数列的综合运用——放缩法
- 格式:ppt
- 大小:330.00 KB
- 文档页数:10
数列与不等式综合问题一裂项放缩 放缩法证明与数列求和有关的不等式中,很多时候要留一手,即采用有保留的方法,保留数列第一项或前两项,从数列第二项或第三项开始放缩,这样才不至于结果放得过大或过小。
常见裂项放缩技巧:例1 求证(1) 变式训练 [2016·湖南怀化质检]设数列{a n }的前n 项和为S n ,已知a 1=1,2S n n =a n +1-13n 2-n -23,n ∈N *. 求数列{a n }的通项(1)公式;(2)证明:1a 1+1a 2+…+1a n<74. [2014·广东高考]设各项均为正数的数列{a n }的前n 项和为S n ,且S n 满足S 2n -(n 2+n -3)S n -3(n 2+n )=0,n ∈N *.(1)求a 1的值;(2)求数列{a n }的通项公式;(3)证明:对一切正整数n ,有1a 1?a 1+1?+1a 2?a 2+1?+…+1a n ?a n +1?<13. 二等比放缩(一般的,形如 的数列,求证都可以等比放缩)例4 [2014·课标全国卷Ⅱ]已知数列{a n }满足a 1=1,a n +1=3a n +1.(1)证明⎩⎨⎧⎭⎬⎫a n +12是等比数列,并求{a n }的通项公式; (2)证明1a 1+1a 2+…+1a n<32. 变式训练【2012.广东理】已知数列{a n }满足111221,1n n n s a a ++=-+=(1)求{a n }的通项公式2311111()21212121n n *++++<∈++++N 例求证:,n n n n n a a b a a b =-=-12111....nk a a a +++<231111+++......+12222n<(2)证明:对一切正整数n ,都有121113 (2)n a a a +++< 三伯努利不等式应用及推广 对任意的实数()()*1,11nx x nx n N >-+≥+∈有伯努利不等式 例:求证()1111+11+1....13521n ⎛⎫⎛⎫⎛⎫++> ⎪⎪ ⎪-⎝⎭⎝⎭⎝⎭变式训练【2008,福建理】已知函数()()ln 1f x x x =+-(1)求f (x )的单调区间(2)记f (x )在[]()0,n n N ∈上的最小值是n b ,令()ln 1n n a x b =+-,求证1313211224242......1...n na a a a a a a a a a a a -+++< 伯努利不等式的推广对任意的实数,例,【2006,江西理】已知数列{a n }满足()11133,2221n n n na a a n a n --==≥+- (1)已知数列{a n }满足(2)证明:对于一切正整数n ,不等式123...2!n a a a a n <恒成立。
解题宝典证明数列不等式问题是一类综合性较强且难度较大的问题,不仅考查了数列知识,还考查了证明不等式的技巧.本文主要介绍三种证明数列不等式问题的方法,以供大家参考.一、利用数列的单调性我们知道,数列具有单调性.因此在证明数列不等式问题时,我们可以利用数列的单调性来讨论数列的变化趋势,进而证明不等式.利用数列的单调性解题的关键在于观察数列的特征,通过作差、作商等方法,构造出新数列,利用数列的单调性证明结论.例1.已知数列{}a n各项均为正数,前n项和S1>1,满足关系式6S n=(a n+1)(a n+2),n∈N*.设数列{}bn满足关系式an(2b n-1)=1,令T n为数列{}b n的前n项和,求证:3T n+1>log2(a n+3),n∈N*.证明:根据前n项和关系式可得a n=3n-1,将其代入到an(2b n-1)=1中可得b n=log23n3n-1,Tn=b1+b2+⋯+b n=log2(32×65×⋯×3n3n-1),则3T n+1-log2(a n+3)=log2éë(32×65×⋯×3n3n-1)3ùû×23n+2.设f(n)=(32×65×⋯×3n3n-1)3×23n+2,则f(n+1)f(n)=(3n+3)3(3n+5)(3n+2)2,变形得(3n+3)3-(3n+5)(3n+2)2=9n+7>0,则数列{}f(n)单调递增.因此f(n)≥f(1)>1,则3T n+1-log2(a n+3)=log2f(n)>0,所以3T n+1>log2(a n+3).本题的难度较大,欲证明此题,首先需要从结论出发,构造数列f(n),然后根据新数列的形式,利用作差法、作商法证明数列具有单调性,再利用其单调性证明结论.很多时候,我们并不能直接发现数列的单调性,往往需要对数列的递推式进行多次转换、变形,构造出新数列才能发现其单调性.二、放缩法放缩法是解答不等式问题的基本方法之一.在运用放缩法证明数列不等式问题时,我们必须紧紧围绕着放缩目标,掌握好放缩的尺度,灵活运用不等式的传递性证明不等式.常见的放缩技巧有添加或删除某些项、先放缩再求和(先求和再放缩)、先裂项再放缩(先放缩再裂项)等.但无论运用哪种放缩技巧,都需要把控放缩的尺度,否则容易得出错误的答案.例2.已知数列{}a n满足条件:a1=1,a n+1=2a n+1(n∈N*),试证明:n2-13<a1a2+a2a3+⋯+a n an+1<n2.证明:由a n+1=2a n+1,(n∈N*),可得a n=2n-1,则akak+1=2k-12k+1-1=2k-12(2k-12)<2k-12(2k-1)=12,所以a1a2+a2a3+⋯+anan+1<12+12+⋯+12=n2.故akak+1=2k-12k+1-1=12·2k+1-22k+1-1=12(1-12k+1-1)=12-13×2k+2k-2≥12-13×12k(k=1,2,3,⋯),即a1a2+a2a3+⋯+anan+1≥12-13(12+122+⋯+12n)=n2-13(1-12n)>n2-13.