参数估计和假设检验习题解答
- 格式:doc
- 大小:612.68 KB
- 文档页数:8
第七章参数估计和假设检验一、填空题1.在抽样推断中,常用的总体指标有、和。
2.在抽样推断中,按随机原则从总体中抽取的部分单位叫,这部分单位的数量叫。
3.整群抽样是对总体中群内的进行的抽样组织形式。
4.若总体单位的标志值不呈正态分布,只要,全部可能样本指标也会接近于正态分布。
5.抽样估计的方法有和两种。
6.扩大误差范围,可以推断的可靠程度,缩小误差范围则会推断的可靠程度。
7.对总体的指标提出的假设可以分为和。
8.如果提出的原假设是总体参数等于某一数值,这种假设检验称为,若提出的原假设是总体参数大于或小于某一数值,这种假设检验称为。
二、单项选择题1.所谓大样本是指样本单位数在()及以上。
A.50个B.30个C.80个D.100个2.总体平均数和样本平均数的关系是()。
A.总体平均数是确定值,样本平均数是随机变量B.总体平均数是随机变量,样本平均数是确定值C.总体平均数和样本平均数都是随机变量D.总体平均数和样本平均数都是随机变量3.先对总体按某一标志分组,然后再在各组中按随机原则抽取一部分单位构成样本,这种抽样组织方式称为()。
A.简单随机抽样B.机械抽样C.类型抽样D.整群抽样4.用样本指标对总体指标作点估计时,应满足4点要求,其中无偏性是指()。
A.样本平均数等于总体平均数B.样本成数等于总体成数C.样本指标的平均数等于总体的平均数 D.样本指标等于总体指标5.在其它条件不变的情况下,提高抽样估计的可靠程度,其精确度将()。
A.保持不变B.随之扩大C.随之缩小D.无法确定6.在抽样估计中,样本容量()。
A.越小越好B.越大越好C.有统一的抽样比例D.取决于抽样估计的可靠性要求。
7.假设检验中的临界区域是指()。
A.接受域B.拒绝域C.检验域D.置信区间三、多项选择题1.在抽样推断中,抽取样本单位的具体方法有()。
A.重复抽样B.不重复抽样C.分类抽样D.等距抽样E.多阶段抽样2.在抽样推断中,抽取样本的组织形式有()。
假设检验练习题1. 简单回答下列问题:1)假设检验的基本步骤?答:第一步建立假设 (通常建立两个假设,原假设H0 不需证明的命题,一般是相等、无差别的结论,备择假设H1,与H0对立的命题,一般是不相等,有差别的结论)有三类假设第二步选择检验统计量给出拒绝域的形式。
根据原假设的参数检验统计量:对于给定的显著水平样本空间可分为两部分:拒绝域W 非拒绝域A拒绝域的形式由备择假设的形式决定H1: W为双边H1: W为单边H1: W为单边第三步:给出假设检验的显著水平第四步给出零界值C,确定拒绝域W有了显著水平按照统计量的分布可查表得到临界值,确定拒绝域。
例如:对于=0.05有的双边 W为的右单边 W为的右单边 W为第五步根据样本观测值,计算和判断计算统计量 Z 、 t 、当检验统计量的值落在W内时能拒绝,否则接受(计算P值 227页 p值由统计软件直接得出时拒绝,否则接受计算1-a的置信区间置信区间由统计软件直接得出统计量落入置信区间接受,否则接受)2)假设检验的两类错误及其发生的概率?答:第一类错误:当为真时拒绝,发生的概率为第二类错误:当为假时,接受发生的概率为3)假设检验结果判定的3种方式?答:1.计算统计量 Z 、 t 、当检验统计量的值落在W内时能拒绝,否则接受2.计算P值 227页 p值由统计软件直接得出时拒绝,否则接受3.计算1-a的置信区间置信区间由统计软件直接得出,落入置信区间接受,否则接受4)在六西格玛A阶段常用的假设检验有那几种?应用的对象是什么?答:连续型(测量的数据):单样本t检验 -----比较目标均值双样本t检验 -----比较两个均值方差分析 -----比较两个以上均值等方差检验 -----比较多个方差离散型(区分或数的数据):卡方检验 -----比较离散数2.设某种产品的指标服从正态分布,它的标准差σ=150,今抽取一个容量为26 的样本,计算得平均值为1 637。
