电阻炉温度控制系统的设计
- 格式:docx
- 大小:664.68 KB
- 文档页数:27
基于单片机的电阻炉温度控制系统设计一、引言电阻炉是一种广泛应用于工业生产中的加热设备,其温度控制的准确性对于工艺过程的稳定和产品质量的保证至关重要。
本文将基于单片机设计一个电阻炉温度控制系统,通过采集温度传感器的信号,用单片机控制加热器的工作状态,实现对电阻炉温度的精确控制。
二、系统结构设计本系统由四个模块组成:温度采集模块、温度控制模块、显示模块和控制模块。
1.温度采集模块:使用一个高精度的温度传感器,如PT100,将电阻炉内部的温度转化为电压信号。
该信号经过模拟转数字转换器(ADC)转换为数字信号,传输给单片机。
2.温度控制模块:根据温度采集模块传输的信号,单片机通过PID算法计算出控制值,并输出PWM信号控制加热器的工作状态。
PID算法可根据实际情况进行参数调整,以达到系统稳定的控制效果。
3.显示模块:采用数码管或液晶显示器显示当前电阻炉的温度值,方便操作员实时监测电阻炉的运行状态。
4.控制模块:可以通过按钮或者触摸屏等方式进行设定和调整控制参数,例如设定温度范围、PID参数调节等。
三、系统工作原理1.系统初始化:单片机启动后,进行相应的外设初始化和参数设定,包括温度采集模块的配置、PID参数的设定、显示模块的显示等。
2.温度采集与转换:通过温度传感器采集电阻炉内部的温度信号,将其转化为模拟电压信号。
利用ADC将模拟信号转换为数字信号,并传输给单片机进行处理。
3.PID算法计算:单片机根据采集到的温度值,通过PID算法计算出控制值。
PID控制算法通常包括比例系数(P)、积分系数(I)和微分系数(D)三个参数的调整,根据实际情况进行调节以达到控制精度和稳定性要求。
4.PWM输出控制:根据PID算法计算得到的控制值,单片机输出对应的PWM信号。
该信号通过驱动电路控制加热器的工作状态,调整和维持电阻炉的温度。
5.温度显示:单片机将当前的温度值通过显示模块进行显示,使操作员能够实时监测到电阻炉的温度。
题目:电阻炉温度控制系统设计电阻炉温度控制系统设计摘要随着科学技术的飞速发展,控制理论不断丰富和完善,控制技术也在向智能化、开放性、高可靠性的方向发展。
目前常用的控制方式有智能化仪表、PLC、DCS,它们可组成各种控制系统以满足不同的控制要求。
其功能越来越强大、性能也越来越完善,并具有控制精度高、抗干扰能力强、防爆性强等特点。
本文研究的是电阻炉的温度控制系统,由于电阻炉在生产和生活中的应用比较广泛,所以电阻炉的温度控制就显得尤为重要了。
建立一个控制系统首先要针对控制对象进行研究,本设计的研究对象是实验室现有的管式电阻炉,因此本文对其进行了对象性能测试。
然后针对电阻炉的特点,提出了利用数字调节器、固态继电器等器件组成温度控制系统,通过调节参数实现对电阻炉温度的控制。
这种方法经济、简单、易操作,控制精度高。
最主要的是:学会了利用实验室现有的设备去掌握设计一个控制系统,更深刻的理解设计控制系统的思想,为以后的学习、工作打下了坚实的基础。
关键词:电阻炉;对象特性测试;控制系统;PWM;调节器Resistance furnace temperature control systemAbstractAlong with science's and technology's swift development, the control theory is unceasingly rich and is perfect, the control technology also to the intellectualization, openness, the redundant reliable direction develops. At present the commonly used control mode has the intellectualized measuring appliance, PLC, DCS, they may compose each kind of control system to satisfy the technique of production the request. Its function is getting more and more formidable, the performance to be getting more and more perfect, and has the control precision to be high, antijamming ability is strong,What the explosion-proof strong and so on characteristic this article studies is resistance furnace's temperature control system, because resistance furnace in produces and in the life application is quite widespread, therefore resistance furnace's temperature control appeared especially important, established a control system first to aim at the controlled member to conduct the research. This design's object of study is the laboratory existing tubular resistance furnace, therefore this article has carried on the