综合上述分析,即可证明不等式n2-13<a1a2+a2a3+⋯+a n a n+1<n2成立.本题主要运用了放缩法,首先结合数列不等式的表达式,对不等式进行缩放,构造出anan+1,再借助不等式的传递性证明了结论.三、导数法对于综合性较强的数列不等式问题,我们往往采用导数法来求解.首先结合不等式构造出函数模型,对函数求导,通过研究其导函数得到函数的单调性、最储文海42解题宝典值,进而证明不等式成立.例3:试证明12+13+14+⋯+1n <ln n <1+12+13+14+⋯+1n +1(n ∈N*).证明:令a n =1n +1、b n =1n ,于是当n ≥2时,S n -1=ln n 、S n =ln(n +1).则S n -S n -1=ln(n -1)-ln n =ln n +1n.欲证明原不等式成立,需要证明1n +1<ln n +1n<1n ,即证明1x +1<ln x +1x <1x ,x ≥1.设函数f (x )=ln x +1x -1x +1,对其进行求导可得到f ′(x )=1x +1-1x +1(x +1)2=-1x (x +1)2<0.令x +1x =t ,则1x =t -1,t -1t<ln t <t -1,(t >1).设函数h (t )=ln t -t -1t ,则h ′(t )=t -1t2>0,则函数h (t )在(1,+∞)单调递增,所以h (t )>h (1)=0,h (t )=ln t -t -1t>0,即是ln t >t -1t.同理可以证得ln t <t -1,即是ln t +1t <1t.综上可得,1t +1<ln t +1t <1t ,当t 分别取1,2,3,…,n -1时,12+13+14+⋯+1n <ln n <1+12+13+14+⋯+1n +1.运用导数法的根本目的是判断数列的单调性,求得数列的最值.这里首先构造出两个数列以及两个数列的和式,然后结合目标不等式的形式构造出函数模型,通过分析导函数确定函数的单调性,从而证明不等式.从上述分析我们不难看出,证明数列不等式问题的难度系数较大.在解答此类问题时,我们需要仔细分析数列不等式的特点,将其进行适当的变形、转化,并要学会联想,将其与不等式的性质、重要结论以及函数、导数的性质关联起来,才能将难题破解.(作者单位:江苏省华罗庚中学)立体几何是高考数学考查的重点.解答立体几何问题常用的方法是几何法和向量法.这两种方法是分别从几何和代数两个角度入手的,有着各自的优势.本文重点探讨这两种方法在解题中的应用.一、几何法几何法是指运用几何知识解答问题的方法.在解答立体几何问题时,我们需要根据题意绘制相应的图形,探寻空间中点、线、面之间的位置关系,通过延长线段,平移、变换、旋转图形,添加辅助线等方式,建立结论与已有条件之间的联系,灵活运用各种定理、定义、性质,对条件进行转化,顺利解答问题.例1.如图1,在三棱台ABC-DEF 中,已知平面BCEF ⊥平面ABC ,∠ACB -90°,BE =EF =FC =1,BC =2,AC =3,(1)求证:BF ⊥平面ACFD (2)求二面角B -AD -C 的余弦值.李鹏飞图143。
数列求和中常见放缩方法和技巧一、放缩法常见公式: (1)()()111112-<<+n n n n n(2)()12122112--=-+<+=<++n n n n n n n n n (3)()()211++<+<n n n n n (4)122+>n n(二项式定理)(5)1+>x e x,1ln -<x x (常见不等式)常见不等式: 1、均值不等式; 2、三角不等式; 3、糖水不等式; 4、柯西不等式; 5、绝对值不等式;若欲证不等式含有与自然数n 有关的n 项和,可采用数列中裂项求和等方法来解题。
例4. 已知n ∈N*,求n 2n131211<…++++。
2==<=,则()()()11122123221n n n++<+-+-++--1<<例5. 已知*N n ∈且)1n (n 3221a n +++⨯+⨯= ,求证:2)1(2)1(2+<<+n a n n n 对所有正整数n 都成立。
证明:因为n n n n =>+2)1(,所以2)1n (n n 21a n +=+++> , 又2)1()1(+<+n n n n , 所以2)1n (21n 225232)1n (n 232221a 2n +=++++=++++++< ,综合知结论成立。
例6、求证:2222111171234n ++++< 证明:21111(1)1n n n n n<=--- 222221111*********1()().1232231424n n n n ∴++++<++-++-=+-<- 此题采用了从第三项开始拆项放缩的技巧,放缩拆项时,不一定从第一项开始,须根据具体题型分别对待,即不能放的太宽,也不能缩的太窄,真正做到恰倒好处。
nn n 1211)1ln(113121+++<+<++++⎪⎭⎫ ⎝⎛++++++⎪⎭⎫ ⎝⎛++++++⎪⎭⎫ ⎝⎛+=+++n n n n 31121219181716151413121313121 6533323279189936365111nn n n n =⎪⎪⎭⎫ ⎝⎛+⋅++⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛++>---)1*,(4)1(1ln 54ln 43ln 32ln >∈-<+++++n N n n n n n例6. 已知函数1212)(+-=x x x f ,证明:对于*N n ∈且3≥n 都有1)(+>n n n f 。
