第五章参数估计和假设检验
- 格式:doc
- 大小:133.00 KB
- 文档页数:3
参数估计和假设检验1.参数估计参数估计是指通过样本数据来推断总体参数的过程。
总体参数是指总体的其中一种性质,比如总体均值、总体方差等。
样本数据是从总体中随机抽取的一部分数据,用来代表总体。
参数估计的目标是使用样本数据来估计总体参数的值。
常见的参数估计方法有点估计和区间估计。
(1)点估计点估计是通过一个统计量来估计总体参数的值。
常见的点估计方法有样本均值、样本方差等。
点估计的特点是简单、直观,但是估计值通常是不准确的。
这是因为样本的随机性导致样本统计量有一定的误差。
因此,点估计通常会伴随着误差界限,即估计值的置信区间。
(2)区间估计区间估计是通过一个统计量构建总体参数的估计区间。
常见的区间估计方法有置信区间和可信区间。
置信区间是指当重复抽样时,包含真实总体参数的概率。
置信区间的计算方法是在样本统计量的基础上,加减一个合适的误差界限,得到一个估计区间。
可信区间是指在一次抽样中,包含真实总体参数的概率。
可信区间的计算方法同样是在样本统计量的基础上,加减一个合适的误差界限,得到一个估计区间。
参数估计的应用非常广泛,可以用于各个领域的数据分析和决策。
例如,经济学家可以通过样本数据估计失业率,政治学家可以通过样本数据估计选举结果,医学研究者可以通过样本数据估计药物的疗效等。
2.假设检验假设检验是指通过样本数据来判断总体参数的其中一种假设是否成立。
在假设检验中,我们先提出一个原假设(H0),然后使用样本数据来检验该假设的合理性。
在假设检验中,我们需要确定一个统计量,该统计量在原假设成立时,其分布是已知的。
然后,我们计算该统计量在样本数据下的取值,并通过比较该取值与已知分布的临界值,来判断原假设是否成立。
假设检验包含两种错误,即第一类错误和第二类错误。
第一类错误是指在原假设成立的情况下,拒绝原假设的错误概率。
第二类错误是指在原假设不成立的情况下,接受原假设的错误概率。
常见的假设检验方法有单样本假设检验、双样本假设检验、方差分析等。
第五章参数估计和假设检验的Stata实现本章用到的Stata命令有例5-1 随机抽取某地25名正常成年男子,测得其血红蛋白含量如下:146 7 125 142 7 128 1401 7 144 151 117 118该样本的均数为137.32g/L,标准差为10.63g/L,求该地正常成年男子血红蛋白含量总体均数的95%可信区间。
数据格式为计算95%可信区间的Stata命令为:结果为该地正常成年男子血红蛋白含量总体均数的95%可信区间为(132.93~141.71)例5-2 某市2005年120名7岁男童的身高X=123.62(cm),标准差s=4.75(cm),计算该市7岁男童总体均数90%的可信区间。
在Stata中有即时命令可以直接计算仅给出均数和标准差时的可信区间。
结果为:该市7岁男童总体均数90%的可信区间(122.90~124.34)。
例5-3 为研究铅暴露对儿童智商(IQ)的影响,某研究调查了78名铅暴露(其血铅水平≥40 g/100ml)的6岁儿童,测得其平均IQ为88.02,标准差为12.21;同时选择了78名铅非暴露的6岁儿童作为对照,测得其平均IQ为92.89,标准差为13.34。
试估计铅暴露的儿童智商IQ的平均水平与铅非暴露儿童相差多少,并估计两个人群IQ的总体均数之差的95%可信区间。
本题也可以应用Stata的即时命令:结果:差值为4.86,差值的可信区间为0.81~8.90。
例5-4 为研究肿瘤标志物癌胚抗原(CEA)对肺癌的灵敏度,随机抽取140例确诊为肺癌患者,用CEA进行检测,结果呈阳性反应者共62人,试估计肺癌人群中CEA的阳性率。
Stata即时命令为结果为肺癌人群中CEA的阳性率为44.28%,可信区间为35.90%~52.82%。
例5-5 某医生用A药物治疗幽门螺旋杆菌感染者10人,其中9人转阴,试估计该药物治疗幽门螺旋杆菌感染者人群的转阴率。
Stata即时命令为结果为例5-6 某市区某年12个月发生恶性交通事故的次数分别为:5, 4, 6, 12, 7, 8, 10, 7, 6, 11, 3, 5假设每个月恶性交通事故的次数服从Poisson分布,试估计该市平均每个月恶性交通事故的次数的95%可信区间。
参数估计和假设检验参数估计和假设检验是统计学中常用的两种方法,用于根据样本数据对总体的特征进行推断和判断。
参数估计是通过样本数据估计总体参数值的方法,而假设检验则是基于样本数据对总体参数假设进行判断的方法。
下面将详细介绍这两种方法以及它们的应用。
1.参数估计参数是指总体特征的度量,比如总体均值、总体方差等。
在实际应用中,我们往往无法得到总体数据,只能通过抽样得到样本数据。