问在5%的显著水平下,能否认为这批产品的指标的期望值μ = 1600。
参数估计习题答案参数估计是指在统计学中,根据样本数据来估计总体参数的过程。
以下是一些参数估计习题的答案示例:1. 简单随机抽样的均值估计:假设我们有一个总体,其均值未知,我们从这个总体中随机抽取了一个样本,样本均值(\(\bar{x}\))可以用来估计总体均值(\(\mu\))。
如果样本量足够大,根据中心极限定理,样本均值的分布接近正态分布。
样本均值的估计值为:\[\hat{\mu} = \bar{x}\]2. 总体比例的点估计:如果我们要估计一个二项分布的总体比例(\(p\)),我们可以使用样本比例(\(\hat{p}\))作为点估计。
样本比例的计算公式为:\[\hat{p} = \frac{\text{样本中具有特定特征的个体数}}{\text{样本总数}}\]3. 总体方差的估计:总体方差(\(\sigma^2\))可以通过样本方差(\(s^2\))来估计。
样本方差的计算公式为:\[s^2 = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})^2\]其中,\(n\) 是样本大小,\(x_i\) 是第 \(i\) 个样本值。
4. 总体标准差的估计:总体标准差(\(\sigma\))可以通过样本标准差(\(s\))来估计。
样本标准差的计算公式为:\[s = \sqrt{s^2}\]5. 置信区间的计算:如果我们想要得到总体均值的95%置信区间,我们可以使用以下公式:\[\text{置信区间} = \bar{x} \pm z_{\alpha/2} \times\frac{s}{\sqrt{n}}\]其中,\(z_{\alpha/2}\) 是标准正态分布的临界值,对应于置信水平(例如,对于95%置信水平,\(z_{\alpha/2} = 1.96\))。
6. 假设检验:在假设检验中,我们通常使用样本统计量来检验关于总体参数的假设。
例如,如果我们想要检验总体均值是否等于某个特定值(\(\mu_0\)),我们可以使用以下检验统计量:\[t = \frac{\bar{x} - \mu_0}{s / \sqrt{n}}\]然后,我们可以根据自由度(\(df = n - 1\))和显著性水平(\(\alpha\))来确定拒绝域,并做出决策。
统计学第六章参数估计和假设检验习题第六章参数估计和假设检验一、填空题1、总体参数估计是指2、称为置信水平,表示为3、落在总体均值两个抽样标准差范围内的概率为4、影响样本的单位数目的因素有5、是研究者想收集证据予以反对的假设。
答案:1、就是以样本统计量来估计总体参数,总体参数是常数,而统计量是随机变量。
2、将构造置信区间的步骤重复很多次,置信区间包含总体参数真值的次数所占的比例,(1 -3、0.95454、总体变量的变异程度σ、允许的误差范围△、抽样的可靠程度1-α5、纯随机抽样、等距抽样(机械抽样)、类型抽样(分层抽样)和整群抽样二、单项选择题1、估计量的含义是指(A)A.用来估计总体参数的统计量的名称B.用来估计总体参数的统计量的具体数值C.总体参数的名称D.总体参数的具体数值2、一个95%的置信区间是指( C )A.总体参数有95%的概率落在这一区间内B.总体参数有5%的概率未落在这一区间内C.在用同样方法构造的总体参数的多个区间中,有95%的区间包含该总体参数D.在用同样方法构造的总体参数的多个区间中,有95%的区间不包含该总体参数3、抽取一个容量为100的随机样本,其均值为x =81,标准着s=12。
