -1.304 1 0.10 0.01 -1.563 1 0.09 0.01 -1.302 1 0.07 0.01 -1.021 1 0.00 0.00 -0.01振型13 的地震力-------------------------------------------------------Floor Tower F-x-x F-x-y F-x-t(kN (kN (kN-m 13 1 -0.21 0.01 -3.12 12 1 0.09 0.00 -0.67 11 1 0.10 0.00 0.53 10 1 0.03 -0.01 1.699 1 -0.04 -0.01 2.088 1 -0.09 0.00 1.617 1 -0.08 0.00 0.496 1 -0.02 0.00 -0.825 1 0.05 0.01 -1.834 1 0.10 0.01 -2.193 1 0.10 0.01 -1.822 1 0.08 0.00 -1.401 1 0.00 0.00 -0.02 振型14 的地震力13 1 -12.26 0.06 -102.72 12 1 6.99 0.00 -44.88 11 1 8.82 -0.02 15.75 10 1 3.10 -0.06 73.059 1 -3.80 -0.05 93.808 1 -8.06 -0.03 74.167 1 -7.18 0.01 25.166 1 -1.67 0.05 -33.165 1 5.11 0.08 -79.244 1 9.09 0.08 -97.633 1 8.03 0.05 -84.242 1 5.72 0.02 -68.961 1 0.07 0.00 -0.71振型15 的地震力-------------------------------------------------------Floor Tower F-x-x F-x-y F-x-t(kN (kN (kN-m 13 1 0.08 0.00 -2.67 12 1 -0.03 -0.01 -3.69 11 1 -0.05 0.00 -0.97 10 1 -0.03 0.00 2.759 1 0.00 0.01 4.838 1 0.02 0.01 4.567 1 0.01 0.00 2.186 1 0.00 0.00 -1.265 1 -0.02 -0.01 -4.264 1 -0.01 -0.01 -5.583 1 0.01 -0.01 -4.792 1 0.05 0.00 -3.651 1 0.00 0.00 -0.04各振型作用下X 方向的基底剪力------------------------------------------------------- 振型号剪力(kN1 1357.282 0.003 0.004 457.755 0.006 2.837 0.008 0.139 0.0010 200.8611 0.0612 0.13各层X 方向的作用力(CQCFloor : 层号Tower :塔号Fx : X 向地震作用下结构的地震反应力Vx : X 向地震作用下结构的楼层剪力Mx : X 向地震作用下结构的弯矩Static Fx: 静力法X 向的地震力------------------------------------------------------------------------------------------Floor Tower Fx Vx (分塔剪重比 (整层剪重比 Mx Static Fx(kN (kN (kN-m (kN (注意:下面分塔输出的剪重比不适合于上连多塔结构13 1 69.79 69.79( 5.49% ( 5.49% 202.39 240.48 12 1 225.73 292.19( 4.26% ( 4.26% 1043.75 240.66 11 1 254.26 537.23( 3.64% ( 3.64% 2586.89 313.14 10 1 215.18722.85( 3.20% ( 3.20% 4644.13 281.899 1 205.30 872.71( 2.88% ( 2.88% 7092.33 251.398 1 201.25 1003.49( 2.64% ( 2.64% 9866.43 224.397 1 193.57 1118.54( 2.45% ( 2.45% 12925.35 197.386 1 191.44 1219.51( 2.28% ( 2.28% 16234.27 170.385 1 187.40 1309.15( 2.14% ( 2.14% 19763.21 143.384 1 159.26 1383.20( 2.01% ( 2.01% 23482.62 116.383 1 98.87 1428.82( 1.87% ( 1.87% 27348.80 89.382 1 48.97 1450.05( 1.64% ( 1.64% 32143.92 94.021 1 0.65 1450.31( 1.44% ( 1.44% 36594.62 47.87X 方向的有效质量系数: 87.98%============================================================ 仅考虑Y向地震时的地震力Floor : 层号Tower : 塔号F-y-x : Y方向的耦联地震力在X 方向的分量F-y-y : Y方向的耦联地震力在Y方向的分量F-y-t : Y方向的耦联地震力的扭矩振型 1 的地震力-------------------------------------------------------Floor Tower F-y-x F-y-y F-y-t(kN (kN (kN-m13 1 0.03 0.00 0.0012 1 0.11 0.00 -0.0111 1 0.14 0.00 -0.0110 1 0.12 0.00 -0.012 1 0.00 0.00 -0.011 1 0.00 0.00 0.00振型 2 的地震力-------------------------------------------------------Floor Tower F-y-x F-y-y F-y-t(kN (kN (kN-m 13 1 -0.01 49.86 6.59 12 1 -0.02 198.14 33.97 11 1 -0.08 255.14 44.61 10 1 -0.10 225.19 39.739 1 -0.13 194.33 35.188 1 -0.15 164.88 30.187 1 -0.18 134.58 24.926 1 -0.20 104.23 19.525 1 -0.22 74.92 14.184 1 -0.21 47.98 9.143 1 -0.18 25.10 4.712 1 -0.15 13.41 1.971 1 0.00 0.13 0.01振型 3 的地震力-------------------------------------------------------Floor Tower F-y-x F-y-y F-y-t(kN (kN (kN-m 13 1 -0.01 0.01 -7.21 12 1 -0.03 0.03 -36.49 11 1 -0.02 0.05 -48.12 10 1 -0.02 0.04 -43.069 1 -0.02 0.03 -38.338 1 -0.02 0.03 -33.067 1 -0.01 0.02 -27.486 1 0.00 0.02 -21.715 1 0.01 0.01 -15.984 1 0.02 0.01 -10.553 1 0.03 0.00 -5.792 1 0.05 0.00 -3.151 1 0.00 0.00 -0.02振型 4 的地震力-------------------------------------------------------Floor Tower F-y-x F-y-y F-y-t(kN (kN (kN-m6 1 0.40 0.00 0.275 1 0.37 0.00 0.224 1 0.28 0.00 0.123 1 0.15 0.00 0.012 1 0.07 0.00 -0.091 1 0.00 0.00 0.00振型 5 的地震力-------------------------------------------------------Floor Tower F-y-x F-y-y F-y-t(kN (kN (kN-m 13 1 -0.05 -68.70 -9.35 12 1 0.22 -101.50 -24.03 11 1 0.15 -78.70 -21.39 10 1 0.07 -13.62 -7.149 1 0.00 44.63 6.328 1 -0.05 90.97 17.687 1 -0.12 120.19 25.476 1 -0.19 129.18 28.705 1 -0.27 118.12 27.144 1 -0.32 90.82 21.453 1 -0.33 54.58 13.212 1 -0.41 32.27 7.271 1 0.00 0.45 0.07振型 6 的地震力-------------------------------------------------------Floor Tower F-y-x F-y-y F-y-t(kN (kN (kN-m 13 1 -0.01 -0.02 8.11 12 1 -0.05 -0.02 21.34 11 1 -0.05 -0.02 18.59 10 1 -0.02 0.00 5.979 1 0.00 0.01 -5.948 1 0.03 0.02 -16.007 1 0.05 0.02 -22.936 1 0.08 0.02 -25.865 1 0.09 0.02 -24.604 1 0.11 0.02 -19.733 1 0.10 0.01 -12.602 1 0.14 0.01 -7.791 1 0.00 0.00 -0.07(kN (kN (kN-m 13 1 -0.05 2.44 -0.11 12 1 0.02 -4.34 0.26 11 1 0.00 -4.16 0.15 10 1 0.00 -1.89 0.029 1 0.00 0.36 -0.088 1 0.00 2.32 -0.147 1 0.01 3.74 -0.186 1 0.01 4.40 -0.205 1 0.01 4.25 -0.194 1 0.00 3.39 -0.163 1 0.00 2.10 -0.122 1 -0.01 1.27 -0.111 1 0.00 0.02 0.00振型8 的地震力-------------------------------------------------------Floor Tower F-y-x F-y-y F-y-t(kN (kN (kN-m 13 1 0.00 0.00 1.46 12 1 0.00 0.00 -1.50 11 1 0.00 0.00 -1.63 10 1 0.00 0.00 -0.889 1 0.00 0.00 -0.108 1 0.00 0.00 0.657 1 0.00 0.00 1.236 1 0.00 0.00 1.575 1 0.00 0.00 1.594 1 0.00 0.00 1.333 1 -0.01 0.00 0.882 1 -0.01 0.00 0.561 1 0.00 0.00 0.01振型9 的地震力-------------------------------------------------------Floor Tower F-y-x F-y-y F-y-t(kN (kN (kN-m 13 1 0.27 30.20 0.91 12 1 -0.11 -27.50 2.94 11 1 0.03 -28.89 3.40 10 1 0.05 -15.14 1.619 1 0.05 -0.88 -0.338 1 0.01 12.21 -2.197 1 -0.04 22.17 -3.636 1 -0.09 27.40 -4.425 1 -0.12 27.21 -4.444 1 -0.12 22.12 -3.74振型10 的地震力-------------------------------------------------------Floor Tower