object performance test to it. Then in view of resistance furnace's characteristic, proposed use component composition temperature control systems and so on digit regulator, solid state relay, realize through the adjustment parameter to the resistance furnace temperature control. This method economical, simple, easy to operate, the control precision is high. What is most main: Grasps using the laboratory existing equipment designs the work which a control system , the more profound understanding design control system's thought that for the later study, the work has built the solid foundation.Key word: resistance furnace;characteristics of the test object;control system;PWM;regulator目录摘要 (I)Abstract (II)目录 .......................................................................................................................................... I II 第一章引言 (1)1.1电阻炉的概述 (1)1.2电阻炉温度控制系统的应用与发展 (2)第二章电阻炉的温度控制系统设计概述 (4)2.1 总体方案设计 (4)2.2 设计要求 (4)2.3 设计原理 (4)第三章电阻炉温度特性的测试、记录及分析 (6)3.1 电阻炉温度特性测试 (6)3.1.1 对象特性测试中所用仪表 (6)3.1.2 对象特性测试原理 (6)3.1.3 进行温度特性曲线测试的仪器仪表的接线图 (6)3.2 温度特性曲线的记录与分析 (8)3.2.1 温度特性曲线的记录 (8)3.2.2 温度特性曲线试验结果的数据处理的方法 (9)3.2.3 温度特性曲线数据处理 (14)第四章电阻炉温度控制系统的设计 (17)4.1 电阻炉温度控制系统的实现过程 (17)4.1.1 电阻炉温度控制系统的系统方框图及调节过程 (17)4.1.2 仪器仪表介绍 (17)第五章电阻炉温度控制系统的参数整定及系统调试 (31)5.1 温度控制系统的实现线路 (31)5.1.1 系统的连线框图 (31)5.1.2 系统的连接线路及自动控制过程 (31)5.2 PID调节器及其参数的整定 (31)5.2.1 P、I、D各运算规律的作用 (31)5.2.2 PID参数的整定方法 (35)5.2.3 系统的PID整定结果及分析 (38)总结 (40)参考文献 (42)附录A 系统接线端子图 (44)附录B PWM电路原理图 (45)附录C PWM程序 (46)致谢 (52)第一章引言1.1电阻炉的概述工业炉是在工业生产中利用燃料燃烧或电能转化的热量将物料或工件加热的热工设备。
计算机课程设计名称:电阻炉温度控制系统课程设计任务书1 引言1.1课题背景自从发现电流的热效应(即楞茨-焦耳定律)以后,电热法首先用于家用电器,后来又用于实验室小电炉。
随着镍铬合金的发明,到20世纪20年代,电阻炉已在工业上得到广泛应用。
电阻炉是利用电流使炉内电热元件或加热介质发热,从而对工件或物料加热的工业炉。
工业上用的电阻炉一般由电热元件、砌体、金属壳体、炉门、炉用机械和电气控制系统等组成。
1.2控制对象电阻炉在化工、冶金等行业应用广泛,电阻炉中最重要的被控量就是温度。
因此温度控制在工业生产和科学研究中具有重要意义。
1.3功能及技术要求为了保证生产过程正常安全的进行,提高产品的质量和数量,以及减轻工人的劳动强度,节约能源,对加热用的各种电炉要求在一定条件下保持恒温,不能随电源电压波动或炉内物体而变化;或者有的电炉的炉温根据工艺要求按照某个指定的升温或保温规律而变化等等。
因此,对温度不仅要不断地测量,而且还进行控制。
对温度的控制要求是先进、可靠、经济、安全,能满足热处理工艺的要求,并保证工艺的稳定和再现性,节省能源,保护环境,改善劳动环境,降低生产成本,提高机械化和自动化水平。
2 总体方案设计2.1方案设计根据设计任务的要求,采用80C51单片机系统组成的数字控制器代替常规模拟调节器。
整个系统在规定的采样时刻经过A/D 转换采集由温度传感器ADC0809反馈回来的温度反馈测量值,并和给定值进行比较,将经过控制运算后的控制量输出给执行元件控制电阻丝的加热过程。
这样的系统属于直接数字控制(Direct Digital Control ,DDC )系统。
直接数字控制系统中的80C51单片机取代了多个模拟调节器,在不更换硬件的情况下,只要改变程序或调用不同子程序,就可实现各种复杂的控制规律。
此外,系统还应实现人机接口功能。
2.2 系统组成框图及工作原理系统的组成框图如图(2.1)所示。
整个系统由四部分组成,即:80C51单片机系统;温度检测通道;输出控制通道及报警显示系统。
电阻炉温度控制系统的设计在许多工业生产过程中,电阻炉被广泛应用于各种材料的加热和熔炼。
为了确保产品质量和工艺稳定性,电阻炉温度控制系统应满足以下需求:控制精度高:温度波动范围应在±1℃以内,以确保工艺稳定性和产品的一致性。