数列的放缩题型一:单调性法例1:证明:11115123136n n n n ++++>++-,2n n N *≥∈,.因为1111111112313233233n a n n n n n n n n =++++<++++++-++++ 所以n a 单调递增,156n a a >=例2:证明:1111121313n n n n<++++<+-,n N *∈.右边:11111(31)213231n n n n n n n++++<•-+=+--左边:1111112313n a n n n n n=+++++++-可以证明:11232n x n x n+>+- 44()(3)2*2n nn x n x n n>+-所以倒叙相加可得 1111111111()()1231333121n n nn n n n nn n++++++++++++++--+ 2*n >422*2nn n = 所以1n a >题型二:裂项法例1:证明:222211117147(32)6n +++<-,n N *∈.211(32)(34)(31)n n n <---例2:证明:2611151(1)(21)493n n n n ≤++++<++ 解析: 一方面⎪⎭⎫ ⎝⎛+--=-=-<12112121444111222n n n n n ,所以35321121121513121112=+<⎪⎭⎫ ⎝⎛+--++-+<∑=n n knk 另一21111111111492334(1)11n n n n n n ++++>++++=-=⨯⨯+++方面:当3≥n 时,)12)(1(61++>+n n n n n ,当1=n 时,2191411)12)(1(6n n n n ++++=++ ,当2=n 时,2191411)12)(1(6nn n n ++++<++ ,所以综上有35191411)12)(1(62<++++≤++n n n n例3:证明:11112477121017(31)(52)25n n +++<⨯⨯⨯++提示:1313615(31)(52)55(31)(3)(3)(3)522n n n n n n =<++++-+例4:求证:22211171135(21)62(21)n n ++++>---,2n n N *≥∈,. 提示:211(21)(21)(21)n n n >--+例5:证明:222233131312n+++<---,n N *∈ 方法一:13123n n --≥⨯方法二:1111122323113()31(31)3(31)(31)3131n n nn n n n n n +++++⨯⨯=<=-------例6:已知当0x >时sin x x >,求证:211sinln 2(1)nk k =<+∑例7:已知函数()()cos sin 10f x x x x x =-+>。
数列放缩法的应用技巧总结数列放缩法是一种在解决数学问题中常用的技巧和方法。
它的核心思想是对给定的数列进行适当的放缩,以便更好地理解和分析数列的性质和规律。
数列放缩法在各个数学领域都有广泛的应用,包括数论、代数、几何、概率论等。
下面将总结数列放缩法的应用技巧。
1. 数列变形:在使用数列放缩法解决问题时,常常需要对原始数列进行变形。
通过将数列中的项重新排列或重新组合,可以使问题变得相对简单。
数列变形的关键是发现数列中的规律和性质,在此基础上进行合理的变形,从而达到更好地解决问题的目的。
2. 数列放缩:数列放缩是数列放缩法的核心步骤。
通过对数列进行加减乘除等运算,可以使数列的项之间的关系更加明确和简单。
数列放缩的关键在于找到合适的变换方法和变换因子,保持等价性的同时使问题变得更容易解决。
3. 利用不等式:数列放缩法常常利用不等式来进行数列的放缩。
通过添加合适的不等式或利用已知的不等式性质,可以对数列的项进行限制和界定。
不等式的选择和使用需要根据具体的问题和数列的性质进行判断,常用的不等式有柯西-施瓦兹不等式、均值不等式、特殊不等式等。
4. 利用递推关系:对于递推数列,数列放缩法常常利用递推关系进行变形和放缩。
通过寻找递推数列的通项公式,可以将原始问题转化为求解通项公式的问题。
在这个过程中,数列的放缩往往是不可缺少的一步,它可以将复杂的递推关系简化为更简单的形式。
5. 利用数列的性质:数列放缩法还常常利用数列的性质来解决问题。
例如,对于等差数列,可以利用其性质求解等差数列的和、推导等差数列的通项公式等。
对于等比数列,也可以利用等比数列的性质来解决等比数列的问题。
6. 利用极限思想:数列放缩法常常利用极限思想来求解数列的极限或证明数列的性质。
通过适当的放缩和变形,可以从数列中找到趋于极限的子数列,从而进一步研究数列的性质和规律。
7. 利用对称性:数列放缩法还常常利用数列的对称性进行变形和放缩。
通过对称性的利用,可以简化数列的形式,从而更好地理解和分析数列的性质和规律。
数列放缩法技巧全总结引言数列放缩法是解决数学问题中常用的一种技巧。
通过将数列进行放缩,可以使得原问题更易于解决,或者得到更加精确的结果。
本文将介绍数列放缩法的基本概念和常用技巧,并通过一些例子来说明其应用。
基本概念在使用数列放缩法解决问题时,我们需要理解以下几个基本概念:1. 数列放缩数列放缩是指通过对数列中的每一项进行适当的操作,使得数列满足一些特定的性质。
常用的数列放缩操作包括:乘法放缩、加法放缩和取对数放缩等。
2. 性质保持数列放缩后,原数列的一些性质可能得以保持,例如单调性、有界性等。
这样可以为问题的解决提供一些有用的线索。
3. 题目转化数列放缩还可以将原问题转化为一个更容易解决的形式。
通过变换数列中的项,我们可以得到一个新的数列,从而将原问题转化为对新数列进行分析的问题。
常用技巧1. 乘法放缩乘法放缩是数列放缩中最常用的技巧之一。
通过乘以一个适当的常数,可以使得数列中的项满足某种性质,比如有界性或单调性。
以下是一些常见的乘法放缩技巧:•将数列中的项全部乘以一个常数。
这可以用来放缩数列中的每一项,使得它们满足某种条件,例如有界性。