F-y-x F-y-y F-y-t(kN (kN (kN-m 13 1 0.07 0.00 0.14 12 1 0.12 0.00 0.10 11 1 0.02 0.00 -0.01 10 1 -0.10 0.00 -0.149 1 -0.17 0.00 -0.198 1 -0.15 0.00 -0.137 1 -0.05 0.00 0.006 1 0.07 0.00 0.165 1 0.16 0.00 0.254 1 0.18 0.00 0.233 1 0.13 0.00 0.122 1 0.07 0.00 -0.011 1 0.00 0.00 0.00振型11 的地震力-------------------------------------------------------Floor Tower F-y-x F-y-y F-y-t(kN (kN (kN-m 13 1 0.01 0.00 -0.27 12 1 0.00 0.00 -0.05 11 1 -0.01 0.00 0.04 10 1 0.00 0.00 0.129 1 0.00 0.00 0.158 1 0.01 0.00 0.117 1 0.00 0.00 0.036 1 0.00 0.00 -0.075 1 0.00 0.00 -0.144 1 -0.01 0.00 -0.173 1 0.00 0.00 -0.132 1 0.00 0.00 -0.091 1 0.00 0.00 0.00振型12 的地震力-------------------------------------------------------Floor Tower F-y-x F-y-y F-y-t(kN (kN (kN-m 13 1 -0.03 0.00 -0.40 12 1 0.02 0.00 -0.11 11 1 0.02 0.00 0.07 10 1 0.01 0.00 0.249 1 -0.01 0.00 0.308 1 -0.02 0.00 0.23振型13 的地震力-------------------------------------------------------Floor Tower F-y-x F-y-y F-y-t。
对于PKPM计算结果的分析,对一个典型工程而言,使用结构软件进行结构计算分四步较为科学。
1.完成整体参数的正确设定计算开始以前,设计人员首先要根据新规范的具体规定和软件手册对参数意义的描述,以及工程的实际情况,对软件初始参数和特殊构件进行正确设置。
但有几个参数是关系到整体计算结果的,必须首先确定其合理取值,才能保证后续计算结果的正确性。
这些参数包括振型组合数、最大地震力作用方向和结构基本周期等,在计算前很难估计,需要经过试算才能得到。
(1)振型组合数是软件在做抗震计算时考虑振型的数量。
该值取值太小不能正确反映模型应当考虑的振型数量,使计算结果失真;取值太大,不仅浪费时间,还可能使计算结果发生畸变。
《高层建筑混凝土结构技术规程》5.1.13-2条规定,抗震计算时,宜考虑平扭藕联计算结构的扭转效应,振型数不宜小于15,对多塔结构的振型数不应小于塔楼的9倍,且计算振型数应使振型参与质量不小于总质量的90%。
一般而言,振型数的多少于结构层数及结构自由度有关,当结构层数较多或结构层刚度突变较大时,振型数应当取得多些,如有弹性节点、多塔楼、转换层等结构形式。
振型组合数是否取值合理,可以看软件计算书中的x,y向的有效质量系数是否大于0.9。
具体操作是,首先根据工程实际情况及设计经验预设一个振型数计算后考察有效质量系数是否大于0.9,若小于0.9,可逐步加大振型个数,直到x,y两个方向的有效质量系数都大于0.9为止。
必须指出的是,结构的振型组合数并不是越大越好,其最大值不能超过结构得总自由度数。
例如对采用刚性板假定得单塔结构,考虑扭转藕联作用时,其振型不得超过结构层数的3倍。
如果选取的振型组合数已经增加到结构层数的3倍,其有效质量系数仍不能满足要求,也不能再增加振型数,而应认真分析原因,考虑结构方案是否合理。
(2)最大地震力作用方向是指地震沿着不同方向作用,结构地震反映的大小也各不相同,那么必然存在某各角度使得结构地震反应值最大的最不利地震作用方向。
PKPM软件计算结果分析详细说明PKPM是一款著名的建筑结构仿真和设计软件,被广泛应用于建筑工程中。
它能够通过数值模拟和计算,对建筑系统在外力和荷载作用下的受力情况进行分析和评估。
本文将详细说明PKPM软件的计算结果分析方法和应用。
首先,PKPM软件可以进行静力分析。
用户可以输入建筑物的尺寸、构件的性质、荷载的大小和方向等信息,通过有限元方法对构件进行离散,得到系统在静力下的受力情况。
该软件可以计算各构件的应力、应变、变形等参数,并以可视化的方式反映出来。
通过这些结果,用户可以了解到结构的强度、刚度和稳定性等方面的情况。
其次,PKPM软件还可以进行动力分析。
建筑物在遭受地震和风力等动力荷载作用时,结构的受力情况和动态特性将发生变化。
PKPM软件利用有限元法和动力学原理,可以计算出结构在动力荷载下的响应,包括加速度、速度、位移等参数。
通过分析和比较这些参数,用户可以评估结构在动力荷载下的抗震性能和稳定性。
此外,PKPM软件还支持模态分析。
模态分析是指通过对结构的自振频率、振型和模态振幅等进行计算和分析,来了解结构的动态特性和响应。
PKPM软件可以计算出结构的前若干个自振频率和振型,并将其显示出来。
这些结果对于设计师来说十分重要,可以帮助其调整结构的刚度和质量分布,以满足特定的动态要求。
另外,PKPM软件还可以进行热力分析。
在高温或火灾等情况下,建筑物的构件可能会受到热荷载的作用。
PKPM软件可以模拟这些热荷载,并计算出构件表面的温度分布、热应力和热变形等参数。
这些结果可以帮助设计师评估结构对于高温环境的耐久性和抗火性能,并进行相应的改进。
最后,PKPM软件还可以进行结构优化。
用户可以通过改变结构的形状、材料或截面等参数,并通过PKPM软件进行分析和计算,得到不同优化方案的受力情况和性能指标。
通过这种方式,用户可以找到最佳的设计方案,最大限度地提高结构的稳定性和抗荷载能力。
综上所述,PKPM软件是一款功能强大且灵活易用的建筑结构仿真和设计软件。