参数估计的目标是利用样本数据去估计总体参数的值。
最常用的参数估计方法是点估计和区间估计:-点估计是使用样本统计量来估计总体参数的值,常用的样本统计量有样本均值、样本方差等。
-区间估计是利用样本数据构建一个置信区间,用来估计总体参数的取值范围。
置信区间的计算方法通常是基于样本统计量的分布进行计算。
在进行参数估计时,需要注意以下几个要点:-选择适当的样本容量和抽样方法,确保样本具有代表性,并满足参数估计的要求。
-选择适当的样本统计量进行参数估计,并对其进行合理的解释与限制。
-利用抽样分布特性和统计理论,计算参数估计的标准误差和置信区间,对参数估计结果进行解释和判断。
2.假设检验假设检验是基于样本数据对总体参数假设进行判断的方法。
在实际问题中,我们常常需要根据样本数据来判断一些总体参数是否达到一些要求或存在其中一种关系。
假设检验的基本步骤:-建立原假设(H0)和备择假设(H1)。
原假设通常是对总体参数取值的一种假设,备择假设则是原假设的对立假设。
-选择适当的统计量用来检验假设,并计算样本统计量的检验统计量。
-根据样本数据计算得出的检验统计量,利用抽样分布特性和统计理论计算P值。
-根据P值与事先设置的显著性水平进行比较,如果P值小于显著性水平,则拒绝原假设;反之,接受原假设。
在进行假设检验时,需要注意以下几个要点:-显著性水平的选择:显著性水平(α)是进行假设检验过程中设置的一个临界值,它反映了能够容忍的错误发生的概率。
常用的显著性水平有0.05和0.01-选择适当的统计量与检验方法:根据问题的性质和数据类型选择适当的统计量和检验方法。
参数估计与假设检验参数估计和假设检验是统计学中常用的两种方法,用于对总体和样本进行推断和判断。
本文将介绍参数估计和假设检验的基本概念、原理以及在实际应用中的重要性。
一、参数估计参数估计是利用样本数据对总体参数进行估计的方法。
在统计学中,总体是指我们要研究的对象,而参数是总体的特征或者性质。
参数估计的目的就是根据样本数据推断总体参数。
1.1 点估计点估计是一种基本的参数估计方法,它通过计算样本数据的统计量,得到总体参数的估计值。
常见的点估计方法包括样本均值估计总体均值、样本方差估计总体方差等。
点估计的估计值通常通过样本的统计量来计算,如样本平均值、样本标准差等。
1.2 区间估计区间估计是参数估计的一种更加准确的方法。
它不仅给出了总体参数的一个具体估计值,还给出了一个置信区间,表示在一定置信水平下总体参数的取值范围。
常见的区间估计方法有置信区间估计总体均值、置信区间估计总体比例等。
二、假设检验假设检验是通过对样本数据的分析与总体假设进行比较,判断总体假设是否成立的统计方法。
它是基于概率理论的方法,通过计算样本数据与总体假设之间的差异,来得出结论。
2.1 假设检验的基本步骤(1)建立原假设(H0)和备择假设(H1);(2)选择合适的统计量来作为检验的依据;(3)确定显著性水平(α);(4)计算检验统计量的观察值;(5)根据观察值和显著性水平进行判断。
2.2 类型Ⅰ错误和类型Ⅱ错误假设检验中存在两种错误类型,分别是类型Ⅰ错误和类型Ⅱ错误。
类型Ⅰ错误,也称为显著性水平α,指的是原假设为真时被错误地拒绝原假设的概率。
通常将α设定为0.05或0.01,表示在这个显著性水平下所能容忍的错误概率。
类型Ⅱ错误,指的是原假设为假时,接受原假设的概率。
类型Ⅱ错误的概率称为β。
当研究者希望尽可能避免犯类型Ⅱ错误时,需要增加样本容量以提高检验的敏感性。
三、参数估计与假设检验的应用参数估计和假设检验在实际应用中具有广泛的应用价值,可以帮助研究者进行科学研究和数据分析。
实验:参数估计与假设检验的SPSS过程
一、实验目的与要求
1.熟悉区间估计的概念与操作方法
2.熟练掌握T检验的SPSS操作
3.学会利用T检验方法解决身边的实际问题
4. 学会对运行结果进行统计分析说明。
二、实验原理
1.参数估计的基本原理
参数估计就是利用样本信息去估计未知的总体参数,基本原理包括极大似然原理及最大二乘估计原理等。
2.假设检验的基本原理
假设检验的基本思路是先对总体特征做出某种假设,然后利用样本提供的信息去验证前面提出的假设是否成立。
如果样本数据不能充分证明和支持假设的
成立,则在一定的概率条件下,应拒绝该假设;反之,如果样本数据不能充分证
明和支持假设是不成立的,则不能推翻原假设。
小概率事件原理是假设检验的基
本原理。
三、实验内容与步骤
分析某班级学生的高考数学成绩是否存在性别上的差异。
(显著性水平为0.01)
数据如表所示:
某班级学生的高考数学成绩
性别数学成绩
男(n=18)85 89 75 58 86 80 78 76 84 89 99 95 82 87 60 85 75 80