总体均值μ的99%的置信区间为( C )81±1.9781±2.3581±3.1081±3.524.成数与成数方差的关系是(C )A.成数的数值越接近0,成数的方差越大B.成数的数值越接近0.3,成数的方差越大C.成数的数值越接近0.5,成数的方差越大D.成数的数值越接近l ,成数的方差越大5.纯随机重复抽样的条件下,若其他条件不变,要使抽样平均误差缩小为原来的1/3,则样本单位数必须( B )A.增大到原来的3倍B.增大到原来的9倍C.增大到原来的6倍D.也是原来的1/36、对于非正态总体,使用统计量x z =估计总体均值的条件是(D ) A .小样本B .总体方差已知C .总体方差未知D .大样本7、在假设检验中,原假设和备选假设( C )A. 都有可能成立B. 都有可能不成立C. 只有一个成立而且必有一个成立D. 原假设一定成立,备选假设不一定成立8.一种零件的标准长度5cm ,要检验某天生产的零件是否符合标准要求,建立的原假设和备选假设就为( A )A .0:5H μ=,1:5H μ≠B .0:5H μ≠,1:5H μ>C .0:5H μ≤,1:5H μ>D .0:5H μ≥,1:5H μ<9、若检验的假设为00:H μμ≥,10:H μμ<,则拒绝域为( B )A .z z α>B .z z α<-C ./2z z α<-或/2z z α<-D .z z α>或z z α<-10。
1.某公司雇用2 000名推销员,并希望估计其平均每年的乘车里程。
从过去的经验可知,通常每位推销员行程的标准差为5 000公里。
随机选取的25辆汽车样本的均值为14 000公里。
1)求出总体均值μ所需要的估计量;14 0002)确定总体均值μ95%的置信区间;(14000±1.96*5000/5)。
虽是小样本,但“从过去的经验可知,通常每位推销员行程的标准差为5 000公里”这句话,表明总体服从正太分布且标准差已知,所以用最基本的公式。
3)公司经理们认为均值介于13 000到15 000公里之间,那么该估计的置信度是多少?对应的Z在-1-+1之间,所以置信度为68.26%。
这里要注意的是应用均值的分布。
4)如果在3)的估计中希望有95%的置信水平,那么所要求的样本容量是多少。
96=1.962*50002/100022.生产隐形眼镜的某公司生产一种新的型号,据说其寿命比旧型号的寿命长。
请6个人对该新型眼镜做实验,得出平均寿命为4.6年,标准差为0.49年。
构造该新型眼镜的平均寿命90%的置信区间。
小样本且总体标准差未知,用t公式。
4.6±2.015*0.49/2.453.假设某厂家生产的可充电的电池式螺丝刀的使用寿命近似于正态分布。
对15个螺丝刀进行测试,并发现其平均寿命为8 900小时,样本标准差为500小时。
1)构造总体均值置信水平为95%的区间估计;8900±2.145*500/3.872)构造总体均值置信水平为90%的区间估计;8900±1.761*500/3.874.电话咨询服务部门在每次通话结束时都要记录下通话的时间。
从一个由16个记录组成的简单随机样本得出一次通话的平均时间为1.6分钟。
试求总体平均值的置信度为90%的置信区间。
已知总体服从标准差为0.7分钟的正态分布。
1.6±1.645*0.7/45.某仓库中有200箱食品,每箱食品均装100个。
考研数学一(参数估计和假设检验)模拟试卷2(题后含答案及解析) 题型有:1. 选择题 2. 填空题 3. 解答题选择题下列每题给出的四个选项中,只有一个选项符合题目要求。
1.设为未知参数θ的无偏一致估计,且是θ2的( )A.无偏一致估计。
B.无偏非一致估计。
C.非无偏一致估计。
D.非无偏非一致估计。
正确答案:C解析:根据无偏估计和一致估计的概念可得的非无偏一致估计,故选C。
知识模块:参数估计2.设是取自总体X中的简单随机样本X1,X2,…,Xn的样本均值,则是μ的矩估计,如果( )A.X~N(μ,σ2)。
B.X服从参数为μ的指数分布。
C.P{X=m}=μ(1—μ)m—1,m=1,2,…。
D.X服从[0,μ]上均匀分布。
正确答案:A解析:若X~N(μ,σ2),则E(X)=μ,μ的矩估计为,故选A。
对于选项B,X服从参数为μ的指数分布,则E(X)=,μ的矩估计,对于选项C,X服从参数为μ的几何分布,E(X)=,μ的矩估计,对于选项D,E(X)=,μ的矩估计。