比如,对于一个递增的数列a n,我们可以将每一项乘以2,得到一个递增且更大的数列2a n。
•对数列中的每一项都乘以一个缩放因子,使得数列中的项的比较关系得以保持。
这种放缩常用于解决含有不等式的问题。
比如,对于一个递减的数列a n,我们可以将每一项都乘以−1,得到一个递增的数列−a n。
•利用数列放缩的特性进行条件的放缩。
比如,对于一个不等式问题,我们可以将不等式两边都乘以一个常数,使得问题更易解决。
2. 加法放缩加法放缩是利用数列的加法、减法性质进行放缩的一种技巧。
通过对数列中的项进行加减操作,可以得到一个新的数列,从而顺利解决问题。
以下是一些常见的加法放缩技巧:•利用数列之间的加减关系进行放缩。
比如,对于一个递增的数列a n,我们可以构造一个新的递增数列b n=a n+1−a n,从而将问题转化为分析数列b n的性质的问题。
放缩技巧放缩法:将不等式一侧适当的放大或缩小以达证题目的的方法,叫放缩法。
放缩法的方法有:⑴添加或舍去一些项,如:a a >+12;n n n >+)1( ⑵将分子或分母放大(或缩小) ⑶利用基本不等式,如:4lg 16lg 15lg )25lg 3lg (5lg 3log 2=<=+<⋅; 2)1()1(++<+n n n n⑷利用常用结论: Ⅰ、kkk k k 21111<++=-+; Ⅱ、k k k k k 111)1(112--=-< ; 111)1(112+-=+>k k k k k (程度大) Ⅲ、)1111(21)1)(1(111122+--=+-=-<k k k k k k ; (程度小) 1.若a , b , c , d ∈R +,求证:21<+++++++++++<ca d db dc c a c b bd b a a【巧证】:记m =ca d db dc c a c b bd b a a +++++++++++∵a , b , c , d ∈R+∴1=+++++++++++++++>cb a d db a dc c a c b a bd c b a a m2=+++++++<cd dd c c b a b b a a m ∴1 < m < 2 即原式成立2.当 n > 2 时,求证:1)1(log )1(log <+-n n n n 【巧证】:∵n > 2 ∴0)1(log ,0)1(log >+>-n n n n∴2222)1(log 2)1(log )1(log )1(log )1(log ⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡++-<+-n n n n n n n n n n 12log 22=⎥⎦⎤⎢⎣⎡<n n ∴n > 2时, 1)1(log )1(log <+-n n n n3.求证:213121112222<++++n【巧证】:nn n n n 111)1(112--=-< ∴2121113121211113121112222<-=+-++-+-+<++++n n n n巧练一:设x > 0, y > 0,y x y x a +++=1, yyx x b +++=11,求证:a < b 巧练一:【巧证】:yyx x y x y y x x y x y x +++<+++++=+++11111 巧练二:求证:lg9•lg11 < 1巧练二:【巧证】:122299lg 211lg 9lg 11lg 9lg 222=⎪⎭⎫⎝⎛<⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛+≤⋅巧练三:1)1(log )1(log <+-n n n n巧练三:【巧证】: 222)1(log )1(log )1(log ⎥⎦⎤⎢⎣⎡-≤+-n n n n n n 12log 22=⎥⎦⎤⎢⎣⎡<n n 巧练四:若a > b > c , 则0411≥-+-+-ac c b b a 巧练四: 【巧证】: c a c b b a c b b a c b b a -=⎪⎪⎭⎫ ⎝⎛-+-≥--≥-+-4)()(22))((12112巧练五:)2,(11211112≥∈>+++++++n R n nn n n巧练五:【巧证】:左边11111122222=-+=++++>n nn n n n n n 巧练六:121211121<+++++≤nn n 巧练六:【巧证】: 11121<⋅+≤≤⋅n n n n 中式 巧练七:已知a , b , c > 0, 且a 2+ b 2= c 2,求证:a n + b n < c n (n ≥3, n ∈R *)巧练七:【巧证】: ∵122=⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛c b c a ,又a , b , c > 0,∴22,⎪⎭⎫ ⎝⎛<⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛<⎪⎭⎫ ⎝⎛c b c b c a c a n n ∴1=⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛nn c b c a证明数列型不等式,因其思维跨度大、构造性强,需要有较高的放缩技巧而充满思考性和挑战性,能全面而综合地考查知识的潜能与后继能力,因而成为压轴题及各级各类竞赛试题命题的极好素材。