响应时间快:系统应能迅速跟踪设定温度,减小加热过程的时间误差,提高生产效率。
安全可靠:系统应具备过载保护、短路保护、过热保护等安全措施,确保设备和人身安全。
可扩展性:系统应便于扩展和升级,以适应不同工艺需求和技术发展。
电阻炉温度控制系统的电路设计是整个系统的核心部分。
加热器功率控制、温度传感器选择和电路保护等关键环节直接关系到系统的性能和稳定性。
以下是电路设计的重点:加热器功率控制:一般采用PID控制器来实现加热器功率的调节。
PID 控制器可以根据温度误差来自动调节加热器的功率,减小温度波动。
温度传感器选择:常用的温度传感器有热电偶和红外测温仪。
选择合适的传感器对提高系统的测量精度至关重要。
电路保护:为防止系统故障对设备和人身造成伤害,电路应设计多种保护措施。
例如,加热器应配备熔断器、过载保护器和短路保护器等。
电阻炉温度控制系统的软件设计是实现整个系统智能化的关键。
软件应包括输入输出端口设置、算法实现等关键模块。
以下是软件设计的要点:输入输出端口设置:软件应设置必要的输入输出端口,以便于用户对系统进行控制和监视。
例如,软件应支持通过界面设置加热器的启动/停止、温度设定值等。
算法实现:系统软件应实现高效的温度控制算法,如PID控制算法,以实现精确的温度控制。
算法应具有自适应性,能够根据环境条件和材料属性等变化进行自我调整,提高控制效果。
在完成电阻炉温度控制系统的设计和调试后,需要对系统进行严格的测试与结果验证,以确保系统的性能和稳定性达到预期要求。
测试应包括以下步骤:测试环境搭建:搭建测试平台,选择合适的电阻炉、温度传感器、控制系统等设备进行联调测试。
空载测试:在无负载的情况下,测试系统的加热速度、稳定性和精度等指标。
电阻炉温度控制系统方案设计
1. LOGO!性能及特点
LOGO!是SIEMENS 公司推出通用逻辑控制模块,是一种将编程器和主
机一体化的超小型可编程序控制器。
LOGO 内部集成有:控制功能、操作和显
示单元。
有一个用于扩展模块的接口、一个用于程序模块和PC 电缆的接口。
预制有基本功能、软开关、二进制指示器、输入和输出。
用户可通过控制器面
板上的按钮直接编程、编辑、读取数据或输入数据;可与计算机联网,用厂家提
供的专用软件编程。
SIEMENS LOGO!的主要特点如下:
①编程操作简单。
LOGO!编程可在本机上直接操作。
②编程语言简单。
其编程是将需要实现的功能所对应的功能块连接起
来即可。
③输出电流大。
LOGO!输出端可以承受电流达10A(继电器输出,阻性负载)
④自带显示面板。
可直接在自带面板上设置、更改和显示参数。
⑤具有通信功能。
带AS-I 总线功能的LOGO!可作为远程I/O 使用。
⑥价格低廉。
具有较低的价格和较高的性价比。
⑦面向大众、方便用户。
LOGO!不需要专门的训练,只要懂得一些电气知识就行。
⑧体积“小”(体积约为72mm*90mm*53mm)。
2.LOGO!的结构及原理
LOGO!的面板结构如图1.所示:电源接线端用来连接电源(电压有直流
24V、交流115V 或交流230V),数字量输入端直接连接开关、按钮和传感器等,数字量输出端可用容量为8/10A 的开关来控制负载,液晶显示面板可在LOGO!。
1绪论1.1研究的目的及意义自从发现电流的热效应(即楞次-焦耳定律)以后,电热法首先用于家用电器,后来又用于实验室小电炉⑴。
随着镍铬合金的发明,到20世纪20年代,电阻炉已在工业上得到广泛应用。
工业上用的电阻炉一般由电热元件、砌体、金属壳体、炉门、炉用机械和电气控制系统等组成。
加热功率从不足一千瓦到数千千瓦。
工作温度在650C以下的为低温炉;650C 〜1000E为中温炉;1000C以上为高温炉。
在高温和中温炉内主要以辐射方式加热。
在低温炉内则以对流传热方式加热,电热元件装在风道内,通过风机强迫炉内气体循环流动,以加强对流传热。
电阻炉有室式、井式、台车式、推杆式、步进式、马弗式和隧道式等类型。
可控气氛炉、真空炉、流动粒子炉等也都是电阻炉[2]。
电阻炉与火焰炉相比,具有结构简单、炉温均匀、便于控制、加热质量好、无烟尘、无噪声等优点,但使用费较高⑻。
电热元件具有很高的耐热性和高温强度,很低的电阻温度系数和良好的化学稳定性。
常用的材料有金属和非金属两大类。
金属电热元件材料有镍铬合金、铬铝合金、钨、钼、钽等,一般制成螺旋线、波形线、波形带和波形板。
非金属电热元件材料有碳化硅、二硅化钼、石墨和碳等,一般制成棒、管、板、带等形状。
电热元件的分布和线路接法,依炉子功率大小和炉温要求而定⑷。
在工农业生产或科学实验中,温度是极为普遍的又极为重要的热工参数之一。
为了保证生产过程正常安全地进行,提高产品的质量和数量以及减轻工人的劳动强度,节约能源,对加热用的各种电炉要求在一定条件下保持恒温,不能随电源电压波动或炉内物体而变化,也有的电炉的炉温根据工艺要求按照某个指定的升温或保温规律而变化等。
因此,在工农业生产或科学实验中常常要求不断地测量温度,同时还进行控制[5]。
电阻炉是热处理生产中应用最广的加热设备,通过布置在炉内的电热元件将电能转化为热能并借助辐射与对流的传热方式加热工件。
热处理是提高金属材料及其制品性能的工艺⑹。
电炉温度控制系统设计摘要热处理是提高金属材料与其制品质量的重要技术手段。
近年来随工业的开展,对金属材料的性能提出了更多更高的要求,因而热处理技术也向着优质、高效、节能、无公害方向开展。
电阻炉是热处理生产中应用最广泛的加热设备,加热时恒温过程的测量与控制成为了关键技术,促使人们更加积极地研制热加工工业过程的温度控制器。
此设计针对处理电阻炉炉温控制系统,设计了温度检测和恒温控制系统,实现了根本控制、数据采样、实时显示温度控制器运行状态。