知识模块:参数估计3.总体均值μ置信度为95%的置信区间为,其含义是( )A.总体均值μ的真值以95%的概率落入区间。
B.样本均值以95%的概率落入区间。
C.区间含总体均值μ的真值的概率为95%。
D.区间含样本均值的概率为95%。
正确答案:C解析:根据置信区间的概念,故选C。
均值μ是一个客观存在的数,说“μ以95%的概率落入区间”是不妥的,所以不选A,而B、D两项均与μ无关,无法由它确定μ的置信区间。
知识模块:参数估计4.下列关于总体X的统计假设H0属于简单假设的是( )A.X服从正态分布,H0:E(X)=0。
B.X服从指数分布,H0:E(X)≥1。
C.X服从二项分布,H0:D(X)=5。
D.X服从泊松分布,H0:D(X)=3。
正确答案:D解析:A、B、C三项的假设都不能完全确定总体的分布,所以是复合假设,而D选项的假设可以完全确定总体分布,因而是简单假设,故选D。
假设检验习题及答案第8章假设检验一、填空题1、对正态总体的数学期望μ进行假设检验,如果在显著性水平0.05下,接受假设00:μμ=H ,那么在显著性水平0.01下,必然接受0H 。
2、在对总体参数的假设检验中,若给定显著性水平为α,则犯第一类错误的概率是α。
3、设总体),(N ~X 2σμ,样本n 21X ,X ,X Λ,2σ未知,则00:H μ=μ,01:H μ<μ的拒绝域为 )}1(/{0--<-n t nS X αμ,其中显著性水平为α。
4、设n 21X ,X ,X Λ是来自正态总体),(N 2σμ的简单随机样本,其中2,σμ未知,记∑==n 1i i X n 1X ,则假设0:H 0=μ的t 检验使用统计量=T Q n n X )1(- .二、计算题1、某食品厂用自动装罐机装罐头食品,规定标准重量为250克,标准差不超过3克时机器工作为正常,每天定时检验机器情况,现抽取16罐,测得平均重量252=X 克,样本标准差4=S 克,假定罐头重量服从正态分布,试问该机器工作是否正常?解:设重量),(~2σμN X 05.016==αn 4252==S X(1)检验假设250:0=μH 250:1≠μH ,因为2σ未知,在0H 成立下,)15(~/250t n S X T -=拒绝域为)}15(|{|025.0t T >,查表得1315.2)5(025.0=≠t由样本值算得1315.22<=T ,故接受0H(2)检验假设9:20=σH 9:201>σH 因为μ未知,选统计量2022)1(σS n x -= 在0H 成立条件下,2x 服从)15(2x 分布,拒绝域为)}15({205.02x x >,查表得996.24)15(205.0=x ,现算得966.24667.26916152>=?=x ?拒绝0H ,综合(1)和(2)得,以为机器工作不正常2、一种电子元件,要求其使用寿命不得低于1000小时,现在从一批这种元件中随机抽取25 件,测得其寿命平均值为950小时,已知该种元件寿命服从标准差100=σ小时正态分布,试在显著性水平0.05下确定这批产品是否合格.解:设元件寿命),(~2σμN X ,2σ已知10002=σ,05.0,950,25===αX n检验假设1000:0=μH 1000:1<μH在2σ已知条件下,设统计量)1,0(~/1000N n X σμ-=拒绝域为}{05.0μμ<,查表得645.195.005.0-=-=μμ 而645.15.2205025/1001000950-<-=-=-=μ 拒绝假设0H 选择备择假设1H ,所以以为这批产品不合格.3. 对显著水平 a ,检验假设 H 0 ; m = m 0,H 1 ; m ≠ m 0,问当 m 0, m , a一定时,增大样本量 n 必能使犯第二类错误概率 b 减少对吗?并说明理由。