数列综合应用1————用放缩法证明与数列和有关的不等式一、备考要点数列与不等式的综合问题常常出现在高考的压轴题中, 是历年高考命题的热点,这类问题能有效地考查学生 综合运用数列与不等式知识解决问题的能力.解决 这类问题常常用到放缩法,而求解途径一般有两条: 一是先求和再放缩,二是先放缩再求和.二、典例讲解1.先求和后放缩例1.正数数列{}n a 的前n 项的和n S ,满足 12+=n n a S ,试求:1数列{}n a 的通项公式;2设11+=n n n a a b ,数列{}n b 的前n 项的和 为n B ,求证:21<nB 2. 先放缩再求和①.放缩后成等差数列,再求和例2.已知各项均为正数的数列{}n a 的前n 项和为n S , 且22n n n a a S +=.1 求证:2214n n n a a S ++<; 2<⋅⋅⋅< ②.放缩后成等比数列,再求和例3.1设a ,n ∈N ,a ≥2,证明:n n n a a a a ⋅+≥--)1()(2;2等比数列{a n }中,112a =-,前n 项的和为A n , 且A 7,A 9,A 8成等差数列.设nn n a a b -=12,数列{b n } 前n 项的和为B n ,证明:B n <13.③.放缩后为差比数列,再求和例4.已知数列{}n a 满足:11=a ,)3,2,1()21(1 =+=+n a n a n n n .求证: 11213-++-≥>n n n n a a ④.放缩后为裂项相消,再求和例5.在mm ≥2个不同数的排列P 1P 2…P n 中, 若1≤i <j ≤m 时P i >P j 即前面某数大于后面某数, 则称P i 与P j 构成一个逆序. 一个排列的全部逆序的总数称为该排列的逆序数. 记排列321)1()1( -+n n n 的逆序数为a n ,如排列21的逆序数11=a ,排列321的 逆序数63=a .1求a 4、a 5,并写出a n 的表达式;2令nn n n n a a a a b 11+++=,证明: 32221+<++<n b b b n n ,n =1,2,….高考真题再现:1.06浙江卷已知函数32()f x x x =+,数列{}n x n x >0的第一项1x =1,以后各项按如下方式取定: 曲线()y f x =在))(,(11++n n x f x 处的切线与经过0,0和n x ,()n f x 两点的直线平行如图求证:当*n N ∈时,Ⅰ221132n n n n x x x x +++=+; Ⅱ21)21()21(--≤≤n n n x ;2.06福建卷已知数列{}n a 满足*111,21().n n a a a n N +==+∈I 求数列{}n a 的通项公式;II 证明:*122311...().232n n a a a n n n N a a a +-<+++<∈3.07浙江已知数列{}n a 中的相邻两项212k k a a -, 是关于x 的方程023)23(2=⋅++-k k k x k x 的两个根,且212(123)k k a a k-=≤,,,. I 求1a ,2a ,3a ,7a ;II 求数列{}n a 的前2n 项和2n S ;Ⅲ记sin 1()32sin n f n n ⎛⎫=+ ⎪⎝⎭, (2)(3)(4)(1)123456212(1)(1)(1)(1)f f f f n n n n T a a a a a a a a +-----=++++…, 求证:15()624n T n ∈*N ≤≤.4.07湖北已知m n ,为正整数,I 用数学归纳法证明:当1x >-时, (1)1m x mx ++≥;II 对于6n ≥,已知11132m n ⎛⎫-< ⎪+⎝⎭, 求证1132m m m n ⎛⎫⎛⎫-< ⎪ ⎪+⎝⎭⎝⎭,12m n =,,,; III 求出满足等式34(2)(3)n n n m n n ++++=+ 的所有正整数n .5. 08辽宁在数列{}{},n n a b 中,112,4a b ==, 且1,,n n n a b a +成等差数列,11,,n n n b a b ++成等比数列. ⑴求234,,a a a 及234,,b b b ,由此猜测{}{},n n a b 的通项 公式,并证明你的结论;⑵证明:1122111512n n a b a b a b +++<+++.数列综合应用1————用放缩法证明与数列和有关的不等式一、备考要点数列与不等式的综合问题常常出现在高考的压轴题中, 是历年高考命题的热点,这类问题能有效地考查学生 综合运用数列与不等式知识解决问题的能力.解决 这类问题常常用到放缩法,而求解途径一般有两条: 一是先求和再放缩,二是先放缩再求和.二、典例讲解1.先求和后放缩例1.正数数列{}n a 的前n 项的和n S ,满足 12+=n n a S ,试求:1数列{}n a 的通项公式;2设11+=n n n a a b ,数列{}n b 的前n 项的和 为n B ,求证:21<nB2. 先放缩再求和①.放缩后成等差数列,再求和例2.已知各项均为正数的数列{}n a 的前n 项和为n S , 且22n n n a a S +=.1 求证:2214n n n a a S ++<;2<⋅⋅⋅<②.放缩后成等比数列,再求和例3.1设a ,n ∈N ,a ≥2,证明:n n n a a a a ⋅+≥--)1()(2;2等比数列{a n }中,112a =-,前n 项的和为A n , 且A 7,A 9,A 8成等差数列.设nn n a a b -=12,数列{b n } 前n 项的和为B n ,证明:B n <13.③.放缩后为差比数列,再求和例4.已知数列{}n a 满足:11=a ,)3,2,1()21(1 =+=+n a n a n n n .求证: 11213-++-≥>n n n n a a④.放缩后为裂项相消,再求和例5.在mm ≥2个不同数的排列P 1P 2…P n 中, 若1≤i <j ≤m 时P i >P j 即前面某数大于后面某数, 则称P i 与P j 构成一个逆序. 一个排列的全部逆序的总数称为该排列的逆序数. 