控制器采用 51 单片机作为处理器,该温度控制器具有自动检测、数据实时采集处理与控制结果显示等功能,控制的稳定性和精度上均能达到要求。
满足了本次设计的技术要求。
关键词:电阻炉,温度测量与控制,单片机目录一、绪论- 1 -选题背景- 1 -电阻炉国开展动态- 1 -设计主要容- 2 -二、温度测量系统的设计要求- 2 -2.1 设计任务- 2 -2.2 系统的技术参数- 2 -2.3 操作功能设计- 3 -三、系统硬件设计- 3 -3.1 CPU选型- 4 -3.2 温度检测电路设计- 4 -3.2.1 温度传感器的选择- 4 -热电偶的测温原理- 5 -3.2.1.2 热电偶的温度补偿- 5 -3.2.2 炉温数据采集电路的设计- 6 -3.2.2.1 MAX6675芯片- 6 -3.2.2.2 MAX6675的测温原理- 6 -3.2.2.3 MAX6675 与单片机的连接- 7 -3.3 输入/输出接口设计- 7 -3.4 保温定时电路设计- 9 -3.4.1 DS1302 与单片机的连接- 10 -3.5 温度控制电路设计- 10 -系统硬件电路图- 12 -四、系统软件设计- 13 -4.1 软件总体设计- 13 -4.2 主程序设计- 13 -4.3 温度检测与处理程序设计- 14 -4.4 按键检测程序设计- 16 -4.5 显示程序设计- 18 -4.6 输出程序设计- 19 -中值滤波- 20 -五、结论- 20 -参考文献- 21 -一、绪论1.1选题背景在现代化的工业生产中,电流、电压、温度、流速、流量、压力和开关量都是常用的主要被控参数。
电阻加热炉温度控制系统设计一、温度控制系统的要求:1.稳定性:系统应能快速响应温度变化,并能在设定温度范围内保持稳定的温度。
2.精度:控制系统应具备高精度,确保炉内温度与设定温度的偏差控制在允许范围内。
3.可靠性:系统应具备高可靠性,能长时间稳定运行,并能在发生异常情况时及时报警或自动停止加热。
4.人机界面:温度控制系统应提供方便直观的人机界面,操作简单易懂。
二、温度控制系统的设计:1.传感器选择:选择合适的温度传感器进行温度检测。
常用的温度传感器有热电偶和热电阻。
根据实际需求选择合适的传感器类型和量程。
2.温度控制器选择:根据控制需求,选择适用于电阻加热炉的温度控制器。
具备温度显示功能的控制器可以直观地显示炉内温度。
还可以选择具备PID控制功能的控制器,以提高温度控制精度。
3.控制循环设计:将温度控制系统设计成闭环控制系统,以实现炉内温度的精确控制。
控制循环包括采样、比较、控制和执行四个环节。
采样环节将实际温度值与设定温度值进行比较,然后控制环节根据比较结果输出控制信号,最后执行环节根据控制信号调节电阻加热炉的加热功率。
4.温度传感器布置:将温度传感器布置在炉内合适位置,确保能够准确测量到炉内温度。
传感器的安装位置应避免热点和冷点,以避免温度不均匀。
5.控制参数调整:根据实际情况进行PID参数的调整。
通过实验或仿真等方法,逐步调整PID参数,使得系统能够快速响应温度变化、准确跟踪设定温度,并保持稳定的温度输出。
6.报警和保护设计:设计温度控制系统时,应考虑到电阻加热炉的过热或温度异常等情况,并设置相应的报警和保护功能。
当温度超过安全范围时,系统应及时报警,并自动停止加热。
7.人机界面设计:为了方便操作和监控,可以在温度控制系统上设置触摸屏或显示屏。
通过人机界面,操作人员可以方便地设定温度、监测炉内温度,并能够实时查看温度曲线和报警信息。
总之,电阻加热炉温度控制系统的设计需要考虑到温度控制精度、稳定性、可靠性和人机界面等方面的要求。
基于PLC电阻炉温度控制系统设计1.引言电阻炉是一种常见的热处理设备,用于加热金属或其他材料至一定温度。
为了确保加热过程的准确性和安全性,需要使用温度控制系统对电阻炉进行控制。
本文将基于PLC来设计一个电阻炉温度控制系统。
2.设计方案2.1系统架构该系统的基本架构由以下几个部分组成:传感器模块、控制模块、执行模块和人机界面。
传感器模块用于监测电阻炉内部的温度,并将温度信号传输给控制模块。
控制模块采用PLC作为核心控制器,负责接收传感器信号并根据设定的温度值进行控制。
执行模块根据PLC的指令,控制电阻炉的加热功率以调节温度。
人机界面用于设置设定温度和显示当前温度,以及监控系统状态。
2.2硬件设计传感器模块使用高精度的温度传感器(如热电偶或热电阻),将温度信号转换为模拟电信号,并通过模拟输入模块将信号输入到PLC。
控制模块采用PLC作为核心控制器。
PLC具有较高的可编程性和稳定性,能满足温度控制系统的要求。
PLC通过模拟输入模块接收传感器信号,并通过数字输出模块控制执行模块。
执行模块由电源模块和电阻器组成。
电源模块为电阻炉提供电力源,电阻器根据PLC的输出信号来调节电阻炉的加热功率,以控制温度。
人机界面采用触摸屏或上位机软件,用于设置设定温度、显示当前温度、监控系统状态和报警信息等。
2.3软件设计软件部分主要包括程序设计和界面设计。
程序设计方面,主要采用Ladder Diagram(梯形图)来编写控制程序。
程序需要包括接收传感器信号、判断温度与设定温度的差值、根据差值控制输出信号等功能。
界面设计方面,可以使用相应的编程软件进行设计。
界面需要包括设定温度的输入框、当前温度的显示框、报警信息的提示框等。
3.系统功能该系统具有以下功能:-温度控制:根据设定温度自动调节电阻炉加热功率,使温度保持在设定范围内。
-报警功能:当温度超出设定范围时,系统会发出声音或显示警报,提醒操作员。
-数据记录:系统可以记录温度变化的曲线,并将数据存储到数据库中,以便用户查询和分析。
箱式电阻炉及温控系统结构设计1.炉体结构设计:箱式电阻炉的炉体一般由钢板焊接而成,具有良好的耐高温性能和结构强度。
炉体需要具备良好的隔热性能,以减少能量损失。
为此,可以在炉体内外分别设置隔热材料层,如石棉、硅酸铝纤维、陶瓷纤维等,同时在隔热材料层外再设置一层不锈钢金属材料,以增加炉体的稳定性。