参数估计习题参考答案班级:姓名:学号:得分一、单项选择题:1. 区间估计表明的是一个( B )(A)绝对可靠的范围(B)可能的范围(C)绝对不可靠的范围(D)不可能的范围2. 在其他条件不变的情形下,未知参数的1-α置信区间,(A )A. α越大长度越小B. α越大长度越大C. α越小长度越小D. α与长度没有关系3. 甲乙是两个无偏估计量,如果甲估计量的方差小于乙估计量的方差,则称( D )(A)甲是充分估计量(B)甲乙一样有效(C)乙比甲有效(D)甲比乙有效4. 设总体服从正态分布,方差未知,在样本容量和置信度保持不变的情形下,根据不同的样本值得到总体均值的置信区间长度将( D )(A)增加(B)不变(C)减少(D)以上都对5.在其他条件不变的前提下,若要求误差范围缩小1/3,则样本容量( C )(A)增加9倍(B)增加8倍(C)为原来的2.25倍(D)增加2.25倍6.设容量为16人的简单随机样本,平均完成工作时间13分钟,总体服从正态分布且标准差为3分钟。
若想对完成工作所需时间构造一个90%置信区间,则( A )A.应用标准正态概率表查出z值B.应用t-分布表查出t值C.应用二项分布表查出p值D.应用泊松分布表查出λ值7.100(1-α)%是( C )A.置信限B.置信区间C.置信度D.可靠因素8.参数估计的类型有( D )(A)点估计和无偏估计(B)无偏估计和区间估计(C)点估计和有效估计(D)点估计和区间估计9、抽样方案中关于样本大小的因素,下列说法错误的是( C )A、总体方差大,样本容量也要大B、要求的可靠程度高,所需样本容量越大C、总体方差小,样本容量大D、要求推断比较精确,样本容量要大10、根据某地区关于工人工资的样本资料估计出该地区的工人平均工资的95%置信区间为(3800,3900),那么下列说法正确的是(C)A、该地区平均工资有95%的可能性落在该置信区间中B、该地区平均工资只有5%的可能性落在该置信区间之外C、该置信区间有95%的概率包含该地区的平均工资D、该置信区间的误差不会超过5%。
参数估计和假设检验习题1.设某产品的指标服从正态分布,它的标准差σ已知为150,今抽了一个容量为26的样本,计算得平均值为1637。
问在5%的显著水平下,能否认为这批产品的指标的期望值μ为1600?0.05,α=26,n =0:1600H μ=,即,以95%的把握认为这批产品的指标的期望值μ为1600.2.某纺织厂在正常的运转条件下,平均每台布机每小时经纱断头数为O.973根,各台布机断头数的标准差为O.162根,该厂进行工艺改进,减少经纱上浆率,在200台布机上进行试验,结果平均每台每小时经纱断头数为O.994根,标准差为0.16根。
问,新工艺上浆率能否推广(α=0.05)?解: 012112:, :,H H μμμμ≥<3.某电器零件的平均电阻一直保持在2.64Ω,改变加工工艺后,测得100个零件的平均电阻为2.62Ω,如改变工艺前后电阻的标准差保持在O.06Ω,问新工艺对此零件的电阻有无显著影响(α=0.05)?解: 01: 2.64, : 2.64,H H μμ=≠已知标准差σ=0.16,拒绝域为2Z z α>,取0.02520.05, 1.96z z αα===,100,n =由检验统计量 3.33 1.96Z ===>,接受1: 2.64H μ≠,即, 以95%的把握认为新工艺对此零件的电阻有显著影响.4.有一批产品,取50个样品,其中含有4个次品。
在这样情况下,判断假设H 0:p ≤0.05是否成立(α=0.05)?解: 01:0.05, :0.05,H p H p ≤>采用非正态大样本统计检验法,拒绝域为Z z α>,0.950.05, 1.65z α==,50,n =由检验统计量0.9733Z ===<1.65,接受H 0:p ≤0.05.即, 以95%的把握认为p ≤0.05是成立的.5.某产品的次品率为O.17,现对此产品进行新工艺试验,从中抽取4O0件检验,发现有次品56件,能否认为此项新工艺提高了产品的质量(α=0.05)?解: 01:0.17, :0.17,H p H p ≥<采用非正态大样本统计检验法,拒绝域为Z z α<-,400,n =0.950.05, 1.65z α=-=-,由检验统计量4001.5973i x npZ -===-∑>-1.65, 接受0:0.17H p ≥,即, 以95%的把握认为此项新工艺没有显著地提高产品的质量.6.