记排列321)1()1( -+n n n 的逆序数为a n ,如排列21的逆序数11=a ,排列321的 逆序数63=a .1求a 4、a 5,并写出a n 的表达式;2令nn n n n a a a a b 11+++=,证明: 32221+<++<n b b b n n ,n =1,2,….高考真题再现:1.06浙江卷已知函数32()f x x x =+,数列{}n x n x >0的第一项1x =1,以后各项按如下方式取定: 曲线()y f x =在))(,(11++n n x f x 处的切线与经过0,0和n x ,()n f x 两点的直线平行如图求证:当*n N ∈时,Ⅰ221132n n n n x x x x +++=+; Ⅱ21)21()21(--≤≤n n n x ;2.06福建卷已知数列{}n a 满足*111,21().n n a a a n N +==+∈I 求数列{}n a 的通项公式;II 证明:*122311...().232n n a a a n n n N a a a +-<+++<∈3.07浙江已知数列{}n a 中的相邻两项212k k a a -, 是关于x 的方程023)23(2=⋅++-k k k x k x 的两个根,且212(123)k k a a k-=≤,,,. I 求1a ,2a ,3a ,7a ;II 求数列{}n a 的前2n 项和2n S ; Ⅲ记sin 1()32sin n f n n ⎛⎫=+ ⎪⎝⎭, (2)(3)(4)(1)123456212(1)(1)(1)(1)f f f f n n n n T a a a a a a a a +-----=++++…, 求证:15()624n T n ∈*N ≤≤.4.07湖北已知m n ,为正整数,I 用数学归纳法证明:当1x >-时, (1)1m x mx ++≥;II 对于6n ≥,已知11132m n ⎛⎫-< ⎪+⎝⎭, 求证1132m m m n ⎛⎫⎛⎫-< ⎪ ⎪+⎝⎭⎝⎭,12m n =,,,; III 求出满足等式34(2)(3)n n n m n n ++++=+ 的所有正整数n .5. 08辽宁在数列{}{},n n a b 中,112,4a b ==, 且1,,n n n a b a +成等差数列,11,,n n n b a b ++成等比数列. ⑴求234,,a a a 及234,,b b b ,由此猜测{}{},n n a b 的通项公式,并证明你的结论; ⑵证明:1122111512n n a b a b a b +++<+++.。
2010高考数学备考之放缩技巧证明数列型不等式,因其思维跨度大、构造性强,需要有较高的放缩技巧而充满思考性和挑战性,能全面而综合地考查学生的潜能与后继学习能力,因而成为高考压轴题及各级各类竞赛试题命题的极好素材。
这类问题的求解策略往往是:通过多角度观察所给数列通项的结构,深入剖析其特征,抓住其规律进行恰当地放缩;其放缩技巧主要有以下几种: 一、裂项放缩 例1.(1)求∑=-nk k 12142的值; (2)求证:35112<∑=nk k. 解析:(1)因为121121)12)(12(21422+--=+-=-n n n n n ,所以122121114212+=+-=-∑=n n n k n k (2)因为⎪⎭⎫ ⎝⎛+--=-=-<12112121444111222n n n n n ,所以35321121121513121112=+<⎪⎭⎫ ⎝⎛+--++-+<∑=n n k nk Λ 奇巧积累:(1)⎪⎭⎫ ⎝⎛+--=-<=1211212144441222n n n n n (2))1(1)1(1)1()1(21211+--=-+=+n n n n n n n C C n n (3))2(111)1(1!11)!(!!11≥--=-<<⋅-=⋅=+r r r r r r n r n r n nC T r rr n r(4)25)1(123112111)11(<-++⨯+⨯++<+n n nn Λ(5)nn nn 21121)12(21--=- (6)n n n -+<+221(7))1(21)1(2--<<-+n n n n n(8)nn n n n n n 2)32(12)12(1213211221⋅+-⋅+=⋅⎪⎭⎫ ⎝⎛+-+-(9)⎪⎭⎫ ⎝⎛++-+=+++⎪⎭⎫ ⎝⎛+-+=-+k n n k k n n n k k n k n k 11111)1(1,11111)1(1 (10) !)1(1!1!)1(+-=+n n n n (11)21212121222)1212(21-++=-++=--+<n n n n n n n(11) )2(121121)12)(12(2)22)(12(2)12)(12(2)12(21112≥---=--=--<--=----n n n n n n n n n n n n n n(12) 111)1(1)1(1)1)(1(11123--+⋅⎪⎪⎭⎫ ⎝⎛+--=+-<⋅=n n n n n n n n n n n n 11112111111+--<-++⋅⎪⎭⎫ ⎝⎛+--=n n n n n n n(13) 3212132122)12(332)13(2221n n n nnnnnn <-⇒>-⇒>-⇒>⋅-=⋅=+ (14) !)2(1!)1(1)!2()!1(!2+-+=+++++k k k k k k (15) )2(1)1(1≥--<+n n n n n(15) 111)11)((1122222222<++++=+++--=-+-+j i j i j i j i j i j i j i例2.