2.加热元件设计:箱式电阻炉的加热元件主要有电阻丝和加热管两种形式。
电阻丝是通过通电使其发热来加热炉体,常用的电阻丝材料有镍铬合金、铬铝合金等。
加热管是通过通过加热管内的导热介质来实现加热,加热管一般为不锈钢管内填充密度较高的酸钠玻璃丝,加热管具有更高的加热效率和更均匀的温度分布。
3.温控系统设计:温控系统是箱式电阻炉的重要组成部分,其主要功能是实时监测和控制炉内温度。
温控系统一般由控制器、温度传感器、继电器等组成。
控制器负责接收温度传感器的信号,并通过继电器控制加热元件的通断,以达到设定温度的目的。
在温控系统设计中,需要考虑控制精度、稳定性和可靠性等因素。
在箱式电阻炉及温控系统的结构设计过程中,需要注意以下几点:1.炉体结构紧凑合理,并具备良好的隔热性能;2.加热元件设计要考虑加热效率、温度均匀性等因素;3.温控系统的设计要考虑控制精度、稳定性和可靠性;4.安全性是设计中重要的考虑因素,需要考虑炉体的绝缘性能、过温保护等措施;5.设备维护方便,易于清洁和更换损坏的零部件。
总之,箱式电阻炉及温控系统的结构设计需要综合考虑炉体结构、加热元件和温控系统三个方面,以实现高效、稳定的加热和温度控制效果。
同时,设计中还要注意安全性和维护性,以确保设备的正常运行和使用寿命。
电炉温度控制系统设计摘要热处理是提高金属材料及其制品质量的重要技术手段。
近年来随工业的发展,对金属材料的性能提出了更多更高的要求,因而热处理技术也向着优质、高效、节能、无公害方向发展。
电阻炉是热处理生产中应用最广泛的加热设备,加热时恒温过程的测量与控制成为了关键技术,促使人们更加积极地研制热加工工业过程的温度控制器。
此设计针对处理电阻炉炉温控制系统,设计了温度检测和恒温控制系统,实现了基本控制、数据采样、实时显示温度控制器运行状态。
控制器采用 51 单片机作为处理器,该温度控制器具有自动检测、数据实时采集处理及控制结果显示等功能,控制的稳定性和精度上均能达到要求。
满足了本次设计的技术要求。
关键词:电阻炉,温度测量与控制,单片机目录一、绪论.......................................................................................................................................- 1 -1.1 选题背景...................................................................................................................- 1 -1.2电阻炉国内发展动态...............................................................................................- 1 -1.3设计主要内容...........................................................................................................- 2 -二、温度测量系统的设计要求...................................................................................................- 3 -2.1 设计任务.....................................................................................................................- 3 -2.2 系统的技术参数.........................................................................................................- 3 -2.3 操作功能设计.............................................................................................................- 4 -三、系统硬件设计.......................................................................................................................- 5 -3.1 CPU选型......................................................................................................................- 5 -3.2 温度检测电路设计........................................................................................................- 5 -3.2.1 温度传感器的选择.............................................................................................- 5 -3.2.1.1热电偶的测温原理...............................................................................