从某种试验物中取出24个样品,测量其发热量,计算得x =11958,样本标准差s =323,问以5%的显著水平是否可认为发热量的期望值是12100(假定发热量是服从正态分布的)?解: 01:12100, :12100,H H μμ=≠总体标准差σ未知,拒绝域为2(1)t t n α>-,24,n = x =11958,s =323,0.0250.05,(23) 2.0687t α==, 由检验统计量2.1537t ===>2.0687,拒绝0:12100H μ=,接受1:12100,H μ≠ 即, 以95%的把握认为试验物的发热量的期望值不是12100.7.某食品厂用自动装罐机装罐头食品,每罐标准重量为500克,每隔一定时间需要检查机器工作情况。
现抽得10罐,测得其重量为(单位:克):195,510,505,498,503,492,ii02,612,407,506.假定重量服从正态分布,试问以95%的显著性检验机器工作是否正常?解: 01:500 :500H vs H μμ=≠,总体标准差σ未知,拒绝域为2(1)t t n α>-,10,n =经计算得到x =502, s =6.4979,取0.0250.05,(9) 2.2622t α==,由检验统计量0.9733t ===<2.2622, 接受0:500 H μ= 即, 以95%的把握认为机器工作是正常的.8.有一种新安眠药,据说在一定剂量下,能比某种旧安眠药平均增加睡眠时间3小时,根据资料用某种旧安眠药时,平均睡眠时间为20.8小时。
标准差为1.6小时,为了检验这个说法是否正确,收集到一组使用新安眠药的睡眠时间为26.7,22.O ,24.1,21.O ,27 .2,25.0,23.4。
试问:从这组数据能否说明新安眠药已达到新的疗效(假定睡眠时间服从正态分布,α=0.05)。
解: 01:23.8 :23.8H vs H μμ≥<,已知总体标准差σ =1.6,拒绝域为Z z α<-,7,n =经计算得到x =24.2,取0.950.05, 1.65z α=-=-,由检验统计量0.6614x Z ===>-1.65, 接受0:23.8H μ≥即, 以95%的把握认为新安眠药已达到新的疗效.9.测定某种溶液中的水份,它的l0个测定值给出x =0.452%,s =O.037%,设测定值总体服从正态分布,μ为总体均值,σ为总体的标准差,试在5%显著水平下,分别检验假(1)H 0: μ=O.5%; (2)H 0: σ=O.04%。
解:(1)H 01: μ=O.5%,11:0.5%H μ≠, 总体标准差σ未知,拒绝域为2(1)t t n α>-,10,n =x =0.452%,s =O.037%,取0.0250.05,(9) 2.2622t α==,由检验统计量4.102t ===>2.2622,拒绝H 0: μ=O.5%, (2) H 02:σ=0.04%, H 12:σ≠0.04%,拒绝域为2222122(1) (1)n n ααχχχχ-≤-≥-或,10,n =取α=0.05,2220.9750.025(9) =2.7 (9)19.023χχχ≥=,,由检验统计量22222(1)(101)0.000377.70060.0004n s χσ--===,即22.77.700619.023χ<=<,接受H 02:σ=0.04%.10.