(1)求证:)2()12(2167)12(151311222≥-->-++++n n n Λ (2)求证:n n412141361161412-<++++Λ(3)求证:1122642)12(531642531423121-+<⋅⋅⋅⋅-⋅⋅⋅⋅++⋅⋅⋅⋅+⋅⋅+n nn ΛΛΛ(4) 求证:)112(2131211)11(2-+<++++<-+n nn Λ解析:(1)因为⎪⎭⎫⎝⎛+--=+->-12112121)12)(12(1)12(12n n n n n ,所以)12131(211)12131(211)12(112--+>+-+>-∑=n n i ni (2))111(41)1211(414136116141222n nn -+<+++=++++ΛΛ (3)先运用分式放缩法证明出1212642)12(531+<⋅⋅⋅⋅-⋅⋅⋅⋅n nn ΛΛ,再结合nn n -+<+221进行裂项,最后就可以得到答案(4)首先nn n n n++=-+>12)1(21,所以容易经过裂项得到nn 131211)11(2++++<-+Λ再证21212121222)1212(21-++=-++=--+<n n n n n n n而由均值不等式知道这是显然成立的,所以)112(2131211-+<++++n nΛ例3.求证:35191411)12)(1(62<++++≤++n n n n Λ解析:一方面:因为⎪⎭⎫ ⎝⎛+--=-=-<12112121444111222n n n n n ,所以35321121121513121112=+<⎪⎭⎫ ⎝⎛+--++-+<∑=n n knk Λ 另一方面:1111)1(143132111914112+=+-=+++⨯+⨯+>++++n n n n n n ΛΛ当3≥n 时,)12)(1(61++>+n n n n n ,当1=n 时,2191411)12)(1(6n n n n ++++=++Λ,当2=n 时,2191411)12)(1(6nn n n ++++<++Λ,所以综上有35191411)12)(1(62<++++≤++n n n n Λ例4.(2008年全国一卷) 设函数()ln f x x x x =-.数列{}n a 满足101a <<.1()n n a f a +=.设1(1)b a ∈,,整数11ln a b k a b-≥.证明:1k a b +>.解析:由数学归纳法可以证明{}n a 是递增数列,故存在正整数k m ≤,使b a m ≥,则b a a k k ≥>+1,否则若)(k m b a m ≤<,则由101<<≤<b a a m 知0ln ln ln 11<<≤b a a a a a m m m ,∑=+-=-=km m m k k k k a a a a a a a111ln ln ,因为)ln (ln 11b a k a a km m m <∑=,于是b a b a b a k a a k =-+≥+>+)(|ln |11111 例5.已知m m m m m n S x N m n ++++=->∈+Λ321,1,,,求证: 1)1()1(11-+<+<++m n m n S m n .解析:首先可以证明:nx x n +≥+1)1(∑=++++++++--=-++---+--=n k m m m m m m m m k k n n n n n 111111111])1([01)2()1()1(Λ所以要证1)1()1(11-+<+<++m n m n S m n 只要证:∑∑∑=+++++++++==++-+=-++--+-+=-+<+<--n k m m m m m m m m m n k m n k m m k k n n n n n k m k k 111111111111111])1[(2)1()1(1)1()1(])1([Λ故只要证∑∑∑=++==++-+<+<--nk m m nk m nk m m k k k m k k 1111111])1[()1(])1([,即等价于m m m m m k k k m k k -+<+<--+++111)1()1()1(,即等价于11)11(11,)11(11++-<+-+<++m m kk m k k m而正是成立的,所以原命题成立.例6.已知n n n a 24-=,nn na a a T +++=Λ212,求证:23321<++++n T T T T Λ.解析:)21(2)14(3421)21(241)41(4)222(444421321n nn n n n n T -+-=-----=+++-++++=ΛΛ 所以123)2(22232234232323422234342)21(2)14(3422111111+⋅-⋅⋅=+⋅-⋅=-+=-+-=-+-=++++++n n nn n n n n n n n n n n nn T⎪⎭⎫ ⎝⎛---=--⋅⋅=+12112123)12)(122(2231n n nn n从而231211217131311231321<⎪⎭⎫ ⎝⎛---++-+-=+++++n n n T T T T ΛΛ 例7.已知11=x ,⎩⎨⎧∈=-∈-==),2(1),12(Z k k n n Z k k n n xn,求证: *))(11(21114122454432N n n x x x x x x n n ∈-+>++⋅+⋅+Λ证明:nnnn n n x x n n 222141141)12)(12(11424244122=⋅=>-=+-=+,因为12++<n n n ,所以)1(2122214122n n n n nx x n n -+=++>>+所以*))(11(21114122454432N n n x x x x x x n n ∈-+>++⋅+⋅+Λ二、函数放缩例8.求证:)(665333ln 44ln 33ln 22ln *N n n n n n ∈+-<++++Λ. 