女(n=12)92 96 86 83 78 87 70 65 70 65 70 78 72 56
(1)对题目的分析:
(2)数据组织:
(3) 主要设置步骤:
(4)主要结果及分析:。
统计学中的参数估计与假设检验统计学是一门研究如何收集、整理、分析和解释数据的学科。
参数估计和假设检验是统计学中两个重要的概念和方法,用于推断总体参数和判断假设是否成立。
本文将详细介绍参数估计与假设检验的基本原理和应用。
一、参数估计参数估计是通过样本数据推断总体的未知参数。
在统计学中,总体是指研究对象的全体,而样本是从总体中抽取的一部分。
参数是总体的特征指标,例如均值、方差、比例等。
参数估计旨在通过样本数据对总体参数进行估计,并给出估计的精度。
参数估计分为点估计和区间估计两种方法。
点估计是通过样本数据计算得到的单个数字,用来估计总体参数的具体数值。
常见的点估计方法有最大似然估计、矩估计和贝叶斯估计等。
区间估计是通过样本数据计算得到的一个范围,该范围包含总体参数真值的概率较高。
置信区间是区间估计的一种形式,它可以用来描述估计值的不确定性。
二、假设检验假设检验是用于检验研究问题的特定假设是否成立的一种统计推断方法。
在假设检验中,我们提出一个原假设和一个备择假设,并根据样本数据对两个假设进行比较,进而判断原假设是否应该被拒绝。
原假设通常表示一种无关,即不发生预期效应或差异。
备择假设则表示研究者所期望的效应或差异。
在进行假设检验时,我们首先选择一个适当的统计检验方法,例如t检验、F检验或卡方检验等。
然后,计算出样本数据的检验统计量,并根据相关的分布理论和显著性水平进行推论。
最后,比较检验统计量与临界值,以决定是否拒绝原假设。
三、参数估计与假设检验的应用参数估计和假设检验在实际问题中有广泛的应用。
以医学研究为例,研究人员可能希望通过抽样来估计某种药物的有效剂量,并对药效进行假设检验。
在市场调研中,我们可以使用参数估计和假设检验来推断总体的需求曲线和做出市场预测。
在质量控制中,我们可以利用参数估计和假设检验来判断产品是否符合标准。
四、总结参数估计和假设检验是统计学中重要的方法,可以通过样本数据来推断总体参数和判断假设是否成立。
假设检验与参数估计在统计学中,假设检验与参数估计是两个重要的概念和方法。
它们在数据分析和推断中扮演着重要的角色。
本文将介绍假设检验和参数估计的基本概念和使用方法,并分析它们在实际应用中的重要性和作用。
一、假设检验假设检验是统计学中一种用来判断数据的差异是否具有统计意义的方法。
它基于对某个统计特征(参数)的假设进行检验,根据实际观测数据对这个假设进行推断。
假设检验的基本步骤包括:1. 提出零假设(H0)和备择假设(H1);2. 选择适当的检验统计量;3. 设定显著性水平(α);4. 计算检验统计量的取值;5. 根据计算结果判断是否拒绝零假设。
假设检验的思想是基于“拒绝零假设”或“接受备择假设”来做出决策。
其中显著性水平α是一个固定的临界值,用来控制判断的错误概率。
常见的假设检验方法包括单样本t检验、双样本t检验、方差分析等。
二、参数估计参数估计是指根据样本数据对总体的某个未知参数进行估计的方法。
统计学家常常基于样本数据,通过计算得到参数的点估计或区间估计。
点估计是对参数进行一个具体的数值估计,例如平均值、方差等。
区间估计是对参数确定一个置信区间,该区间内存在真实参数值的概率较大。
参数估计的基本步骤包括:1. 选择适当的估计方法;2. 根据样本数据计算得到估计量;3. 定义置信水平(1-α);4. 根据置信水平和估计结果计算置信区间。
常见的参数估计方法包括均值的点估计、方差的点估计和两个总体参数的点估计等。
区间估计的方法包括样本均值的区间估计、样本方差的区间估计等。
三、假设检验与参数估计的关系假设检验和参数估计是统计学中紧密相关的两个概念。
在很多情况下,参数估计的结果可以作为假设检验的基础。
例如,在进行单样本t检验时,需要先对总体均值进行参数估计,然后再根据估计结果进行假设检验。
在进行总体方差检验时,也需要先对方差进行参数估计。
参数估计可以帮助我们更好地理解数据的特征,并为后续的假设检验提供依据。
另一方面,假设检验的结果也可以用于参数估计的优化和修正。
第五章参数估计和假设检验
一、单项选择题
1.在用样本指标推断总体指标时,把握程度越高则()。
A.误差范围越小
B.误差范围越大
C.抽样平均误差越小
D.抽样平均误差越大
2、某乐器厂以往生产的乐器采用的是一种镍合金弦线,这种弦线的平均抗拉强度不超过1035Mpa,现产品开发小组研究了一种新型弦线,他们认为其抗拉强度得到了提高并想寻找证据予以支持。
在对研究小组开发的产品进行检验时,应该采取以下哪种形式的假设?为什么?