有甲、乙两个试验员,对同样的试样进行分析,各人试验分析结果见下表(分析结果服从正态分布解:(1)222201121112:, :,H H σσσσ=≠拒绝域为1212122(1,1) (1,1)F F n n F F n n αα-≤--≥--或,128,n n ==取α=0.05, 0.9750.0250.0251(7,7)0.2004 , (7,7) 4.99(7,7)F F F ===,经计算22120.2927,0.2927,s s == 由检验统计量2212/0.2927/0.29271F s s ===,接受220112:,H σσ=(2) 02121212:, :H H μμμμ=≠拒绝域为122(2)t t n n α>+-,128,n n == 0.0250.05,(14) 2.1448t α==,并样本得到222112212(1)(1)2wn s n s s n n -⨯+-⨯=+-=0.2927, w s =0.5410, 由检验统计量-0.6833t ===<2.1448, 接受0212:,H μμ=即, 以95%的把握认为甲、乙两试验员试验分析结果之间无显著性的差异.11.为确定肥料的效果,取1000株植物做试验。
在没有施肥的100株植物中,有53株长势良好;在已施肥的900株中,则有783株长势良好,问施肥的效果是否显著(α=O.01)?解:(1)222201121112:, :,H H σσσσ=≠拒绝域为1212122(1,1) (1,1)F F n n F F n n αα-≤--≥--或,取α=0.01,12100,900,n n ==0.9950.0050.0051(99,899)0.7843 , (99,899) 1.3(899,99)F F F ===,计算22125353783783(1)0.2491,(1)0.1131,100100900900s s =⨯-==⨯-=由检验统计量 2212/0.2491/0.1131 2.2025F s s ===, 拒绝220112:,H σσ=(2) 02121212:, :H H μμμμ≤>拒绝域为12(2)t t n n α>+-,12100,900,n n ==0.010.01,() 2.4121t α=∞≥并样本得到222112212(1)(1)2wn s n s s n n -⨯+-⨯=+-=0.1266, w s =0.3558, 由检验统计量-9.0656x y t ===<2.4121, 接受0212:,H μμ≤即, 以95%的把握认为施肥的效果有显著性的差异. (备注: 0.005(99,899)F =1.43+(1.43-1.69)*0.5=1.3, 0.025(899,99)F =1.36+(1.36-1.53)*0.5=1.275)12.在十块地上同时试种甲、乙两种品种作物,设每种作物的产量服从正态分布,并计算得x =30.97,y =21.79,x s =26.7,y s =12.1。
这两种品种的产量有无显著差别(α=O.01)?解:(1)222201121112:, :,H H σσσσ=≠拒绝域为1212122(1,1) (1,1)F F n n F F n n αα-≤--≥--或,1210,n n ==取α=0.01, 0.9950.0050.0051(9,9)0.1529 , (9,9) 6.54(9,9)F F F ===,有题设22712.89,146.41,x y s s ==由检验统计量2212/712.89/146.41 4.8691F s s ===, 接受220112:,H σσ=(2) 02121212:, :H H μμμμ≥<,拒绝域为12(2)t t n n α<-+-,0.010.01,(18) 2.5524t α==-,1210,n n ==并样本得到222112212(1)(1)2wn s n s s n n -⨯+-⨯=+-=(9×712.89+9×146.41)/18=429.6500, w s =20.7280, 由检验统计量0.9903x y t ===>-2.5524, 接受0212:,H μμ≥即, 以95%的把握认为此两品种作物产量有显著差别,并且是第一种作物的产量显著高于第二种作物的产量.13.从甲、乙两店备买同样重量的豆,在甲店买了10次,算得y =116.1颗,1021()i i y y =-∑=1442;在乙店买了13次,计算x =118颗,1321()i i x x =-∑=2825。