- 6 -3.2.1.2 热电偶的温度补偿..............................................................................- 7 -3.2.2 炉温数据采集电路的设计...............................................................................- 7 -3.2.2.1 MAX6675芯片...................................................................................- 7 -3.2.2.2 MAX6675的测温原理.......................................................................- 8 -3.2.2.3 MAX6675 与单片机的连接.................................................................- 8 -3.3 输入/输出接口设计 ....................................................................................................- 9 -3.4 保温定时电路设计................................................................................................... - 10 -3.4.1 DS1302 与单片机的连接 .............................................................................. - 11 -3.5 温度控制电路设计..................................................................................................... - 11 -系统硬件电路图................................................................................................................ - 13 -四、系统软件设计.................................................................................................................... - 15 -4.1 软件总体设计............................................................................................................. - 15 -4.2 主程序设计................................................................................................................ - 15 -4.3 温度检测及处理程序设计......................................................................................... - 16 -4.4 按键检测程序设计..................................................................................................... - 18 -4.5 显示程序设计............................................................................................................. - 20 -4.6 输出程序设计............................................................................................................. - 21 -4.7中值滤波..................................................................................................................... - 22 -五、结论.................................................................................................................................... - 23 - 参考文献.................................................................................................................................... - 24 -一、绪论1.1选题背景在现代化的工业生产中,电流、电压、温度、流速、流量、压力和开关量都是常用的主要被控参数。
例如:在机械制造、电力工程、化工生产、造纸行业、冶金工业和食品加工等诸多领域中,人们都需要对各类加热炉、热处理炉、反应炉和锅炉中的温度进行检测和控制。