3、研究人员发现,当禽类被拘禁在一个很小的空间内时,就会发生同类相残的现象。
一名孵化并出售小鸡的商人想检验某一品种的小鸡因为同类相残而导致的死亡率是否小于0.04。
试帮助这位商人定义检验参数并建立适当的原假设和备择假设。
4、在抽样设计中,最好的方案是()。
A. 抽样误差最小的方案
B. 调查单位最少的方案
C. 调查费用最省的方案
D. 在一定误差要求下费用最小的方案
5、对两个工厂工人平均工资进行不重复的随机抽样调查,抽查的工人人数一样,两工厂工人工资方差相同,但第二个厂工人数比第一个厂工人数整整多一倍。
抽样平均误差()。
A. 第一工厂大
B. 第二个工厂大
C. 两工厂一样大
D. 无法做出结论
二、计算题
1.最新一次人口普查表明某市老年人口比重为15.7%,为了检验该数据是否真实,普查机构有随机抽选了400名居民,发现其中有62人年龄在65岁以上,问随机调查的结果是否支持该市老年人口比重为15.7%?(α=0.05)
2. 采用简单随机抽样的方法,从2000件产品中抽查200件,其中合格品190件,要求:
(1)计算合格品率及其抽样平均误差。
(2)以95.45%概率保证程度,对合格品率和合格品数量进行区间估计。
(3)如果合格品率的极限误差为2.31%,则其概率保证程度是多少?
3.某电子产品使用寿命在3000小时以下为不合格品,现用随机重复抽样方法从5000个中抽取100个对其使用寿命进行调查。
结果如下:
使用寿命(小时)产品数量(个)
3000以下 2
3000~4000 30
4000~5000 50
5000以下18
合计100
求:按68.27%的概率保证程度对该产品平均使用寿命和合格率进行区间估计。
4.从某厂生产的一批灯泡中随机重复抽取100只,检查结果是:100只灯泡的平均使用寿命为1000小时,标准差为15小时。
求:以9
5.45%概率保证程度对灯泡的平均使用寿命进行区间估计:假定其他条件不变,将抽样极限误差减少到原来的1/2,应抽取多少之灯泡进行检查?
5.某乡水稻总面积2000亩,从中随机抽取400亩,每亩产量资料如下:
每亩产量(斤)亩数
400~450 10
450~50020
500~55050
550~600110
600~650100
650~70060
700~75030
750~80020
求:极限误差不超过8斤,试估计全乡水稻的单产和总产量,并指出概率保证程度。
6.某食品公司销售一种果酱,按标准规格每罐净重为250克,标准差为3克。
现该公司从生产该果酱的工厂进了一批货,抽取其中的100罐,测得平均净重为251克。
问该批果酱是否符合标准?(α=0.05)
7、某大学为了解学生每天上网的时间,在全校7500名学生中采取不重复抽样方法随机抽取36人,调查他们每天上网的时间,得到下面的数据(单位:小时):
3.3 3.1 6.2 5.8 2.3
4.1
5.4 4.5 3.2
4.4 2.0
5.4 2.6
6.4 1.8 3.5 5.7 2.3
2.1 1.9 1.2 5.1 4.3 4.2
3.6 0.8 1.5
4.7 1.4 1.2 2.9 3.5 2.4 0.5 3.6 2.5
求该校大学生平均上网时间的置信区间,置信水平分别为90%、95%和99%。
8、某居民小区共有居民500户,小区管理者准备采取一向新的供水设施,想了解居民是否赞成。
采取重复抽样方法随机抽取了50户,其中有32户赞成,18户反对。
(1)求总体中赞成该项改革的户数比率的置信区间,置信水平为95%;
(2)如果小区管理者预计赞成的比率能达到80%,应抽取多少户进行调查?。