解析:先构造函数有xxx x x 11ln 1ln -≤⇒-≤,从而)313121(1333ln 44ln 33ln 22ln n n nn+++--<++++ΛΛ 因为⎪⎭⎫ ⎝⎛++++++⎪⎭⎫ ⎝⎛++++++⎪⎭⎫ ⎝⎛+=+++n n n n 31121219181716151413121313121ΛΛΛ6533323279189936365111n n n n n =⎪⎪⎭⎫ ⎝⎛+⋅++⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛++>---Λ 所以6653651333ln 44ln 33ln 22ln +-=--<++++n n n n nnΛ2ααα 例12.求证:32)]1(1[)321()211(->++⋅⋅⨯+⋅⨯+n e n n Λ解析:32]1)1(ln[->++n n ,叠加之后就可以得到答案:)1*,(4)1(1ln 54ln 43ln 32ln >∈-<+++++n N n n n n nΛ 解析:构造函数)1(1)1()1ln()(>+---=x x x x f ,求导,可以得到:12111)('--=--=x x x x f ,令0)('>x f 有21<<x ,令0)('<x f 有2>x ,所以0)2()(=≤f x f ,所以2)1ln(-≤-x x ,令12+=n x 有,1ln 22-≤n n所以211ln -≤+n n n ,所以)1*,(4)1(1ln 54ln 43ln 32ln >∈-<+++++n N n n n n n Λ例14. 已知112111,(1).2n n na a a n n +==+++证明2n a e <. 解析:nn n n n a n n a n n a )21)1(11(21))1(11(1+++<+++=+,然后两边取自然对数,可以得到nn n a n n aln )21)1(11ln(ln 1++++<+ 然后运用x x <+)1ln(和裂项可以得到答案) 放缩思路:⇒+++≤+n nn a nn a )2111(21⇒++++≤+nnn a n n a ln )2111ln(ln 21nn n n a 211ln 2+++≤。
放缩法技巧及经典例题讲解 一.放缩技巧所谓放缩的技巧:即欲证A B ≤,欲寻找一个(或多个)中间变量C ,使A C B ≤≤,由A 到C 叫做“放”,由B 到C 叫做“缩”.常用的放缩技巧 (1)若0,,t a t a a t a >+>-< (2)<>11>n >=(3)21111111(1)1(1)(1)1n n n n n n n n n n-=<<=->++-- (4)=<=<=(5)若,,a b m R +∈,则,a a a a mb b m b b+><+ (6)21111111112!3!!222n n -+++⋅⋅⋅+<+++⋅⋅⋅+(7)2221111111111(1)()()232231n n n+++⋅⋅⋅+<+-+-+⋅⋅⋅+--(因为211(1)n n n <-) (7)1111111112321111nn n n n n n n n +++⋅⋅⋅+≤++⋅⋅⋅+=<+++++++或11111111123222222n n n n n n n n n +++⋅⋅⋅+≥++⋅⋅⋅+==+++ (8)1⋅⋅⋅+>⋅⋅⋅+== (9))1(11)1(12-<<+k k k k k ,⎥⎦⎤⎢⎣⎡--≤!!(!k k k 1)11211(10) 12112-+<<++k k k k k【经典回放】例1、设数列{}n a 的前n 项和为n S .已知11a =,2121233n n S a n n n +=---,*n ∈N . (Ⅰ) 求2a 的值;(Ⅱ) 求数列{}n a 的通项公式; (Ⅲ) 证明:对一切正整数n ,有1211174n a a a +++<.【解析】(Ⅰ) 依题意,12122133S a =---,又111S a ==,所以24a =; (Ⅱ) 当2n ≥时,32112233n nS na n n n +=---, ()()()()321122111133n n S n a n n n -=------- 两式相减得()()()2112213312133n n n a na n a n n n +=----+--- 整理得()()111n n n a na n n ++=-+,即111n n a a n n+-=+,又21121a a-=故数列n a n ⎧⎫⎨⎬⎩⎭是首项为111a =,公差为1的等差数列, 所以()111na n n n=+-⨯=,所以2n a n =. (Ⅲ) 当1n =时,11714a =<;当2n =时,12111571444a a +=+=<; 当3n ≥时,()21111111n a n n n n n=<=---,此时 222121111111111111111434423341n a a a n n n ⎛⎫⎛⎫⎛⎫+++=+++++<++-+-++- ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭11171714244n n =++-=-< 综上,对一切正整数n ,有1211174n a a a +++<. 例2:【经典例题】例1、设数列{}n a 满足12,311+-==+n a a a n n(1) 求{}n a 的通项公式; (2) 若11111,1,1++-=-=-==n n n n n n n c c d n a c c b c 求证:数列{}n n d b ⋅的前n 项和31<n S 分析:(1)此时我们不妨设)(2)1(1B An a B n A a n n ++=++++即BA An a a n n +-+=+21与已知条件式比较系数得.0,1=-=B A )(2)1(1n a n a n n -=--∴+又}{,211n a a n -∴=-是首项为2,公比为2的等比数列。